1
|
di Leandro L, Colasante M, Pitari G, Ippoliti R. Hosts and Heterologous Expression Strategies of Recombinant Toxins for Therapeutic Purposes. Toxins (Basel) 2023; 15:699. [PMID: 38133203 PMCID: PMC10748335 DOI: 10.3390/toxins15120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The production of therapeutic recombinant toxins requires careful host cell selection. Bacteria, yeast, and mammalian cells are common choices, but no universal solution exists. Achieving the delicate balance in toxin production is crucial due to potential self-intoxication. Recombinant toxins from various sources find applications in antimicrobials, biotechnology, cancer drugs, and vaccines. "Toxin-based therapy" targets diseased cells using three strategies. Targeted cancer therapy, like antibody-toxin conjugates, fusion toxins, or "suicide gene therapy", can selectively eliminate cancer cells, leaving healthy cells unharmed. Notable toxins from various biological sources may be used as full-length toxins, as plant (saporin) or animal (melittin) toxins, or as isolated domains that are typical of bacterial toxins, including Pseudomonas Exotoxin A (PE) and diphtheria toxin (DT). This paper outlines toxin expression methods and system advantages and disadvantages, emphasizing host cell selection's critical role.
Collapse
Affiliation(s)
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.d.L.); (M.C.); (G.P.)
| |
Collapse
|
2
|
Narbona J, Hernández-Baraza L, Gordo RG, Sanz L, Lacadena J. Nanobody-Based EGFR-Targeting Immunotoxins for Colorectal Cancer Treatment. Biomolecules 2023; 13:1042. [PMID: 37509078 PMCID: PMC10377705 DOI: 10.3390/biom13071042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotoxins (ITXs) are chimeric molecules that combine the specificity of a targeting domain, usually derived from an antibody, and the cytotoxic potency of a toxin, leading to the selective death of tumor cells. However, several issues must be addressed and optimized in order to use ITXs as therapeutic tools, such as the selection of a suitable tumor-associated antigen (TAA), high tumor penetration and retention, low kidney elimination, or low immunogenicity of foreign proteins. To this end, we produced and characterized several ITX designs, using a nanobody against EGFR (VHH 7D12) as the targeting domain. First, we generated a nanoITX, combining VHH 7D12 and the fungal ribotoxin α-sarcin (αS) as the toxic moiety (VHHEGFRαS). Then, we incorporated a trimerization domain (TIEXVIII) into the construct, obtaining a trimeric nanoITX (TriVHHEGFRαS). Finally, we designed and characterized a bispecific ITX, combining the VHH 7D12 and the scFv against GPA33 as targeting domains, and a deimmunized (DI) variant of α-sarcin (BsITXαSDI). The results confirm the therapeutic potential of α-sarcin-based nanoITXs. The incorporation of nanobodies as target domains improves their therapeutic use due to their lower molecular size and binding features. The enhanced avidity and toxic load in the trimeric nanoITX and the combination of two different target domains in the bispecific nanoITX allow for increased antitumor effectiveness.
Collapse
Affiliation(s)
- Javier Narbona
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Luisa Hernández-Baraza
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
- University Institute of Biomedical and Health Research (IUIBS), Las Palmas University, 35016 Las Palmas de Gran Canaria, Spain
| | - Rubén G Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, Majadahonda, 28222 Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
3
|
Reducing the Immunogenicity of Pulchellin A-Chain, Ribosome-Inactivating Protein Type 2, by Computational Protein Engineering for Potential New Immunotoxins. J 2023. [DOI: 10.3390/j6010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pulchellin is a plant biotoxin categorized as a type 2 ribosome-inactivating protein (RIPs) which potentially kills cells at very low concentrations. Biotoxins serve as targeting immunotoxins (IT), consisting of antibodies conjugated to toxins. ITs have two independent protein components, a human antibody and a toxin with a bacterial or plant source; therefore, they pose unique setbacks in immunogenicity. To overcome this issue, the engineering of epitopes is one of the beneficial methods to elicit an immunological response. Here, we predicted the tertiary structure of the pulchellin A-chain (PAC) using five common powerful servers and adopted the best model after refining. Then, predicted structure using four distinct computational approaches identified conformational B-cell epitopes. This approach identified some amino acids as a potential for lowering immunogenicity by point mutation. All mutations were then applied to generate a model of pulchellin containing all mutations (so-called PAM). Mutants’ immunogenicity was assessed and compared to the wild type as well as other mutant characteristics, including stability and compactness, were computationally examined in addition to immunogenicity. The findings revealed a reduction in immunogenicity in all mutants and significantly in N146V and R149A. Furthermore, all mutants demonstrated remarkable stability and validity in Molecular Dynamic (MD) simulations. During docking and simulations, the most homologous toxin to pulchellin, Abrin-A was applied as a control. In addition, the toxin candidate containing all mutations (PAM) disclosed a high level of stability, making it a potential model for experimental deployment. In conclusion, by eliminating B-cell epitopes, our computational approach provides a potential less immunogenic IT based on PAC.
Collapse
|
4
|
Gray MD, Feng J, Weidle CE, Cohen KW, Ballweber-Fleming L, MacCamy AJ, Huynh CN, Trichka JJ, Montefiori D, Ferrari G, Pancera M, McElrath MJ, Stamatatos L. Characterization of a vaccine-elicited human antibody with sequence homology to VRC01-class antibodies that binds the C1C2 gp120 domain. SCIENCE ADVANCES 2022; 8:eabm3948. [PMID: 35507661 PMCID: PMC9067929 DOI: 10.1126/sciadv.abm3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Broadly HIV-1-neutralizing VRC01-class antibodies bind the CD4-binding site of Env and contain VH1-2*02-derived heavy chains paired with light chains expressing five-amino acid-long CDRL3s. Their unmutated germline forms do not recognize HIV-1 Env, and their lack of elicitation in human clinical trials could be due to the absence of activation of the corresponding naïve B cells by the vaccine immunogens. To address this point, we examined Env-specific B cell receptor sequences from participants in the HVTN 100 clinical trial. Of all the sequences analyzed, only one displayed homology to VRC01-class antibodies, but the corresponding antibody (FH1) recognized the C1C2 gp120 domain. For FH1 to switch epitope recognition to the CD4-binding site, alterations in the CDRH3 and CDRL3 were necessary. Only germ line-targeting Env immunogens efficiently activated VRC01 B cells, even in the presence of FH1 B cells. Our findings support the use of these immunogens to activate VRC01 B cells in humans.
Collapse
Affiliation(s)
- Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Junli Feng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Connor E. Weidle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna J. MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Crystal N. Huynh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Josephine J. Trichka
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
A Toxin-Conjugated Recombinant Protein Targeting gp120 and gp41 for Inactivating HIV-1 Virions and Killing Latency-Reversing Agent-Reactivated Latent Cells. mBio 2022; 13:e0338421. [PMID: 35038908 PMCID: PMC8764533 DOI: 10.1128/mbio.03384-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Application of the combination antiretroviral therapy (cART) has reduced AIDS to a manageable chronic infectious disease. However, HIV/AIDS cannot be cured because of the presence of latent reservoirs, thus calling for the development of antiretroviral drugs that can eliminate latency-reversing agent (LRA)-activated HIV-1 virions and latent cells. In this study, we conjugated a small-molecule toxin, DM1, to a gp120-binding protein, mD1.22, a mutated CD4 domain I, and found that mD1.22-DM1 could inactivate HIV-1 virions. However, it could not kill LRA-activated latent cells. We then designed and constructed a dual-targeting protein, DL35D, by linking mD1.22 and the single-chain variable fragment (scFv) of a gp41 NHR-specific antibody, D5, with a 35-mer linker. Subsequently, we conjugated DM1 to DL35D and found that DL35D-DM1 could inhibit HIV-1 infection, inactivate HIV-1 virions, kill HIV-1-infected cells and LRA-reactivated latent cells, suggesting that this toxin-conjugated dual-targeting recombinant protein is a promising candidate for further development as a novel antiviral drug with potential for HIV functional cure. IMPORTANCE Although HIV-1 replication was successfully controlled by antiretroviral drugs, cure strategy for HIV-1/AIDS is still lacking. The long-lived HIV reservoir is considered one of the major obstacles to an HIV/AIDS cure. CD4-PE40 was the first drug that designed to kill HIV-1 infected cells; however, lower efficiency and high immunogenicity have limited its further development. In this study, we designed several dual-targeting recombinant proteins DLDs by linking gp120-binding protein mD1.22 and gp41-binding antibody D5 scFv with different length of linkers. Among them, DL35D with 35-mer linker showed the best anti-HIV-1 activity. We further conjugated the DM1 toxin to DL35D to produce DL35D-DM1, which maintained DL35D's inhibitory and inactivation activity against cell-free HIV-1 strains. Most importantly, DL35D-DM1 could specifically kill HIV-1-infected cells and LRA-reactivated-latent infected cells, suggesting that it is a proper candidate for development as a novel antiviral drug for use in combination with an LRA for HIV functional cure.
Collapse
|
6
|
Umotoy JC, de Taeye SW. Antibody Conjugates for Targeted Therapy Against HIV-1 as an Emerging Tool for HIV-1 Cure. Front Immunol 2021; 12:708806. [PMID: 34276704 PMCID: PMC8282362 DOI: 10.3389/fimmu.2021.708806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Although advances in antiretroviral therapy (ART) have significantly improved the life expectancy of people living with HIV-1 (PLWH) by suppressing HIV-1 replication, a cure for HIV/AIDS remains elusive. Recent findings of the emergence of drug resistance against various ART have resulted in an increased number of treatment failures, thus the development of novel strategies for HIV-1 cure is of immediate need. Antibody-based therapy is a well-established tool in the treatment of various diseases and the engineering of new antibody derivatives is expanding the realms of its application. An antibody-based carrier of anti-HIV-1 molecules, or antibody conjugates (ACs), could address the limitations of current HIV-1 ART by decreasing possible off-target effects, reduce toxicity, increasing the therapeutic index, and lowering production costs. Broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency against HIV-1 are currently being explored to prevent or treat HIV-1 infection in the clinic. Moreover, bNAbs can be engineered to deliver cytotoxic or immune regulating molecules as ACs, further increasing its therapeutic potential for HIV-1 cure. ACs are currently an important component of anticancer treatment with several FDA-approved constructs, however, to date, no ACs are approved to treat viral infections. This review aims to outline the development of AC for HIV-1 cure, examine the variety of carriers and payloads used, and discuss the potential of ACs in the current HIV-1 cure landscape.
Collapse
Affiliation(s)
- Jeffrey C Umotoy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Sadraeian M, da Cruz EF, Boyle RW, Bahou C, Chudasama V, Janini LMR, Diaz RS, Guimarães FEG. Photoinduced Photosensitizer-Antibody Conjugates Kill HIV Env-Expressing Cells, Also Inactivating HIV. ACS OMEGA 2021; 6:16524-16534. [PMID: 34235324 PMCID: PMC8246456 DOI: 10.1021/acsomega.1c01721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/27/2021] [Indexed: 06/01/2023]
Abstract
HIV-infected cells persist for decades in patients administered with antiretroviral therapy (ART). Meanwhile, an alarming surge in drug-resistant HIV viruses has been occurring. Addressing these issues, we propose the application of photoimmunotherapy (PIT) against not only HIV Env-expressing cells but also HIV. Previously, we showed that a human anti-gp41 antibody (7B2) conjugated to cationic or anionic photosensitizers (PSs) could specifically target and kill the HIV Env-expressing cells. Here, our photolysis studies revealed that the binding of photoimmunoconjugates (PICs) on the membrane of HIV Env-expressing cells is sufficient to induce necrotic cell death due to physical damage to the membrane by singlet oxygen, which is independent of the type of PSs. This finding persuaded us to study the virus photoinactivation of PICs using two HIV-1 strains, X4 HIV-1 NL4-3 and JR-CSF virus. We observed that the PICs could destroy the viral strains, probably via physical damage on the HIV envelope. In conclusion, we report the application of PIT as a possible dual-tool for HIV immunotherapy and ART by killing HIV-expressing cells and cell-free HIV, respectively.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- São Carlos Institute of Physics, University of São Paulo, Caixa Postal 369, São Carlos, SP CEP 13560-970, Brazil
| | | | - Ross W Boyle
- Department of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Calise Bahou
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Vijay Chudasama
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | | | - Ricardo Sobhie Diaz
- Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Francisco E G Guimarães
- São Carlos Institute of Physics, University of São Paulo, Caixa Postal 369, São Carlos, SP CEP 13560-970, Brazil
| |
Collapse
|
8
|
Li CH, Lv WY, Yan Y, Yang FF, Zhen SJ, Huang CZ. Nucleolin-Targeted DNA Nanotube for Precise Cancer Therapy through Förster Resonance Energy Transfer-Indicated Telomerase Responsiveness. Anal Chem 2021; 93:3526-3534. [PMID: 33562958 DOI: 10.1021/acs.analchem.0c04917] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Precise drug delivery holds great promise in cancer treatment but still faces challenges in controllable drug release in tumor cells specifically. Herein, a nucleolin-targeted and telomerase-responsive DNA nanotube for drug release was developed. First, a DNA nanosheet with four capture strands on its surface was prepared, which could bind and load ricin A chain (RTA). The RTA-loaded nanosheet was further converted into a DNA nanotube with a high Förster resonance energy transfer (FRET) efficiency in the presence of a Cy3-modified DNA fastener by hybridizing with the Cy5-modified DNA and another DNA-containing telomerase primer sequence along the long sides. Moreover, the aptamer of nucleolin was assembled on the DNA nanotube by combining with the hybrid chain at the terminal. The aptamer-functionalized and RTA-loaded DNA nanotube displayed enhanced tumor permeability and precise drug release in response to the telomerase in tumor cells, following the change of the FRET signal and RTA-induced cell death. Moreover, the DNA nanotube was applied successfully in vivo, and there was an obvious inhibition of tumor growth on xenograft-bearing mice following systemic administration, indicating that the constructed DNA nanotube represents a promising platform for precise RTA delivery in target cancer therapy.
Collapse
Affiliation(s)
- Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Yan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fei Fan Yang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Citores L, Iglesias R, Ferreras JM. Antiviral Activity of Ribosome-Inactivating Proteins. Toxins (Basel) 2021; 13:80. [PMID: 33499086 PMCID: PMC7912582 DOI: 10.3390/toxins13020080] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.
Collapse
Affiliation(s)
| | | | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.)
| |
Collapse
|
10
|
Sadraeian M, Bahou C, da Cruz EF, Janini LMR, Sobhie Diaz R, Boyle RW, Chudasama V, Eduardo Gontijo Guimarães F. Photoimmunotherapy Using Cationic and Anionic Photosensitizer-Antibody Conjugates against HIV Env-Expressing Cells. Int J Mol Sci 2020; 21:E9151. [PMID: 33271741 PMCID: PMC7730620 DOI: 10.3390/ijms21239151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Different therapeutic strategies have been investigated to target and eliminate HIV-1-infected cells by using armed antibodies specific to viral proteins, with varying degrees of success. Herein, we propose a new strategy by combining photodynamic therapy (PDT) with HIV Env-targeted immunotherapy, and refer to it as HIV photoimmunotherapy (PIT). A human anti-gp41 antibody (7B2) was conjugated to two photosensitizers (PSs) with different charges through different linking strategies; "Click" conjugation by using an azide-bearing porphyrin attached via a disulfide bridge linker with a drug-to-antibody ratio (DAR) of exactly 4, and "Lysine" conjugation by using phthalocyanine IRDye 700DX dye with average DARs of 2.1, 3.0 and 4.4. These photo-immunoconjugates (PICs) were compared via biochemical and immunological characterizations regarding the dosimetry, solubility, and cell targeting. Photo-induced cytotoxicity of the PICs were compared using assays for apoptosis, reactive oxygen species (ROS), photo-cytotoxicity, and confocal microscopy. Targeted phototoxicity seems to be primarily dependent on the binding of PS-antibody to the HIV antigen on the cell membrane, whilst being independent of the PS type. This is the first report of the application of PIT for HIV immunotherapy by killing HIV Env-expressing cells.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil;
| | - Calise Bahou
- Department of Chemistry, University College London, London WC1H 0AJ, UK;
| | - Edgar Ferreira da Cruz
- Laboratório de Retrovirologia, Disciplina de Microbiologia, Departamento de Microbiologia Imunologia Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04039-032, Brazil; (E.F.d.C.); (L.M.R.J.); (R.S.D.)
| | - Luíz Mário Ramos Janini
- Laboratório de Retrovirologia, Disciplina de Microbiologia, Departamento de Microbiologia Imunologia Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04039-032, Brazil; (E.F.d.C.); (L.M.R.J.); (R.S.D.)
| | - Ricardo Sobhie Diaz
- Laboratório de Retrovirologia, Disciplina de Microbiologia, Departamento de Microbiologia Imunologia Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04039-032, Brazil; (E.F.d.C.); (L.M.R.J.); (R.S.D.)
| | - Ross W. Boyle
- Department of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| | - Vijay Chudasama
- Department of Chemistry, University College London, London WC1H 0AJ, UK;
| | | |
Collapse
|
11
|
Hamamichi S, Fukuhara T, Hattori N. Immunotoxin Screening System: A Rapid and Direct Approach to Obtain Functional Antibodies with Internalization Capacities. Toxins (Basel) 2020; 12:toxins12100658. [PMID: 33076544 PMCID: PMC7602748 DOI: 10.3390/toxins12100658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Toxins, while harmful and potentially lethal, have been engineered to develop potent therapeutics including cytotoxins and immunotoxins (ITs), which are modalities with highly selective targeting capabilities. Currently, three cytotoxins and IT are FDA-approved for treatment of multiple forms of hematological cancer, and additional ITs are tested in the clinical trials or at the preclinical level. For next generation of ITs, as well as antibody-mediated drug delivery systems, specific targeting by monoclonal antibodies is critical to enhance efficacies and reduce side effects, and this methodological field remains open to discover potent therapeutic monoclonal antibodies. Here, we describe our application of engineered toxin termed a cell-based IT screening system. This unique screening strategy offers the following advantages: (1) identification of monoclonal antibodies that recognize cell-surface molecules, (2) selection of the antibodies that are internalized into the cells, (3) selection of the antibodies that induce cytotoxicity since they are linked with toxins, and (4) determination of state-specific activities of the antibodies by differential screening under multiple experimental conditions. Since the functional monoclonal antibodies with internalization capacities have been identified successfully, we have pursued their subsequent modifications beyond antibody drug conjugates, resulting in development of immunoliposomes. Collectively, this screening system by using engineered toxin is a versatile platform, which enables straight-forward and rapid selection for discovery of novel functional antibodies.
Collapse
Affiliation(s)
- Shusei Hamamichi
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Correspondence: ; Tel.: +81-3-5802-2731; Fax: +81-3-5800-0547
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
13
|
Lu JQ, Zhu ZN, Zheng YT, Shaw PC. Engineering of Ribosome-inactivating Proteins for Improving Pharmacological Properties. Toxins (Basel) 2020; 12:toxins12030167. [PMID: 32182799 PMCID: PMC7150887 DOI: 10.3390/toxins12030167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are N-glycosidases, which depurinate a specific adenine residue in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. This loop is important for anchoring elongation factor (EF-G for prokaryote or eEF2 for eukaryote) in mRNA translocation. Translation is inhibited after the attack. RIPs therefore may have been applied for anti-cancer, and anti-virus and other therapeutic applications. The main obstacles of treatment with RIPs include short plasma half-life, non-selective cytotoxicity and antigenicity. This review focuses on the strategies used to improve the pharmacological properties of RIPs on human immunodeficiency virus (HIV) and cancers. Coupling with polyethylene glycol (PEG) increases plasma time and reduces antigenicity. RIPs conjugated with antibodies to form immunotoxins increase the selective toxicity to target cells. The prospects for future development on the engineering of RIPs for improving their pharmacological properties are also discussed.
Collapse
Affiliation(s)
- Jia-Qi Lu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 99077, China; (J.-Q.L.); (Z.-N.Z.)
| | - Zhen-Ning Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 99077, China; (J.-Q.L.); (Z.-N.Z.)
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms, National Kunming High level Biosafety Research Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China;
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 99077, China; (J.-Q.L.); (Z.-N.Z.)
- Correspondence:
| |
Collapse
|
14
|
Critical Issues in the Development of Immunotoxins for Anticancer Therapy. J Pharm Sci 2019; 109:104-115. [PMID: 31669121 DOI: 10.1016/j.xphs.2019.10.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Immunotoxins (ITs) are attractive anticancer modalities aimed at cancer-specific delivery of highly potent cytotoxic protein toxins. An IT consists of a targeting domain (an antibody, cytokine, or another cell-binding protein) chemically conjugated or recombinantly fused to a highly cytotoxic payload (a bacterial and plant toxin or human cytotoxic protein). The mode of action of ITs is killing designated cancer cells through the effector function of toxins in the cytosol after cellular internalization via the targeted cell-specific receptor-mediated endocytosis. Although numerous ITs of diverse structures have been tested in the past decades, only 3 ITs-denileukin diftitox, tagraxofusp, and moxetumomab pasudotox-have been clinically approved for treating hematological cancers. No ITs against solid tumors have been approved for clinical use. In this review, we discuss critical research and development issues associated with ITs that limit their clinical success as well as strategies to overcome these obstacles. The issues include off-target and on-target toxicities, immunogenicity, human cytotoxic proteins, antigen target selection, cytosolic delivery efficacy, solid-tumor targeting, and developability. To realize the therapeutic promise of ITs, novel strategies for safe and effective cytosolic delivery into designated tumors, including solid tumors, are urgently needed.
Collapse
|
15
|
Application of therapeutic protein-based fusion toxins. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|