1
|
Mulder EJ, Moser B, Delgado J, Steinhardt RC, Esser-Kahn AP. Evidence of collective influence in innate sensing using fluidic force microscopy. Front Immunol 2024; 15:1340384. [PMID: 38322261 PMCID: PMC10844469 DOI: 10.3389/fimmu.2024.1340384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
The innate immune system initiates early response to infection by sensing molecular patterns of infection through pattern-recognition receptors (PRRs). Previous work on PRR stimulation of macrophages revealed significant heterogeneity in single cell responses, suggesting the importance of individual macrophage stimulation. Current methods either isolate individual macrophages or stimulate a whole culture and measure individual readouts. We probed single cell NF-κB responses to localized stimuli within a naïve culture with Fluidic Force Microscopy (FluidFM). Individual cells stimulated in naïve culture were more sensitive compared to individual cells in uniformly stimulated cultures. In cluster stimulation, NF-κB activation decreased with increased cell density or decreased stimulation time. Our results support the growing body of evidence for cell-to-cell communication in macrophage activation, and limit potential mechanisms. Such a mechanism might be manipulated to tune macrophage sensitivity, and the density-dependent modulation of sensitivity to PRR signals could have relevance to biological situations where macrophage density increases.
Collapse
Affiliation(s)
| | | | | | | | - Aaron P. Esser-Kahn
- Esser-Kahn Lab, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Yang H, Tel J. Engineering global and local signal generators for probing temporal and spatial cellular signaling dynamics. Front Bioeng Biotechnol 2023; 11:1239026. [PMID: 37790255 PMCID: PMC10543096 DOI: 10.3389/fbioe.2023.1239026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Cells constantly encounter a wide range of environmental signals and rely on their signaling pathways to initiate reliable responses. Understanding the underlying signaling mechanisms and cellular behaviors requires signal generators capable of providing diverse input signals to deliver to cell systems. Current research efforts are primarily focused on exploring cellular responses to global or local signals, which enable us to understand cellular signaling and behavior in distinct dimensions. This review presents recent advancements in global and local signal generators, highlighting their applications in studying temporal and spatial signaling activity. Global signals can be generated using microfluidic or photochemical approaches. Local signal sources can be created using living or artificial cells in combination with different control methods. We also address the strengths and limitations of each signal generator type, discussing challenges and potential extensions for future research. These approaches are expected to continue to facilitate on-going research to discover novel and intriguing cellular signaling mechanisms.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
3
|
Konopleva MV, Borisova VN, Sokolova MV, Semenenko TA, Suslov AP. Recombinant HBsAg of the Wild-Type and the G145R Escape Mutant, included in the New Multivalent Vaccine against Hepatitis B Virus, Dramatically Differ in their Effects on Leukocytes from Healthy Donors In Vitro. Vaccines (Basel) 2022; 10:235. [PMID: 35214692 PMCID: PMC8880183 DOI: 10.3390/vaccines10020235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Immune-escape hepatitis B virus (HBV) mutants play an important role in HBV spread. Recently, the multivalent vaccine Bubo®-Unigep has been developed to protect against both wild-type HBV and the most significant G145R mutant. Here, we compared the effects of recombinant HBsAg antigens, wild-type and mutated at G145R, both included in the new vaccine, on activation of a human high-density culture of peripheral blood mononuclear cells (PBMC) in vitro. The antigens were used either alone or in combination with phytohemagglutinin (PHA). None of the antigens alone affected the expression of CD40, HLA-DR or CD279. Wild-type HBsAg enhanced CD86 and CD69 expression, and induced TNF-α, IL-10, and IFN-γ, regardless of the anti-HBsAg status of donor. In the presence of PHA, wild-type HBsAg had no effect on either of the tested surface markers, but increased IFN-γ and IL-10 and inhibited IL-2. In contrast, the G145R mutant alone did not affect CD86 expression, it induced less CD69, and stimulated IL-2 along with lowering levels of TNF-α, IL-10, and IFN-γ. The G145R mutant also suppressed PHA-induced activation of CD69. The dramatic differences in the immune responses elicited by wild-type HBsAg and the G145R mutant HBsAg suggest distinct adaptive capabilities of the G145R mutant HBV.
Collapse
Affiliation(s)
- Maria V. Konopleva
- Federal State Budget Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.S.); (T.A.S.); (A.P.S.)
| | | | - Maria V. Sokolova
- Federal State Budget Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.S.); (T.A.S.); (A.P.S.)
| | - Tatyana A. Semenenko
- Federal State Budget Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.S.); (T.A.S.); (A.P.S.)
| | - Anatoly P. Suslov
- Federal State Budget Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.S.); (T.A.S.); (A.P.S.)
| |
Collapse
|
4
|
Yang Y, Luo S, Huang J, Xiao Y, Fu Y, Liu W, Yin H. Photoactivation of Innate Immunity Receptor TLR8 in Live Mammalian Cells by Genetic Encoding of Photocaged Tyrosine. Chembiochem 2021; 23:e202100344. [PMID: 34460982 DOI: 10.1002/cbic.202100344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Indexed: 11/10/2022]
Abstract
The effectiveness of innate immune responses relies on an intricate balance between activation and regulation. TLR8, a member of the Toll-like receptor (TLR) family, plays a fundamental role in host defense by sensing viral single-stranded RNAs (ssRNAs). However, the molecular recognition and regulatory mechanism of TLR8 is not fully understood, especially in a whole-cell environment. Here, we engineer the first light-controllable TLR8 model by genetically encoding a photocaged tyrosine, NBY, into specific sites of TLR8. In the caged forms, the activity of TLR8 is masked but can be restored upon decaging by exposure to UV light. To explain the mechanism clearly, we divide the sites with light responsiveness into three groups. They can separately block the ligands that bind to the pockets of TLR8, change the interaction modes between two TLR8 protomers, and interfere with the interactions between TLR8 cytosolic domains with its downstream adaptor. Specifically, we use this chemical caging strategy to probe and evaluate the function of several tyrosine sites located at the interface of TLR8 homodimers with a previously unknown regulatory mode, which may provide a new strategy for TLR8 modulator development. Effects on downstream signaling pathways are monitored at the transcriptional and translational levels in various cell lines. By photoactivating specific cells within a larger population, this powerful tool can provide novel mechanistic insights, with potential in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Yi Yang
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuchen Luo
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Jian Huang
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Xiao
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China.,Zhujiang Hospital, Laboratory of Medicine Center, Southern Medical University, Guangzhou, 510282, P. R. China
| | - Yixuan Fu
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Liu
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Hang Yin
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Liu K, Huang A, Nie J, Tan J, Xing S, Qu Y, Jiang K. IL-35 Regulates the Function of Immune Cells in Tumor Microenvironment. Front Immunol 2021; 12:683332. [PMID: 34093586 PMCID: PMC8176033 DOI: 10.3389/fimmu.2021.683332] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Interleukin-35 (IL-35) is a heterodimeric cytokine composed of Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35 that has recently been shown to play diverse and important roles in the tumor microenvironment (TME). Owing to its immunosuppressive activity and ability to promote tumor growth and progression, IL-35 is widely recognized as a key mediator of TME status. Immune cells are key mediators of diverse tumor-related phenotypes, and immunosuppressive cytokines such as IL-35 can promote tumor growth and metastasis in TME. These influences should be considered together. Since tumor immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance, a new target or efficacy enhancing factor is urgently needed. Suppressing IL-35 production and activity has been demonstrated as an effective factor that inhibits tumor cells viability, and further investigation of this cytokine is warranted. However, the mechanistic basis for IL-35-mediated regulation of immune cells in the TME remains to be fully clarified. In the present review, we explore the roles of IL-35 in regulating immune cells within the TME. In addition, we highlight IL-35 as a specific immunological target and discuss its possible relevance in the context of immunotherapy. Lastly, we sought to summarize potential future research directions that may guide the advancement of current understanding regarding the role of this important cytokine as a regulator of oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Interrogating biological systems using visible-light-powered catalysis. Nat Rev Chem 2021; 5:322-337. [PMID: 37117838 DOI: 10.1038/s41570-021-00265-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Light-powered catalysis has found broad utility as a chemical transformation strategy, with widespread impact on energy, environment, drug discovery and human health. A noteworthy application impacting human health is light-induced sensitization of cofactors for photodynamic therapy in cancer treatment. The clinical adoption of this photosensitization approach has inspired the search for other photochemical methods, such as photoredox catalysis, to influence biological discovery. Over the past decade, light-mediated catalysis has enabled the discovery of valuable synthetic transformations, propelling it to become a highly utilized chemical synthesis strategy. The reaction components required to achieve a photoredox reaction are identical to photosensitization (catalyst, light source and substrate), making it ideally suited for probing biological environments. In this Review, we discuss the therapeutic application of photosensitization and advancements made in developing next-generation catalysts. We then highlight emerging uses of photoredox catalytic methods for protein bioconjugation and probing complex cellular environments in living cells.
Collapse
|
8
|
Bacsa B, Graziani A, Krivic D, Wiedner P, Malli R, Rauter T, Tiapko O, Groschner K. Pharmaco-Optogenetic Targeting of TRPC Activity Allows for Precise Control Over Mast Cell NFAT Signaling. Front Immunol 2021; 11:613194. [PMID: 33391284 PMCID: PMC7775509 DOI: 10.3389/fimmu.2020.613194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Canonical transient receptor potential (TRPC) channels are considered as elements of the immune cell Ca2+ handling machinery. We therefore hypothesized that TRPC photopharmacology may enable uniquely specific modulation of immune responses. Utilizing a recently established TRPC3/6/7 selective, photochromic benzimidazole agonist OptoBI-1, we set out to test this concept for mast cell NFAT signaling. RBL-2H3 mast cells were found to express TRPC3 and TRPC7 mRNA but lacked appreciable Ca2+/NFAT signaling in response to OptoBI-1 photocycling. Genetic modification of the cells by introduction of single recombinant TRPC isoforms revealed that exclusively TRPC6 expression generated OptoBI-1 sensitivity suitable for opto-chemical control of NFAT1 activity. Expression of any of three benzimidazole-sensitive TRPC isoforms (TRPC3/6/7) reconstituted plasma membrane TRPC conductances in RBL cells, and expression of TRPC6 or TRPC7 enabled light-mediated generation of temporally defined Ca2+ signaling patterns. Nonetheless, only cells overexpressing TRPC6 retained essentially low basal levels of NFAT activity and displayed rapid and efficient NFAT nuclear translocation upon OptoBI-1 photocycling. Hence, genetic modification of the mast cells' TRPC expression pattern by the introduction of TRPC6 enables highly specific opto-chemical control over Ca2+ transcription coupling in these immune cells.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Annarita Graziani
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Denis Krivic
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Patrick Wiedner
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Gottfried-Schatz-Research-Center-Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Thomas Rauter
- Gottfried-Schatz-Research-Center-Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Oleksandra Tiapko
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Klaus Groschner
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| |
Collapse
|
9
|
van de Graaff MJ, Oosenbrug T, Marqvorsen MHS, Nascimento CR, de Geus MAR, Manoury B, Ressing ME, van Kasteren SI. Conditionally Controlling Human TLR2 Activity via Trans-Cyclooctene Caged Ligands. Bioconjug Chem 2020; 31:1685-1692. [PMID: 32510940 PMCID: PMC7303972 DOI: 10.1021/acs.bioconjchem.0c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Toll-like
receptors (TLRs) are key pathogen sensors of the immune
system. Their activation results in the production of cytokines, chemokines,
and costimulatory molecules that are crucial for innate and adaptive
immune responses. In recent years, specific (sub)-cellular location
and timing of TLR activation have emerged as parameters for defining
the signaling outcome and magnitude. To study the subtlety of this
signaling, we here report a new molecular tool to control the activation
of TLR2 via “click-to-release”-chemistry. We conjugated
a bioorthogonal trans-cyclooctene (TCO) protecting group via solid
support to a critical position within a synthetic TLR2/6 ligand to
render the compound unable to initiate signaling. The TCO-group could
then be conditionally removed upon addition of a tetrazine, resulting
in restored agonist activity and TLR2 activation. This approach was
validated on RAW264.7 macrophages and various murine primary immune
cells as well as human cell line systems, demonstrating that TCO-caging
constitutes a versatile approach for generating chemically controllable
TLR2 agonists.
Collapse
Affiliation(s)
- Michel J van de Graaff
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, The Netherlands
| | - Timo Oosenbrug
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, The Netherlands
| | - Mikkel H S Marqvorsen
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, The Netherlands
| | - Clarissa R Nascimento
- INEM, INSERM, Unité 1151-CNRS UMR 8253, Université de Paris, Faculté de Médecine, 156 Rue de Vaugirard, 75015 Paris, France
| | - Mark A R de Geus
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, The Netherlands
| | - Bénédicte Manoury
- INEM, INSERM, Unité 1151-CNRS UMR 8253, Université de Paris, Faculté de Médecine, 156 Rue de Vaugirard, 75015 Paris, France
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, The Netherlands
| | - Sander I van Kasteren
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
10
|
Hartrampf N, Seki T, Baumann A, Watson P, Vepřek NA, Hetzler BE, Hoffmann-Röder A, Tsuji M, Trauner D. Optical Control of Cytokine Production Using Photoswitchable Galactosylceramides. Chemistry 2020; 26:4476-4479. [PMID: 31788876 DOI: 10.1002/chem.201905279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/28/2022]
Abstract
α-Galactosylceramides are glycosphingolipids that show promise in cancer immunotherapy. After presentation by CD1d, they activate natural killer T cells (NKT), which results in the production of a variety of pro-inflammatory and immunomodulatory cytokines. Herein, we report the synthesis and biological evaluation of photochromic derivatives of KRN-7000, the activity of which can be modulated with light. Based on established structure-activity relationships, we designed photoswitchable analogues of this glycolipid that control the production of pro-inflammatory cytokines, such as IFN-γ. The azobenzene derivative α-GalACer-4 proved to be more potent than KRN-7000 itself when activated with 370 nm light. Photolipids of this type could improve our mechanistic understanding of cytokine production and could open new directions in photoimmunotherapy.
Collapse
Affiliation(s)
- Nina Hartrampf
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Toshiyuki Seki
- The Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, 455 First Avenue, 7th Floor, New York, NY, 10016, USA
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105, Japan
| | - Andreas Baumann
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Philip Watson
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Nynke A Vepřek
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Belinda E Hetzler
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Anja Hoffmann-Röder
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Moriya Tsuji
- The Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, 455 First Avenue, 7th Floor, New York, NY, 10016, USA
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| |
Collapse
|
11
|
Gamboa L, Zamat AH, Kwong GA. Synthetic immunity by remote control. Theranostics 2020; 10:3652-3667. [PMID: 32206114 PMCID: PMC7069089 DOI: 10.7150/thno.41305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cell-based immunotherapies, such as T cells engineered with chimeric antigen receptors (CARs), have the potential to cure patients of disease otherwise refractory to conventional treatments. Early-on-treatment and long-term durability of patient responses depend critically on the ability to control the potency of adoptively transferred T cells, as overactivation can lead to complications like cytokine release syndrome, and immunosuppression can result in ineffective responses to therapy. Drugs or biologics (e.g., cytokines) that modulate immune activity are limited by mass transport barriers that reduce the local effective drug concentration, and lack site or target cell specificity that results in toxicity. Emerging technologies that enable site-targeted, remote control of key T cell functions - including proliferation, antigen-sensing, and target-cell killing - have the potential to increase treatment precision and safety profile. These technologies are broadly applicable to other immune cells to expand immune cell therapies across many cancers and diseases. In this review, we highlight the opportunities, challenges and the current state-of-the-art for remote control of synthetic immunity.
Collapse
Affiliation(s)
- Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Ali H. Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Morstein J, Trauner D. New players in phototherapy: photopharmacology and bio-integrated optoelectronics. Curr Opin Chem Biol 2019; 50:145-151. [DOI: 10.1016/j.cbpa.2019.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|
14
|
Salveson PJ, Haerianardakani S, Thuy-Boun A, Kreutzer AG, Nowick JS. Controlling the Oligomerization State of Aβ-Derived Peptides with Light. J Am Chem Soc 2018; 140:5842-5852. [PMID: 29627987 DOI: 10.1021/jacs.8b02658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A key challenge in studying the biological and biophysical properties of amyloid-forming peptides is that they assemble to form heterogeneous mixtures of soluble oligomers and insoluble fibrils. Photolabile protecting groups have emerged as tools to control the properties of biomolecules with light. Blocking intermolecular hydrogen bonds that stabilize amyloid oligomers provides a general strategy to control the biological and biophysical properties of amyloid-forming peptides. In this paper we describe the design, synthesis, and characterization of macrocyclic β-hairpin peptides that are derived from amyloidogenic peptides and contain the N-2-nitrobenzyl photolabile protecting group. Each peptide contains two heptapeptide segments from Aβ16-36 or Aβ17-36 constrained into β-hairpins. The N-2-nitrobenzyl group is appended to the amide backbone of Gly33 to disrupt the oligomerization of the peptides by disrupting intermolecular hydrogen bonds. X-ray crystallography reveals that N-2-nitrobenzyl groups can either block assembly into discrete oligomers or permit formation of trimers, hexamers, and dodecamers. Photolysis of the N-2-nitrobenzyl groups with long-wave UV light unmasks the amide backbone and alters the assembly and the biological properties of the macrocyclic β-hairpin peptides. SDS-PAGE studies show that removing the N-2-nitrobenzyl groups alters the assembly of the peptides. MTT conversion and LDH release assays show that decaging the peptides induces cytotoxicity. Circular dichroism studies and dye leakage assays with liposomes reveal that decaging modulates interactions of the peptides with lipid bilayers. Collectively, these studies demonstrate that incorporating N-2-nitrobenzyl groups into macrocyclic β-hairpin peptides provides a new strategy to probe the structures and the biological properties of amyloid oligomers.
Collapse
Affiliation(s)
- Patrick J Salveson
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Sepehr Haerianardakani
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Alexander Thuy-Boun
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Adam G Kreutzer
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - James S Nowick
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| |
Collapse
|
15
|
Palmer CR, Jacobson ME, Fedorova O, Pyle AM, Wilson JT. Environmentally Triggerable Retinoic Acid-Inducible Gene I Agonists Using Synthetic Polymer Overhangs. Bioconjug Chem 2018; 29:742-747. [PMID: 29350913 PMCID: PMC6407425 DOI: 10.1021/acs.bioconjchem.7b00697] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I) is a cytosolic pattern recognition receptor (PRR) that potently activates antiviral innate immunity upon recognition of 5' triphosphorylated double-stranded RNA (pppRNA). Accordingly, RNA ligands of the RIG-I pathway have recently emerged as promising antiviral agents, vaccine adjuvants, and cancer immunotherapeutics. However, RIG-I is expressed constitutively in virtually all cell types, and therefore administration of RIG-I agonists causes risk for systemic inflammation and possible dose-limiting toxicities. Here, we establish proof-of-concept and initial design criteria for pppRNA prodrugs capable of activating the RIG-I pathway in response to specific environmental stimuli. We show that covalent conjugation of poly(ethylene glycol) (PEG) to the 3' end of the complementary strand, i.e., on the same side but opposite strand as the 5' triphosphate group, can generate a synthetic overhang that prevents RIG-I activation. Additionally, conjugation of PEG through a cleavable linker-here, a reducible disulfide bond-allows for removal of the synthetic overhang and restoration of immunostimulatory activity. Furthermore, we demonstrate that blockade of RIG-I activation via synthetic overhangs is dependent on PEG molecular weight, with a critical molecular weight between 550 and 1000 Da required to inhibit activity. Additionally, we demonstrate that blockade of RIG-I activity is conjugation site-dependent, as ligation of PEG to the opposite end of the RNA did not influence ligand activity. Collectively, this work demonstrates that conjugation of synthetic polymer overhangs to pppRNA through cleavable linkers is a viable strategy for the development of environmentally triggerable RIG-I-targeting prodrugs.
Collapse
Affiliation(s)
- Christian R. Palmer
- Department of Chemical and Biomolecular Engineering; Vanderbilt University Nashville, TN 37235, USA
| | - Max E. Jacobson
- Department of Chemical and Biomolecular Engineering; Vanderbilt University Nashville, TN 37235, USA
| | - Olga Fedorova
- Department of Molecular, Cellular and Developmental Biology; Yale University New Haven, CT 06511
| | - Anna M. Pyle
- Department of Molecular, Cellular and Developmental Biology; Yale University New Haven, CT 06511
- Department of Chemistry, Howard Hughes Medical Institute, Yale University
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering; Vanderbilt University Nashville, TN 37235, USA
- Department of Biomedical Engineering; Vanderbilt University
- Vanderbilt Center for Immunobiology; Vanderbilt University
- Vanderbilt Institute for Infection, Immunology and Inflammation; Vanderbilt University
| |
Collapse
|