1
|
Auguet-Lara M, Skrivergaard S, Therkildsen M, Rasmussen MK, Young JF. Development of a biomarker panel for cell characterization intended for cultivated meat. Exp Cell Res 2025; 446:114467. [PMID: 39978714 DOI: 10.1016/j.yexcr.2025.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Cultivated meat has in recent years been suggested as a sustainable alternative to produce meat at large-scale. Several aspects of cultivated meat production have demonstrated significant progress. However, there are still many questions regarding the cell culture, media composition, and the production itself to be answered and optimized. Finding good starter cell populations is a challenge to address and requires robust tools to characterize the cell populations. Detailed analysis is required to identify each type of cell within the skeletal muscle niche leads to optimized cultivated meat production at large-scale. In this study, we developed a set of biomarkers, using digital droplet PCR (ddPCR) and Immunofluorescence (IF) staining, to identify specific cell types within a heterogeneous cell population isolated from skeletal muscle tissue. We showed that combining Neural Cell Adhesion Molecule (NCAM), Calponin 1 (CNN1), and Fibronectin (FN), can be a powerful approach to predict the growth of skeletal myotubes, smooth muscle mesenchymal cells (SMMCs), and myofibroblasts, respectively. Moreover, early cell-cell interactions of fibroblastic cells were observed to be triggered through thin actin filaments containing CNN1 protein, to form, subsequently, myofibroblast networks. Besides, Myogenic Differentiation 1 (MyoD) is the key marker to detect skeletal muscle growth, whereas Myogenic Factor 5 (MyF5) can be expressed in myogenic and non-myogenic cells. MyF5 was detected at differentiation stages within the myotube nuclei, suggesting an unknown role during myotube formation.
Collapse
|
2
|
Park SH, Oh SH, Park GT, Jang SY, Lim YH, Oh SK, Lee TH, Lee SH, Kim JH, Choi JS. Effects of Black Soldier Fly Larvae Hydrolysate on Culture of Primary Myogenic and Adipogenic Cells Isolated from Broilers for Cultured Meat Development. Foods 2025; 14:678. [PMID: 40002121 PMCID: PMC11854258 DOI: 10.3390/foods14040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Sustainable food resources, including cell-cultured meat and edible insect proteins, are emerging as key solutions to meet future protein demands. This study evaluated the effects of black soldier fly larvae hydrolysate (BLH) on primary cells isolated from broiler leg and breast muscle tissues, as well as abdominal fat tissues. Primary cells isolated from each tissue were characterized for their myogenic and adipogenic (stromal vascular fraction, SVF) properties. Cells were cultured in a basal medium with five percent FBS supplemented with BLH at concentrations ranging from 25 to 300 µg/mL. Leg and breast muscle cells showed significantly enhanced proliferation, as indicated by MTS assay results and cell counts, in the BLH100 group compared to the FBS5 and control groups (p < 0.05). Furthermore, the expression of myogenic markers, including PAX7, NCAM1, MYF5, and MYOD1, was upregulated in leg muscle cells treated with BLH (p < 0.05). For SVFs, BLH50 promoted cell proliferation; however, differentiation decreased as BLH concentration increased. These findings suggest that BLH can enhance the proliferation of primary broiler cells, highlighting its potential applicability in the edible insect and cultured meat industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jung-Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.-H.P.); (S.-H.O.); (G.-T.P.); (S.-Y.J.); (Y.-H.L.); (S.-K.O.); (T.-H.L.); (S.-H.L.); (J.-H.K.)
| |
Collapse
|
3
|
Massenet J, Weiss-Gayet M, Bandukwala H, Bouchereau W, Gobert S, Magnan M, Hubas A, Nusbaum P, Desguerre I, Gitiaux C, Dilworth FJ, Chazaud B. Epigenetic control of myogenic identity of human muscle stem cells in Duchenne muscular dystrophy. iScience 2024; 27:111350. [PMID: 39650736 PMCID: PMC11625291 DOI: 10.1016/j.isci.2024.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
In Duchenne muscular dystrophy (DMD), muscle stem cells' (MuSCs) regenerative capacities are overwhelmed leading to fibrosis. Whether MuSCs have intrinsic defects or are disrupted by their environment is unclear. We investigated cell behavior and gene expression of MuSCs from DMD or healthy human muscles. Proliferation, differentiation, and fusion were unaltered in DMD-MuSCs, but with time, they lost their myogenic identity twice as fast as healthy MuSCs. The rapid drift toward a fibroblast-like cell identity was observed at the clonal level, and resulted from altered expression of epigenetic enzymes. Re-expression of CBX3, SMC3, H2AFV, and H3F3B prevented the MuSC identity drift. Among epigenetic changes, a closing of chromatin at the transcription factor MEF2B locus caused downregulation of its expression and loss of the myogenic fate. Re-expression of MEF2B in DMD-MuSCs restored their myogenic fate. MEF2B is key in the maintenance of myogenic identity in human MuSCs, which is altered in DMD.
Collapse
Affiliation(s)
- Jimmy Massenet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Hina Bandukwala
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Wilhelm Bouchereau
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Stéphanie Gobert
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Mélanie Magnan
- Institut Cochin, Université Paris-Cité, Inserm U1016, CNRS UMR8104, Paris, France
| | - Arnaud Hubas
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Patrick Nusbaum
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Isabelle Desguerre
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Université Paris Cité, IHU Imagine, 75015 Paris, France
| | - Cyril Gitiaux
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Service d’explorations Fonctionnelles, Unité de Neurophysiologie Clinique, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - F. Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| |
Collapse
|
4
|
Chandrababu A, Puthumana J. CRISPR-edited, cell-based future-proof meat and seafood to enhance global food security and nutrition. Cytotechnology 2024; 76:619-652. [PMID: 39435422 PMCID: PMC11490478 DOI: 10.1007/s10616-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/15/2024] [Indexed: 10/23/2024] Open
Abstract
Food security is a major concern due to the growing population and climate change. A method for increasing food production is the use of modern biotechnology, such as cell culture, marker-assisted selection, and genetic engineering. Cellular agriculture has enabled the production of cell-cultivated meat in bioreactors that mimic the properties of conventional meat. Furthermore, 3D food printing technology has improved food production by adding new nutritional and organoleptic properties. Marker-assisted selection and genetic engineering could play an important role in producing animals and crops with desirable traits. Therefore, integrating cellular agriculture with genetic engineering technology could be a potential strategy for the production of cell-based meat and seafood with high health benefits in the future. This review highlights the production of cell-cultivated meat derived from a variety of species, including livestock, birds, fish, and marine crustaceans. It also investigates the application of genetic engineering methods, such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein), in the context of cellular agriculture. Moreover, it examines aspects such as food safety, regulatory considerations, and consumer acceptance of genetically engineered cell-cultivated meat and seafood.
Collapse
Affiliation(s)
- Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 16 India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 16 India
| |
Collapse
|
5
|
Meng L, Yang Y, He S, Chen H, Zhan Y, Yang R, Li Z, Zhu J, Zhou J, Li Y, Xie L, Chen G, Zheng S, Yao X, Dong R. Single-cell sequencing of the vermiform appendix during development identifies transcriptional relationships with appendicitis in preschool children. BMC Med 2024; 22:383. [PMID: 39267041 PMCID: PMC11395239 DOI: 10.1186/s12916-024-03611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The development of the human vermiform appendix at the cellular level, as well as its function, is not well understood. Appendicitis in preschool children, although uncommon, is associated with a high perforation rate and increased morbidity. METHODS We performed single-cell RNA sequencing (scRNA-seq) on the human appendix during fetal and pediatric stages as well as preschool-age inflammatory appendices. Transcriptional features of each cell compartment were discussed in the developing appendix. Cellular interactions and differentiation trajectories were also investigated. We compared scRNA-seq profiles from preschool appendicitis to those of matched healthy controls to reveal disease-associated changes. Bulk transcriptomic data, immunohistochemistry, and real-time quantitative PCR were used to validate the findings. RESULTS Our analysis identified 76 cell types in total and described the cellular atlas of the developing appendix. We discovered the potential role of the BMP signaling pathway in appendiceal epithelium development and identified HOXC8 and PITX2 as the specific regulons of appendix goblet cells. Higher pericyte coverage, endothelial angiogenesis, and goblet mucus scores together with lower epithelial and endothelial tight junction scores were found in the preschool appendix, which possibly contribute to the clinical features of preschool appendicitis. Preschool appendicitis scRNA-seq profiles revealed that the interleukin-17 signaling pathway may participate in the inflammation process. CONCLUSIONS Our study provides new insights into the development of the appendix and deepens the understanding of appendicitis in preschool children.
Collapse
Affiliation(s)
- Lingdu Meng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yifan Yang
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shiwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, China
| | - Huifen Chen
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Zifeng Li
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jiajie Zhu
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jin Zhou
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Lulu Xie
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Gong Chen
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| | - Xiaoying Yao
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Rui Dong
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| |
Collapse
|
6
|
Phang HJ, Heimler SR, Scandalis LM, Wing D, Moran R, Nichols JF, Moreno D, Shadel GS, Gage FH, Molina AJA. Protocol for the San Diego Nathan Shock Center Clinical Cohort: a new resource for studies of human aging. BMJ Open 2024; 14:e082659. [PMID: 38925692 PMCID: PMC11202663 DOI: 10.1136/bmjopen-2023-082659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION While it is well recognised that aging is a heterogeneous process, our understanding of the determinants of biological aging and its heterogeneity remains unclear. The San Diego Nathan Shock Center (SD-NSC) Clinical Cohort aims to establish a resource of biospecimens and extensive donor clinical data such as physical, cognitive and sensory function to support other studies that aim to explore the heterogeneity of normal human aging and its biological underpinnings. METHODS AND ANALYSIS The SD-NSC Clinical Cohort is composed of 80 individuals across the adult human lifespan. Strict inclusion and exclusion criteria are implemented to minimise extrinsic factors that may impede the study of normal aging. Across three visits, participants undergo extensive phenotyping for collection of physical performance, body composition, cognitive function, sensory ability, mental health and haematological data. During these visits, we also collected biospecimens including plasma, platelets, peripheral blood mononuclear cells and fibroblasts for banking and future studies on aging. ETHICS AND DISSEMINATION Ethics approval from the UC San Diego School of Medicine Institutional Review Board (IRB #201 141 SHOCK Center Clinical Cohort, PI: Molina) was obtained on 11 November 2020. Written informed consent is obtained from all participants after objectives and procedures of the study have been fully explained. Congruent with the goal of establishing a core resource, biological samples and clinical data are made available to the research community through the SD-NSC.
Collapse
Affiliation(s)
- Howard J Phang
- Medicine, University of California San Diego, La Jolla, California, USA
| | | | - Lina M Scandalis
- Medicine, University of California San Diego, La Jolla, California, USA
| | - David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Ryan Moran
- Medicine, University of California San Diego, La Jolla, California, USA
| | - Jeanne F Nichols
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Daniel Moreno
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Fred H Gage
- Salk Institute for Biological Studies, La Jolla, California, USA
| | | |
Collapse
|
7
|
Lenardič A, Domenig SA, Zvick J, Bundschuh N, Tarnowska-Sengül M, Furrer R, Noé F, Trautmann CL, Ghosh A, Bacchin G, Gjonlleshaj P, Qabrati X, Masschelein E, De Bock K, Handschin C, Bar-Nur O. Generation of allogeneic and xenogeneic functional muscle stem cells for intramuscular transplantation. J Clin Invest 2024; 134:e166998. [PMID: 38713532 PMCID: PMC11178549 DOI: 10.1172/jci166998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected Dmdmdx mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.
Collapse
MESH Headings
- Animals
- Mice
- Muscular Dystrophy, Duchenne/therapy
- Muscular Dystrophy, Duchenne/genetics
- Induced Pluripotent Stem Cells/transplantation
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Rats
- Satellite Cells, Skeletal Muscle/transplantation
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/cytology
- Stem Cell Transplantation
- Humans
- Dystrophin/genetics
- Dystrophin/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Mice, Inbred mdx
- Heterografts
- Transplantation, Heterologous
- Injections, Intramuscular
- Transplantation, Homologous
Collapse
Affiliation(s)
- Ajda Lenardič
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Seraina A. Domenig
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Joel Zvick
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Monika Tarnowska-Sengül
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christine L. Trautmann
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Giada Bacchin
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Pjeter Gjonlleshaj
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | | | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
8
|
Rong M, Xing X, Zhang R. Muscle Transcriptome Analysis of Mink at Different Growth Stages Using RNA-Seq. BIOLOGY 2024; 13:283. [PMID: 38785766 PMCID: PMC11117779 DOI: 10.3390/biology13050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Mink is a kind of small and precious fur animal resource. In this study, we employed transcriptomics technology to analyze the gene expression profile of mink pectoral muscle tissue, thereby elucidating the regulatory mechanisms underlying mink growth and development. Consequently, a total of 25,954 gene expression profiles were acquired throughout the growth and development stages of mink at 45, 90, and 120 days. Among these profiles, 2607 genes exhibited significant differential expression (|log2(fold change)| ≥ 2 and p_adj < 0.05). GO and KEGG enrichment analyses revealed that the differentially expressed genes were primarily associated with the mitotic cell cycle process, response to growth factors, muscle organ development, and insulin resistance. Furthermore, GSEA enrichment analysis demonstrated a significant enrichment of differentially expressed genes in the p53 signaling pathway at 45 days of age. Subsequent analysis revealed that genes associated with embryonic development (e.g., PEG10, IGF2, NRK), cell cycle regulation (e.g., CDK6, CDC6, CDC27, CCNA2), and the FGF family (e.g., FGF2, FGF6, FGFR2) were all found to be upregulated at 45 days of age in mink, which suggested a potential role for these genes in governing early growth and developmental processes. Conversely, genes associated with skeletal muscle development (PRVA, TNNI1, TNNI2, MYL3, MUSTN1), a negative regulator of the cell cycle gene (CDKN2C), and IGFBP6 were found to be up-regulated at 90 days of age, suggesting their potential involvement in the rapid growth of mink. In summary, our experimental data provide robust support for elucidating the regulatory mechanisms underlying the growth and development of mink.
Collapse
Affiliation(s)
- Min Rong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.R.); (X.X.)
- Dezhou Animal Husbandry and Veterinary Development Center, Dezhou 253000, China
| | - Xiumei Xing
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.R.); (X.X.)
- Key Laboratory of Genetics, Breeding and Reproduction of Special Economic Animals, Ministry of Agriculture and Rural Affairs, Changchun 130112, China
| | - Ranran Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.R.); (X.X.)
- Key Laboratory of Genetics, Breeding and Reproduction of Special Economic Animals, Ministry of Agriculture and Rural Affairs, Changchun 130112, China
| |
Collapse
|
9
|
Umeyama T, Matsuda T, Nakashima K. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming. Cells 2024; 13:707. [PMID: 38667322 PMCID: PMC11049106 DOI: 10.3390/cells13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
10
|
Boers R, Boers J, Tan B, van Leeuwen ME, Wassenaar E, Sanchez EG, Sleddens E, Tenhagen Y, Mulugeta E, Laven J, Creyghton M, Baarends W, van IJcken WFJ, Gribnau J. Retrospective analysis of enhancer activity and transcriptome history. Nat Biotechnol 2023; 41:1582-1592. [PMID: 36823354 PMCID: PMC10635829 DOI: 10.1038/s41587-023-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Cell state changes in development and disease are controlled by gene regulatory networks, the dynamics of which are difficult to track in real time. In this study, we used an inducible DCM-RNA polymerase subunit b fusion protein which labels active genes and enhancers with a bacterial methylation mark that does not affect gene transcription and is propagated in S-phase. This DCM-RNA polymerase fusion protein enables transcribed genes and active enhancers to be tagged and then examined at later stages of development or differentiation. We apply this DCM-time machine (DCM-TM) technology to study intestinal homeostasis, revealing rapid and coordinated activation of enhancers and nearby genes during enterocyte differentiation. We provide new insights in absorptive-secretory lineage decision-making in intestinal stem cell (ISC) differentiation and show that ISCs retain a unique chromatin landscape required to maintain ISC identity and delineate future expression of differentiation-associated genes. DCM-TM has wide applicability in tracking cell states, providing new insights in the regulatory networks underlying cell state changes.
Collapse
Affiliation(s)
- Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Beatrice Tan
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marieke E van Leeuwen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Erlantz Gonzalez Sanchez
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Esther Sleddens
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yasha Tenhagen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joop Laven
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Menno Creyghton
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willy Baarends
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
11
|
Jara TC, Park K, Vahmani P, Van Eenennaam AL, Smith LR, Denicol AC. Stem cell-based strategies and challenges for production of cultivated meat. NATURE FOOD 2023; 4:841-853. [PMID: 37845547 DOI: 10.1038/s43016-023-00857-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cultivated meat scale-up and industrial production will require multiple stable cell lines from different species to recreate the organoleptic and nutritional properties of meat from livestock. In this Review, we explore the potential of stem cells to create the major cellular components of cultivated meat. By using developments in the fields of tissue engineering and biomedicine, we explore the advantages and disadvantages of strategies involving primary adult and pluripotent stem cells for generating cell sources that can be grown at scale. These myogenic, adipogenic or extracellular matrix-producing adult stem cells as well as embryonic or inducible pluripotent stem cells are discussed for their proliferative and differentiation capacity, necessary for cultivated meat. We examine the challenges for industrial scale-up, including differentiation and culture protocols, as well as genetic modification options for stem cell immortalization and controlled differentiation. Finally, we discuss stem cell-related safety and regulatory challenges for bringing cultivated meat to the marketplace.
Collapse
Affiliation(s)
- T C Jara
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - K Park
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - P Vahmani
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - A L Van Eenennaam
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - L R Smith
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - A C Denicol
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
12
|
Miron A, Ní Dhubhghaill S, Kocaba V, Jager MJ, Melles GRJ, Oellerich S. Early and late-onset cell migration from peripheral corneal endothelium. PLoS One 2023; 18:e0285609. [PMID: 37163555 PMCID: PMC10171599 DOI: 10.1371/journal.pone.0285609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
In this study we describe peripheral corneal endothelial cell migration in vitro in the absence and presence of a ROCK-inhibitor. For this study, 21 corneal endothelial graft rims, with attached trabecular meshwork (TM), were prepared from Descemet membrane-endothelial cell sheets by 6.5 mm trepanation. For the initial proof-of-concept, 7 outer graft rims were cultured in a thermo-reversible hydrogel matrix for up to 47 days. To assess the effect of a ROCK-inhibitor, 14 paired outer rims were cultured either with or without ROCK-inhibitor for up to 46 days. At the end of culture, tissue was retrieved from the hydrogel matrix and examined for cell viability and expression of different endothelial cell markers (ZO-1, Na+/K+-ATPase, NCAM, glypican, and vimentin). All cultured rims remained viable and displayed either single regions (n = 5/21) or collective areas (n = 16/21) of cell migration, regardless of the presence or absence of ROCK-inhibition. Migration started after 4±2 days and continued for at least 29 days. The presence of ROCK-inhibitor seemed to contribute to a more regular cell morphology of migrating cells. In addition, 7 outer rims demonstrated a phenotypically distinct late-onset but fast-growing cell population emerging from the area close to the limbus. These cells emerged after 3 weeks of culture and appeared less differentiated compared to other areas of migration. Immunostaining showed that migrated cells maintained the expression patterns of endothelial cell markers. In conclusion, we observed 2 morphologically distinct migrating cell populations with the first type being triggered by a broken physical barrier, which disrupted contact inhibition and the second, late-onset type showing a higher proliferative capacity though appearing less differentiated. This cell subpopulation appeared to be mediated by stimuli other than loss of contact inhibition and ROCK-inhibitor presence. Further exploration of the differences between these cell types may assist in optimizing regenerative treatment options for endothelial diseases.
Collapse
Affiliation(s)
- Alina Miron
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, The Netherlands
- Amnitrans EyeBank Rotterdam, Rotterdam, The Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Viridiana Kocaba
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, The Netherlands
- Amnitrans EyeBank Rotterdam, Rotterdam, The Netherlands
- Melles Cornea Clinic Rotterdam, Rotterdam, The Netherlands
- Singapore Eye Research Institute, Tissue and Cell Therapy Group, Singapore, Singapore
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit R J Melles
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, The Netherlands
- Amnitrans EyeBank Rotterdam, Rotterdam, The Netherlands
- Melles Cornea Clinic Rotterdam, Rotterdam, The Netherlands
| | - Silke Oellerich
- Netherlands Institute for Innovative Ocular Surgery, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Ito N, Takatsu A, Ito H, Koike Y, Yoshioka K, Kamei Y, Imai SI. Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging. Cell Rep 2022; 40:111131. [PMID: 35905718 DOI: 10.1016/j.celrep.2022.111131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/01/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
Sarcopenia and frailty are urgent socio-economic problems worldwide. Here we demonstrate a functional connection between the lateral hypothalamus (LH) and skeletal muscle through Slc12a8, a recently identified nicotinamide mononucleotide transporter, and its relationship to sarcopenia and frailty. Slc12a8-expressing cells are mainly localized in the LH. LH-specific knockdown of Slc12a8 in young mice decreases activity-dependent energy and carbohydrate expenditure and skeletal muscle functions, including muscle mass, muscle force, intramuscular glycolysis, and protein synthesis. LH-specific Slc12a8 knockdown also decreases sympathetic nerve signals at neuromuscular junctions and β2-adrenergic receptors in skeletal muscle, indicating the importance of the LH-sympathetic nerve-β2-adrenergic receptor axis. LH-specific overexpression of Slc12a8 in aged mice significantly ameliorates age-associated decreases in energy expenditure and skeletal muscle functions. Our results highlight an important role of Slc12a8 in the LH for regulation of whole-body metabolism and skeletal muscle functions and provide insights into the pathogenesis of sarcopenia and frailty during aging.
Collapse
Affiliation(s)
- Naoki Ito
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan
| | - Ai Takatsu
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan
| | - Hiromi Ito
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan
| | - Yuka Koike
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan
| | - Kiyoshi Yoshioka
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan; Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yasutomi Kamei
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shin-Ichiro Imai
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan; Department of Developmental Biology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Ng N, Newbery M, Maksour S, Dottori M, Sluyter R, Ooi L. Transgene and Chemical Transdifferentiation of Somatic Cells for Rapid and Efficient Neurological Disease Cell Models. Front Cell Neurosci 2022; 16:858432. [PMID: 35634469 PMCID: PMC9130549 DOI: 10.3389/fncel.2022.858432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
For neurological diseases, molecular and cellular research relies on the use of model systems to investigate disease processes and test potential therapeutics. The last decade has witnessed an increase in the number of studies using induced pluripotent stem cells to generate disease relevant cell types from patients. The reprogramming process permits the generation of a large number of cells but is potentially disadvantaged by introducing variability in clonal lines and the removal of phenotypes of aging, which are critical to understand neurodegenerative diseases. An under-utilized approach to disease modeling involves the transdifferentiation of aged cells from patients, such as fibroblasts or blood cells, into various neural cell types. In this review we discuss techniques used for rapid and efficient direct conversion to neural cell types. We examine the limitations and future perspectives of this rapidly advancing field that could improve neurological disease modeling and drug discovery.
Collapse
Affiliation(s)
- Neville Ng
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Neville Ng,
| | - Michelle Newbery
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- Lezanne Ooi,
| |
Collapse
|
15
|
Kim I, Ghosh A, Bundschuh N, Hinte L, Petrosyan E, von Meyenn F, Bar-Nur O. Integrative molecular roadmap for direct conversion of fibroblasts into myocytes and myogenic progenitor cells. SCIENCE ADVANCES 2022; 8:eabj4928. [PMID: 35385316 PMCID: PMC8986113 DOI: 10.1126/sciadv.abj4928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Transient MyoD overexpression in concert with small molecule treatment reprograms mouse fibroblasts into induced myogenic progenitor cells (iMPCs). However, the molecular landscape and mechanisms orchestrating this cellular conversion remain unknown. Here, we undertook an integrative multiomics approach to delineate the process of iMPC reprogramming in comparison to myogenic transdifferentiation mediated solely by MyoD. Using transcriptomics, proteomics, and genome-wide chromatin accessibility assays, we unravel distinct molecular trajectories that govern the two processes. Notably, only iMPC reprogramming is characterized by gradual up-regulation of muscle stem cell markers, unique signaling pathways, and chromatin remodelers in conjunction with exclusive chromatin opening in core myogenic promoters. In addition, we determine that the Notch pathway is indispensable for iMPC formation and self-renewal and further use the Notch ligand Dll1 to homogeneously propagate iMPCs. Collectively, this study charts divergent molecular blueprints for myogenic transdifferentiation or reprogramming and underpins the heightened capacity of iMPCs for capturing myogenesis ex vivo.
Collapse
Affiliation(s)
- Inseon Kim
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Laura Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Eduard Petrosyan
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
16
|
Herrero-Hernandez P, Bergsma AJ, Pijnappel WWMP. Generation of Human iPSC-Derived Myotubes to Investigate RNA-Based Therapies In Vitro. Methods Mol Biol 2022; 2434:235-243. [PMID: 35213021 PMCID: PMC9703849 DOI: 10.1007/978-1-0716-2010-6_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Alternative pre-mRNA splicing can be cell-type specific and results in the generation of different protein isoforms from a single gene. Deregulation of canonical pre-mRNA splicing by disease-associated variants can result in genetic disorders. Antisense oligonucleotides (AONs) offer an attractive solution to modulate endogenous gene expression through alteration of pre-mRNA splicing events. Relevant in vitro models are crucial for appropriate evaluation of splicing modifying drugs. In this chapter, we describe how to investigate the splicing modulating activity of AONs in an in vitro skeletal muscle model, applied to Pompe disease. We also provide a detailed description of methods to visualize and analyze gene expression in differentiated skeletal muscle cells for the analysis of muscle differentiation and splicing outcome. The methodology described here is relevant to develop treatment options using AONs for other genetic muscle diseases as well, including Duchenne muscular dystrophy, myotonic dystrophy, and facioscapulohumeral muscular dystrophy.
Collapse
Affiliation(s)
- Pablo Herrero-Hernandez
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Atze J Bergsma
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands.
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Lee KY, Loh HX, Wan ACA. Systems for Muscle Cell Differentiation: From Bioengineering to Future Food. MICROMACHINES 2021; 13:71. [PMID: 35056236 PMCID: PMC8777594 DOI: 10.3390/mi13010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale. Material aspects such as the different biomaterials used and 3D vs. 2D configurations in the context of muscle cell differentiation will also be discussed. Finally, the ability to translate these systems to more scalable bioreactor configurations and eventually bring them to a commercial scale will be touched upon.
Collapse
Affiliation(s)
| | | | - Andrew C. A. Wan
- Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; (K.-Y.L.); (H.-X.L.)
| |
Collapse
|
18
|
Domenig SA, Bundschuh N, Lenardič A, Ghosh A, Kim I, Qabrati X, D'Hulst G, Bar-Nur O. CRISPR/Cas9 editing of directly reprogrammed myogenic progenitors restores dystrophin expression in a mouse model of muscular dystrophy. Stem Cell Reports 2021; 17:321-336. [PMID: 34995499 PMCID: PMC8828535 DOI: 10.1016/j.stemcr.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic mutations in dystrophin manifest in Duchenne muscular dystrophy (DMD), the most commonly inherited muscle disease. Here, we report on reprogramming of fibroblasts from two DMD mouse models into induced myogenic progenitor cells (iMPCs) by MyoD overexpression in concert with small molecule treatment. DMD iMPCs proliferate extensively, while expressing myogenic stem cell markers including Pax7 and Myf5. Additionally, DMD iMPCs readily give rise to multinucleated myofibers that express mature skeletal muscle markers; however, they lack DYSTROPHIN expression. Utilizing an exon skipping-based approach with CRISPR/Cas9, we report on genetic correction of the dystrophin mutation in DMD iMPCs and restoration of protein expression in vitro. Furthermore, engraftment of corrected DMD iMPCs into the muscles of dystrophic mice restored DYSTROPHIN expression and contributed to the muscle stem cell reservoir. Collectively, our findings report on a novel in vitro cellular model for DMD and utilize it in conjunction with gene editing to restore DYSTROPHIN expression in vivo. iMPCs generated from DMD mouse models DMD iMPCs are expandable and express satellite cell and differentiation markers Correction of the dystrophin mutation in DMD iMPCs utilizing CRISPR/Cas9 Engraftment of corrected DMD iMPCs restores DYSTROPHIN expression in vivo
Collapse
Affiliation(s)
- Seraina A Domenig
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Ajda Lenardič
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Functional Genomics Center Zurich, Swiss Federal Institute of Technology (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Inseon Kim
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Gommaar D'Hulst
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
19
|
Ferdous A, Singh S, Luo Y, Abedin MJ, Jiang N, Perry CE, Evers BM, Gillette TG, Kyba M, Trojanowska M, Hill JA. Fli1 Promotes Vascular Morphogenesis by Regulating Endothelial Potential of Multipotent Myogenic Progenitors. Circ Res 2021; 129:949-964. [PMID: 34544261 DOI: 10.1161/circresaha.121.318986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anwarul Ferdous
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Sarvjeet Singh
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Yuxuan Luo
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Md J Abedin
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Nan Jiang
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Cameron E Perry
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Bret M Evers
- Pathology (B.M.E.), University of Texas Southwestern Medical Center, Dallas
| | - Thomas G Gillette
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Michael Kyba
- Department of Pediatrics (M.K.), University of Minnesota, Minneapolis.,Lillehei Heart Institute (M.K.), University of Minnesota, Minneapolis
| | - Maria Trojanowska
- Section of Rheumatology, School of Medicine, Boston University, MA (M.T.)
| | - Joseph A Hill
- Departments of Internal Medicine (Cardiology) (A.F., S.S., Y.L., M.J.A., N.J., C.E.P., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas.,Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
20
|
Abstract
Transcription factors (TFs) are essential mediators of epigenetic regulation and modifiers of penetrance. Studies from the past decades have revealed a sub-class of TF that is capable of remodeling closed chromatin states through targeting nucleosomal motifs. This pioneer factor (PF) class of chromatin remodeler is ATP independent in its roles in epigenetic initiation, with nucleosome-motif recognition and association with repressive chromatin regions. Increasing evidence suggests that the fundamental properties of PFs can be coopted in human cancers. We explore the role of PFs in the larger context of tissue-specific epigenetic regulation. Moreover, we highlight an emerging class of chimeric PF derived from translocation partners in human disease and PFs associated with rare tumors. In the age of site-directed genome editing and targeted protein degradation, increasing our understanding of PFs will provide access to next-generation therapy for human disease driven from altered transcriptional circuitry.
Collapse
|
21
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
22
|
Basu A, Tiwari VK. Epigenetic reprogramming of cell identity: lessons from development for regenerative medicine. Clin Epigenetics 2021; 13:144. [PMID: 34301318 PMCID: PMC8305869 DOI: 10.1186/s13148-021-01131-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.
Collapse
Affiliation(s)
- Amitava Basu
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
23
|
Sato T. Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells. J Neuromuscul Dis 2021; 7:395-405. [PMID: 32538862 PMCID: PMC7592659 DOI: 10.3233/jnd-200497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have the potential to differentiate into various types of cells and tissues including skeletal muscle. The approach to convert these stem cells into skeletal muscle cells offers hope for patients afflicted with skeletal muscle diseases such as Duchenne muscular dystrophy (DMD). Several methods have been reported to induce myogenic differentiation with iPSCs derived from myogenic patients. An important point for generating skeletal muscle cells from iPSCs is to understand in vivo myogenic induction in development and regeneration. Current protocols of myogenic induction utilize techniques with overexpression of myogenic transcription factors such as Myod1(MyoD), Pax3, Pax7, and others, using recombinant proteins or small molecules to induce mesodermal cells followed by myogenic progenitors, and adult muscle stem cells. This review summarizes the current approaches used for myogenic induction and highlights recent improvements.
Collapse
Affiliation(s)
- Takahiko Sato
- Department of Anatomy, Fujita Health University, Toyoake, Japan.,AMED-CREST, AMED, Otemachi, Chiyoda, Tokyo, Japan
| |
Collapse
|
24
|
Reiss J, Robertson S, Suzuki M. Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow. Int J Mol Sci 2021; 22:7513. [PMID: 34299132 PMCID: PMC8307620 DOI: 10.3390/ijms22147513] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular agriculture is an emerging scientific discipline that leverages the existing principles behind stem cell biology, tissue engineering, and animal sciences to create agricultural products from cells in vitro. Cultivated meat, also known as clean meat or cultured meat, is a prominent subfield of cellular agriculture that possesses promising potential to alleviate the negative externalities associated with conventional meat production by producing meat in vitro instead of from slaughter. A core consideration when producing cultivated meat is cell sourcing. Specifically, developing livestock cell sources that possess the necessary proliferative capacity and differentiation potential for cultivated meat production is a key technical component that must be optimized to enable scale-up for commercial production of cultivated meat. There are several possible approaches to develop cell sources for cultivated meat production, each possessing certain advantages and disadvantages. This review will discuss the current cell sources used for cultivated meat production and remaining challenges that need to be overcome to achieve scale-up of cultivated meat for commercial production. We will also discuss cell-focused considerations in other components of the cultivated meat production workflow, namely, culture medium composition, bioreactor expansion, and biomaterial tissue scaffolding.
Collapse
Affiliation(s)
- Jacob Reiss
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.R.); (S.R.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.R.); (S.R.)
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.R.); (S.R.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
25
|
Jeong J, Choi KH, Kim SH, Lee DK, Oh JN, Lee M, Choe GC, Lee CK. Combination of cell signaling molecules can facilitate MYOD1-mediated myogenic transdifferentiation of pig fibroblasts. J Anim Sci Biotechnol 2021; 12:64. [PMID: 33980301 PMCID: PMC8117598 DOI: 10.1186/s40104-021-00583-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background Myogenic transdifferentiation can be accomplished through ectopic MYOD1 expression, which is facilitated by various signaling pathways associated with myogenesis. In this study, we attempted to transdifferentiate pig embryonic fibroblasts (PEFs) myogenically into skeletal muscle through overexpression of the pig MYOD1 gene and modulation of the FGF, TGF-β, WNT, and cAMP signaling pathways. Results The MYOD1 overexpression vector was constructed based on comparative sequence analysis, demonstrating that pig MYOD1 has evolutionarily conserved domains across various species. Although forced MYOD1 expression through these vectors triggered the expression of endogenous muscle markers, transdifferentiated muscle cells from fibroblasts were not observed. Therefore, various signaling molecules, including FGF2, SB431542, CHIR99021, and forskolin, along with MYOD1 overexpression were applied to enhance the myogenic reprogramming. The modified conditions led to the derivation of myotubes and activation of muscle markers in PEFs, as determined by qPCR and immunostaining. Notably, a sarcomere-like structure was observed, indicating that terminally differentiated skeletal muscle could be obtained from transdifferentiated cells. Conclusions In summary, we established a protocol for reprogramming MYOD1-overexpressing PEFs into the mature skeletal muscle using signaling molecules. Our myogenic reprogramming can be used as a cell source for muscle disease models in regenerative medicine and the production of cultured meat in cellular agriculture.
Collapse
Affiliation(s)
- Jinsol Jeong
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea.,Present address: Research and Development Center, Space F corporation, Hwasung-si, Gyeonggi-do, 18471, South Korea
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea.,Present address: Research and Development Center, Space F corporation, Hwasung-si, Gyeonggi-do, 18471, South Korea
| | - Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Gyung Cheol Choe
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea. .,Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, Kangwon-do, 25354, South Korea.
| |
Collapse
|
26
|
Jin Y, Shahriari D, Jeon EJ, Park S, Choi YS, Back J, Lee H, Anikeeva P, Cho SW. Functional Skeletal Muscle Regeneration with Thermally Drawn Porous Fibers and Reprogrammed Muscle Progenitors for Volumetric Muscle Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007946. [PMID: 33605006 DOI: 10.1002/adma.202007946] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Skeletal muscle has an inherent capacity for spontaneous regeneration. However, recovery after severe injuries such as volumetric muscle loss (VML) is limited. There is therefore a need to develop interventions to induce functional skeletal muscle restoration. One suggested approach includes tissue-engineered muscle constructs. Tissue-engineering treatments have so far been impeded by the lack of reliable cell sources and the challenges in engineering of suitable tissue scaffolds. To address these challenges, muscle extracellular matrix (MEM) and induced skeletal myogenic progenitor cells (iMPCs) are integrated within thermally drawn fiber based microchannel scaffolds. The microchannel fibers decorated with MEM enhance differentiation and maturation of iMPCs. Furthermore, engraftment of these bioengineered hybrid muscle constructs induce de novo muscle regeneration accompanied with microvessel and neuromuscular junction formation in a VML mouse model, ultimately leading to functional recovery of muscle activity.
Collapse
Affiliation(s)
- Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dena Shahriari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jonghyeok Back
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
27
|
Periostin Is Required for the Maintenance of Muscle Fibers during Muscle Regeneration. Int J Mol Sci 2021; 22:ijms22073627. [PMID: 33807264 PMCID: PMC8036386 DOI: 10.3390/ijms22073627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
Skeletal muscle regeneration is a well-organized process that requires remodeling of the extracellular matrix (ECM). In this study, we revealed the protective role of periostin, a matricellular protein that binds to several ECM proteins during muscle regeneration. In intact muscle, periostin was localized at the neuromuscular junction, muscle spindle, and myotendinous junction, which are connection sites between muscle fibers and nerves or tendons. During muscle regeneration, periostin exhibited robustly increased expression and localization at the interstitial space. Periostin-null mice showed decreased muscle weight due to the loss of muscle fibers during repeated muscle regeneration. Cultured muscle progenitor cells from periostin-null mice showed no deficiencies in their proliferation, differentiation, and the expression of Pax7, MyoD, and myogenin, suggesting that the loss of muscle fibers in periostin-null mice was not due to the impaired function of muscle stem/progenitor cells. Periostin-null mice displayed a decreased number of CD31-positive blood vessels during muscle regeneration, suggesting that the decreased nutritional supply from blood vessels was the cause of muscle fiber loss in periostin-null mice. These results highlight the novel role of periostin in maintaining muscle mass during muscle regeneration.
Collapse
|
28
|
Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F, Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez PC, Rotini A, Taglietti. Perspectives on skeletal muscle stem cells. Nat Commun 2021; 12:692. [PMID: 33514709 PMCID: PMC7846784 DOI: 10.1038/s41467-020-20760-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle has remarkable regeneration capabilities, mainly due to its resident muscle stem cells (MuSCs). In this review, we introduce recently developed technologies and the mechanistic insights they provide to the understanding of MuSC biology, including the re-definition of quiescence and Galert states. Additionally, we present recent studies that link MuSC function with cellular heterogeneity, highlighting the complex regulation of self-renewal in regeneration, muscle disorders and aging. Finally, we discuss MuSC metabolism and its role, as well as the multifaceted regulation of MuSCs by their niche. The presented conceptual advances in the MuSC field impact on our general understanding of stem cells and their therapeutic use in regenerative medicine.
Collapse
Affiliation(s)
- F. Relaix
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France ,grid.50550.350000 0001 2175 4109AP-HP, Hopital Mondor, Service d’histologie, 94010 Creteil, France
| | - M. Bencze
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - M. J. Borok
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Der Vartanian
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - F. Gattazzo
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France
| | - D. Mademtzoglou
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - S. Perez-Diaz
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Prola
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France
| | - P. C. Reyes-Fernandez
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Rotini
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - Taglietti
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| |
Collapse
|
29
|
Łoboda A, Dulak J. Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future. Pharmacol Rep 2020; 72:1227-1263. [PMID: 32691346 PMCID: PMC7550322 DOI: 10.1007/s43440-020-00134-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular childhood disorder that causes progressive muscle weakness and degeneration and results in functional decline, loss of ambulation and early death of young men due to cardiac or respiratory failure. Although the major cause of the disease has been known for many years-namely mutation in the DMD gene encoding dystrophin, one of the largest human genes-DMD is still incurable, and its treatment is challenging. METHODS A comprehensive and systematic review of literature on the gene, cell, and pharmacological experimental therapies aimed at restoring functional dystrophin or to counteract the associated processes contributing to disease progression like inflammation, fibrosis, calcium signaling or angiogenesis was carried out. RESULTS Although some therapies lead to satisfying effects in skeletal muscle, they are highly ineffective in the heart; therefore, targeting defective cardiac and respiratory systems is vital in DMD patients. Unfortunately, most of the pharmacological compounds treat only the symptoms of the disease. Some drugs addressing the underlying cause, like eteplirsen, golodirsen, and ataluren, have recently been conditionally approved; however, they can correct only specific mutations in the DMD gene and are therefore suitable for small sub-populations of affected individuals. CONCLUSION In this review, we summarize the possible therapeutic options and describe the current status of various, still imperfect, strategies used for attenuating the disease progression.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
30
|
Abstract
Organs-on-chips are broadly defined as microfabricated surfaces or devices designed to engineer cells into microscale tissues with native-like features and then extract physiologically relevant readouts at scale. Because they are generally compatible with patient-derived cells, these technologies can address many of the human relevance limitations of animal models. As a result, organs-on-chips have emerged as a promising new paradigm for patient-specific disease modeling and drug development. Because neuromuscular diseases span a broad range of rare conditions with diverse etiology and complex pathophysiology, they have been especially challenging to model in animals and thus are well suited for organ-on-chip approaches. In this Review, we first briefly summarize the challenges in neuromuscular disease modeling with animal models. Next, we describe a variety of existing organ-on-chip approaches for neuromuscular tissues, including a survey of cell sources for both muscle and nerve, and two- and three-dimensional neuromuscular tissue-engineering techniques. Although researchers have made tremendous advances in modeling neuromuscular diseases on a chip, the remaining challenges in cell sourcing, cell maturity, tissue assembly and readout capabilities limit their integration into the drug development pipeline today. However, as the field advances, models of healthy and diseased neuromuscular tissues on a chip, coupled with animal models, have vast potential as complementary tools for modeling multiple aspects of neuromuscular diseases and identifying new therapeutic strategies. Summary: Modeling neuromuscular diseases is challenging due to their complex etiology and pathophysiology. Here, we review the cell sources and tissue-engineering procedures that are being integrated as emerging neuromuscular disease models.
Collapse
Affiliation(s)
- Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
31
|
Hwang M, Lee EJ, Chung MJ, Park S, Jeong KS. Five transcriptional factors reprogram fibroblast into myogenic lineage cells via paraxial mesoderm stage. Cell Cycle 2020; 19:1804-1816. [PMID: 32579865 DOI: 10.1080/15384101.2020.1780384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is hard to supply satellite cells as a cell source for therapy of muscle degenerative disease since the sampling of muscle tissue is very invasive to a patient with muscular disease. Direct conversion allows us to get specific cell types by transduction of defined transcriptional factors. To induce myogenic direct conversion, we transduced five transcriptional factors including Pax3, Sox2, Klf4, c-Myc, and Esrrb into mouse embryonic fibroblasts. We found that the transduction of the five transcriptional factors induced myogenic direct conversion of fibroblast. We revealed that the transduced cells with the five transcriptional factors were converted to myogenic lineage cells through a paraxial mesoderm-like stage. The expression level of myogenic-related genes of the transduced cells gradually increased as the passage increased. The induced myogenic lineage cells differentiated into muscle fibers in virto and in vivo. The current study revealed that the five transcription factors generated myogenic lineage cells from fibroblast via a paraxial mesoderm stage. The induced myogenic lineage cells may have a potential being applied as cell source for degenerative muscle disease.
Collapse
Affiliation(s)
- Meeyul Hwang
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University , Daegu, Republic of Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University , Daegu, Republic of Korea
| | - Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University , Daegu, Republic of Korea.,Stem Cell Therapeutic Research Center, Kyungpook National University , Daegu, Republic of Korea
| | - SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University , Daegu, Republic of Korea.,Stem Cell Therapeutic Research Center, Kyungpook National University , Daegu, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University , Daegu, Republic of Korea.,Stem Cell Therapeutic Research Center, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
32
|
Fang J, Hsueh YY, Soto J, Sun W, Wang J, Gu Z, Khademhosseini A, Li S. Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS NANO 2020; 14:1296-1318. [PMID: 32011856 PMCID: PMC10067273 DOI: 10.1021/acsnano.9b04837] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell reprogramming is a revolutionized biotechnology that offers a powerful tool to engineer cell fate and function for regenerative medicine, disease modeling, drug discovery, and beyond. Leveraging advances in biomaterials and micro/nanotechnologies can enhance the reprogramming performance in vitro and in vivo through the development of delivery strategies and the control of biophysical and biochemical cues. In this review, we present an overview of the state-of-the-art technologies for cell reprogramming and highlight the recent breakthroughs in engineering biomaterials with micro/nanotechnologies to improve reprogramming efficiency and quality. Finally, we discuss future directions and challenges for reprogramming technologies and clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yuan-Yu Hsueh
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Division of Plastic Surgery, Department of Surgery, College of Medicine , National Cheng Kung University Hospital , Tainan 70456 , Taiwan
| | - Jennifer Soto
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Wujin Sun
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Jinqiang Wang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Zhen Gu
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Jonsson Comprehensive Cancer Center , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Ali Khademhosseini
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Radiology , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Song Li
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| |
Collapse
|
33
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
34
|
Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors. Stem Cell Reports 2019; 10:1505-1521. [PMID: 29742392 PMCID: PMC5995754 DOI: 10.1016/j.stemcr.2018.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to dystrophin-expressing myofibers upon transplantation in vivo. Notably, a subset of transplanted iMPCs maintain Pax7 expression and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7+ cells and require Pax7 itself for maintenance. Finally, we show that myogenic progenitor cell lines can be established from muscle tissue following small-molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple cell types. MyoD and small molecules reprogram fibroblasts to myogenic progenitors termed iMPCs iMPCs self-renew and express key satellite cell and myoblast markers iMPC growth is driven by Pax7+ cells and requires Pax7 gene function Transplanted iMPCs engraft and sustain muscle regeneration in vivo
Collapse
|
35
|
Bechshøft CJL, Schjerling P, Kjaer M, Mackey AL. The influence of direct and indirect fibroblast cell contact on human myogenic cell behavior and gene expression in vitro. J Appl Physiol (1985) 2019; 127:342-355. [PMID: 31120810 DOI: 10.1152/japplphysiol.00215.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Underpinning skeletal muscle plasticity is the interplay between many cell types, of which fibroblasts are emerging as potent players, both negatively in the development of fibrosis but also positively in stimulating muscle repair through enhancing myogenesis. The mechanisms behind this interaction however remain unknown. To investigate this, waste hamstring muscle tissue was obtained from eight healthy young men undergoing reconstructive anterior cruciate ligament surgery and primary myoblasts and fibroblasts were isolated. Myoblasts were cultured alone or with fibroblasts, either in direct or indirect contact (separated by an insert with a permeable membrane). The myogenesis parameters proliferation, differentiation, and fusion were determined from immunostained cells, while, in replicate samples, gene expression levels of GAPDH, Ki67, Pax7, MyoD, myogenin, myomaker, MHC-Iβ, TCF7L2, COL1A1, and p16 were determined by RT-PCR. We found only trends for an influence of skeletal muscle fibroblasts on myogenic cell proliferation and differentiation. While greater mRNA levels of GAPDH, Pax7, MyoD, myogenin, and MHC-Iβ were observed in myogenic cells in indirect contact with fibroblasts (insert) when compared with cells cultured alone, a similar effect of an empty insert was also observed. In conclusion we find very little influence of skeletal muscle fibroblasts on myoblasts derived from the same tissue, although it cannot be excluded that a different outcome would be seen under less optimal myogenic growth conditions.NEW & NOTEWORTHY Using passage one primary myoblasts and fibroblasts isolated from human skeletal muscle, we found only a trend for an effect of skeletal muscle fibroblasts on myogenic cell proliferation and differentiation. This is contrary to previous reports and raises the possibility that fibroblasts of different tissue origins exert distinct roles.
Collapse
Affiliation(s)
- Cecilie J L Bechshøft
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Magli A, Baik J, Mills LJ, Kwak IY, Dillon BS, Mondragon Gonzalez R, Stafford DA, Swanson SA, Stewart R, Thomson JA, Garry DJ, Dynlacht BD, Perlingeiro RCR. Time-dependent Pax3-mediated chromatin remodeling and cooperation with Six4 and Tead2 specify the skeletal myogenic lineage in developing mesoderm. PLoS Biol 2019; 17:e3000153. [PMID: 30807574 PMCID: PMC6390996 DOI: 10.1371/journal.pbio.3000153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.
Collapse
Affiliation(s)
- Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - June Baik
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lauren J. Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Il-Youp Kwak
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bridget S. Dillon
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ricardo Mondragon Gonzalez
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David A. Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Scott A. Swanson
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - James A. Thomson
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Daniel J. Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian D. Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
37
|
Lee EJ, Kim M, Kim YD, Chung MJ, Elfadl A, Ulah HMA, Park D, Lee S, Park HS, Kim TH, Hwang D, Jeong KS. Establishment of stably expandable induced myogenic stem cells by four transcription factors. Cell Death Dis 2018; 9:1092. [PMID: 30361642 PMCID: PMC6202407 DOI: 10.1038/s41419-018-1114-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Life-long regeneration of healthy muscle by cell transplantation is an ideal therapy for patients with degenerative muscle diseases. Yet, obtaining muscle stem cells from patients is very limited due to their exhaustion in disease condition. Thus, development of a method to obtain healthy myogenic stem cells is required. Here, we showed that the four transcription factors, Six1, Eya1, Esrrb, and Pax3, converts fibroblasts into induced myogenic stem cells (iMSCs). The iMSCs showed effective differentiation into multinucleated myotubes and also higher proliferation capacity than muscle derived stem cells both in vitro and in vivo. The iMSCs do not lose their proliferation capacity though the passaging number is increased. We further isolated CD106-negative and α7-integrin-positive iMSCs (sort-iMSCs) showing higher myogenic differentiation capacity than iMSCs. Moreover, genome-wide transcriptomic analysis of iMSCs and sort-iMSCs, followed by network analysis, revealed the genes and signaling pathways associated with enhanced proliferation and differentiation capacity of iMSCs and sort-iMSCs, respectively. The stably expandable iMSCs provide a new source for drug screening and muscle regenerative therapy for muscle wasting disease.
Collapse
Affiliation(s)
- Eun-Joo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minhyung Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Yong Deuk Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Jin Chung
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ahmed Elfadl
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - H M Arif Ulah
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dongsu Park
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sunray Lee
- Cell Engineering for Origin Research Center 45-13, Ujeongguk-ro, Jongno-gu, Seoul, 03150, Republic of Korea
| | - Hyun-Sook Park
- Cell Engineering for Origin Research Center 45-13, Ujeongguk-ro, Jongno-gu, Seoul, 03150, Republic of Korea
| | - Tae-Hwan Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.,Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
38
|
Ito N, Ruegg UT, Takeda S. ATP-Induced Increase in Intracellular Calcium Levels and Subsequent Activation of mTOR as Regulators of Skeletal Muscle Hypertrophy. Int J Mol Sci 2018; 19:ijms19092804. [PMID: 30231482 PMCID: PMC6163678 DOI: 10.3390/ijms19092804] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Intracellular signaling pathways, including the mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK) pathway, are activated by exercise, and promote skeletal muscle hypertrophy. However, the mechanisms by which these pathways are activated by physiological stimulation are not fully understood. Here we show that extracellular ATP activates these pathways by increasing intracellular Ca2+ levels ([Ca2+]i), and promotes muscle hypertrophy. [Ca2+]i in skeletal muscle was transiently increased after exercise. Treatment with ATP induced the increase in [Ca2+]i through the P2Y₂ receptor/inositol 1,4,5-trisphosphate receptor pathway, and subsequent activation of mTOR in vitro. In addition, the ATP-induced increase in [Ca2+]i coordinately activated Erk1/2, p38 MAPK and mTOR that upregulated translation of JunB and interleukin-6. ATP also induced an increase in [Ca2+]i in isolated soleus muscle fibers, but not in extensor digitorum longus muscle fibers. Furthermore, administration of ATP led to muscle hypertrophy in an mTOR- and Ca2+-dependent manner in soleus, but not in plantaris muscle, suggesting that ATP specifically regulated [Ca2+]i in slow muscles. These findings suggest that ATP and [Ca2+]i are important mediators that convert mechanical stimulation into the activation of intracellular signaling pathways, and point to the P2Y receptor as a therapeutic target for treating muscle atrophy.
Collapse
Affiliation(s)
- Naoki Ito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan.
| | - Urs T Ruegg
- Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, CH 1211 Geneva, Switzerland.
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan.
| |
Collapse
|