1
|
Zhu Y, Ackers-Johnson M, Shanmugam MK, Pakkiri LS, Drum CL, Yanpu C, Kim J, Paltzer WG, Mahmoud AI, Wen Tan WL, Lee MCJ, Jianming J, Luu DAT, Ng SL, Li PYQ, Anhui W, Rong Q, Ong GJX, Ng Yu T, Haigh JJ, Tiang Z, Richards AM, Foo R. Asparagine Synthetase Marks a Distinct Dependency Threshold for Cardiomyocyte Dedifferentiation. Circulation 2024; 149:1833-1851. [PMID: 38586957 PMCID: PMC11147732 DOI: 10.1161/circulationaha.123.063965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 01/23/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Adult mammalian cardiomyocytes have limited proliferative capacity, but in specifically induced contexts they traverse through cell-cycle reentry, offering the potential for heart regeneration. Endogenous cardiomyocyte proliferation is preceded by cardiomyocyte dedifferentiation (CMDD), wherein adult cardiomyocytes revert to a less matured state that is distinct from the classical myocardial fetal stress gene response associated with heart failure. However, very little is known about CMDD as a defined cardiomyocyte cell state in transition. METHODS Here, we leveraged 2 models of in vitro cultured adult mouse cardiomyocytes and in vivo adeno-associated virus serotype 9 cardiomyocyte-targeted delivery of reprogramming factors (Oct4, Sox2, Klf4, and Myc) in adult mice to study CMDD. We profiled their transcriptomes using RNA sequencing, in combination with multiple published data sets, with the aim of identifying a common denominator for tracking CMDD. RESULTS RNA sequencing and integrated analysis identified Asparagine Synthetase (Asns) as a unique molecular marker gene well correlated with CMDD, required for increased asparagine and also for distinct fluxes in other amino acids. Although Asns overexpression in Oct4, Sox2, Klf4, and Myc cardiomyocytes augmented hallmarks of CMDD, Asns deficiency led to defective regeneration in the neonatal mouse myocardial infarction model, increased cell death of cultured adult cardiomyocytes, and reduced cell cycle in Oct4, Sox2, Klf4, and Myc cardiomyocytes, at least in part through disrupting the mammalian target of rapamycin complex 1 pathway. CONCLUSIONS We discovered a novel gene Asns as both a molecular marker and an essential mediator, marking a distinct threshold that appears in common for at least 4 models of CMDD, and revealing an Asns/mammalian target of rapamycin complex 1 axis dependency for dedifferentiating cardiomyocytes. Further study will be needed to extrapolate and assess its relevance to other cell state transitions as well as in heart regeneration.
Collapse
Affiliation(s)
- Yike Zhu
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Matthew Ackers-Johnson
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Muthu K Shanmugam
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Leroy Sivappiragasam Pakkiri
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Chester Lee Drum
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Chen Yanpu
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johnny Kim
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein/Main, Bad Nauheim, Germany
| | - Wyatt G. Paltzer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wilson Lek Wen Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Mick Chang Jie Lee
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Jiang Jianming
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Danh Anh Tuan Luu
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Shi Ling Ng
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Peter Yi Qing Li
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Wang Anhui
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Centre, Peking University
- State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University
| | - Qi Rong
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Centre, Peking University
- State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University
| | - Gabriel Jing Xiang Ong
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Timothy Ng Yu
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - Jody J. Haigh
- CancerCare Manitoba Research Institute, Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- VIB, Flanders Institute for Biotechnology, Ghent University, Ghent, Belgium
| | - Zenia Tiang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
| | - A. Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
- Christchurch Heart Institute, University of Otago, New Zealand
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health Systems, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| |
Collapse
|
2
|
Hu T, Malek Mohammadi M, Ebach F, Hesse M, Kotlikoff MI, Fleischmann BK. Right ventricular cardiomyocyte expansion accompanies cardiac regeneration in newborn mice after large left ventricular infarcts. JCI Insight 2024; 9:e176281. [PMID: 38319719 PMCID: PMC11143925 DOI: 10.1172/jci.insight.176281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Cauterization of the root of the left coronary artery (LCA) in the neonatal heart on postnatal day 1 (P1) resulted in large, reproducible lesions of the left ventricle (LV), and an attendant marked adaptive response in the right ventricle (RV). The response of both chambers to LV myocardial infarction involved enhanced cardiomyocyte (CM) division and binucleation, as well as LV revascularization, leading to restored heart function within 7 days post surgery (7 dps). By contrast, infarction of P3 mice resulted in cardiac scarring without a significant regenerative and adaptive response of the LV and the RV, leading to subsequent heart failure and death within 7 dps. The prominent RV myocyte expansion in P1 mice involved an acute increase in pulmonary arterial pressure and a unique gene regulatory response, leading to an increase in RV mass and preserved heart function. Thus, distinct adaptive mechanisms in the RV, such as CM proliferation and RV expansion, enable marked cardiac regeneration of the infarcted LV at P1 and full functional recovery.
Collapse
Affiliation(s)
- Tianyuan Hu
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| | - Mona Malek Mohammadi
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| | - Fabian Ebach
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| | | | - Bernd K. Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| |
Collapse
|
3
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
4
|
Proteomic Analysis of Decellularized Extracellular Matrix: Achieving a Competent Biomaterial for Osteogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6884370. [PMID: 36267842 PMCID: PMC9578822 DOI: 10.1155/2022/6884370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
Decellularized ECMs have been used as biological scaffolds for tissue repair due to their tissue-specific biochemical and mechanical composition, poorly simulated by other materials. It is used as patches and powders, and it could be further processed via enzymatic digestion under acidic conditions using pepsin. However, part of the bioactivity is lost during the digestion process due to protein denaturation. Here, stepwise digestion was developed to prepare a competent biomaterial for osteogenesis from three different ECM sources. In addition, three different proteases were compared to evaluate the most effective digestion protocol for specific cellular processes. GAGs and peptide quantification showed that the stepwise method yielded a higher concentration of bioactive residues. Circular dichroism analysis also showed that the stepwise approach preserved the secondary structures better. The protein profiles of the digested ECMs were analyzed, and it was found to be highly diverse and tissue-specific. The digestion of ECM from pericardium produced peptides originated from 94 different proteins, followed by 48 proteins in ECM from tendon and 35 proteins in ECM from bone. In addition, digested products from pericardium ECM yielded increased proliferation and differentiation of bone marrow mesenchymal stem cells to mature osteoblasts.
Collapse
|
5
|
Accelerated Growth, Differentiation, and Ploidy with Reduced Proliferation of Right Ventricular Cardiomyocytes in Children with Congenital Heart Defect Tetralogy of Fallot. Cells 2022; 11:cells11010175. [PMID: 35011735 PMCID: PMC8750260 DOI: 10.3390/cells11010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
The myocardium of children with tetralogy of Fallot (TF) undergoes hemodynamic overload and hypoxemia immediately after birth. Comparative analysis of changes in the ploidy and morphology of the right ventricular cardiomyocytes in children with TF in the first years of life demonstrated their significant increase compared with the control group. In children with TF, there was a predominantly diffuse distribution of Connexin43-containing gap junctions over the cardiomyocytes sarcolemma, which redistributed into the intercalated discs as cardiomyocytes differentiation increased. The number of Ki67-positive cardiomyocytes varied greatly and amounted to 7.0–1025.5/106 cardiomyocytes and also were decreased with increased myocytes differentiation. Ultrastructural signs of immaturity and proliferative activity of cardiomyocytes in children with TF were demonstrated. The proportion of interstitial tissue did not differ significantly from the control group. The myocardium of children with TF under six months of age was most sensitive to hypoxemia, it was manifested by a delay in the intercalated discs and myofibril assembly and the appearance of ultrastructural signs of dystrophic changes in the cardiomyocytes. Thus, the acceleration of ontogenetic growth and differentiation of the cardiomyocytes, but not the reactivation of their proliferation, was an adaptation of the immature myocardium of children with TF to hemodynamic overload and hypoxemia.
Collapse
|
6
|
Valussi M, Besser J, Wystub-Lis K, Zukunft S, Richter M, Kubin T, Boettger T, Braun T. Repression of Osmr and Fgfr1 by miR-1/133a prevents cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. SCIENCE ADVANCES 2021; 7:eabi6648. [PMID: 34644107 PMCID: PMC8514096 DOI: 10.1126/sciadv.abi6648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dedifferentiation of cardiomyocytes is part of the survival program in the remodeling myocardium and may be essential for enabling cardiomyocyte proliferation. In addition to transcriptional processes, non-coding RNAs play important functions for the control of cell cycle regulation in cardiomyocytes and cardiac regeneration. Here, we demonstrate that suppression of FGFR1 and OSMR by miR-1/133a is instrumental to prevent cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Concomitant inactivation of both miR-1/133a clusters in adult cardiomyocytes activates expression of cell cycle regulators, induces a switch from fatty acid to glycolytic metabolism, and changes expression of extracellular matrix genes. Inhibition of FGFR and OSMR pathways prevents most effects of miR-1/133a inactivation. Short-term miR-1/133a depletion protects cardiomyocytes against ischemia, while extended loss of miR-1/133a causes heart failure. Our results demonstrate a crucial role of miR-1/133a–mediated suppression of Osmr and Ffgfr1 in maintaining the postmitotic differentiated state of cardiomyocytes.
Collapse
Affiliation(s)
- Melissa Valussi
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, D-61231 Bad Nauheim, Germany
| | - Johannes Besser
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, D-61231 Bad Nauheim, Germany
| | - Katharina Wystub-Lis
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, D-61231 Bad Nauheim, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, D-61231 Bad Nauheim, Germany
| | - Thomas Kubin
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, D-61231 Bad Nauheim, Germany
| | - Thomas Boettger
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, D-61231 Bad Nauheim, Germany
- Corresponding author. (T.Bo.); (T.Br.)
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, D-61231 Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Corresponding author. (T.Bo.); (T.Br.)
| |
Collapse
|
7
|
Liu SQ, Hou XY, Zhao F, Zhao XG. Nucleated red blood cells participate in myocardial regeneration in the toad Bufo Gargarizan Gargarizan. Exp Biol Med (Maywood) 2021; 246:1760-1775. [PMID: 34024142 DOI: 10.1177/15353702211013297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heart regeneration is negligible in humans and mammals but remarkable in some ectotherms. Humans and mammals lack nucleated red blood cells (NRBCs), while ectotherms have sufficient NRBCs. This study used Bufo gargarizan gargarizan, a Chinese toad subspecies, as a model animal to verify our hypothesis that NRBCs participate in myocardial regeneration. NRBC infiltration into myocardium was seen in the healthy toad hearts. Heart needle-injury was used as an enlarged model of physiological cardiomyocyte loss. It recovered quickly and scarlessly. NRBC infiltration increased during the recovery. Transwell assay was done to in vitro explore effects of myocardial injury on NRBCs. In the transwell system, NRBCs could infiltrate into cardiac pieces and could transdifferentiate toward cardiomyocytes. Heart apex cautery caused approximately 5% of the ventricle to be injured to varying degrees. In the mildly to moderately injured regions, NRBC infiltration increased and myocardial regeneration started soon after the inflammatory response; the severely damaged region underwent inflammation, scarring, and vascularity before NRBC infiltration and myocardial regeneration, and recovered scarlessly in four months. NRBCs were seen in the newly formed myocardium. Enzyme-linked immunosorbent assay and Western blotting showed that the levels of tumor necrosis factor-α, interleukin- 1β, 6, and11, cardiotrophin-1, vascular endothelial growth factor, erythropoietin, matrix metalloproteinase- 2 and 9 in the serum and/or cardiac tissues fluctuated in different patterns during the cardiac injury-regeneration. Cardiotrophin-1 could induce toad NRBC transdifferentiation toward cardiomyocytes in vitro. Taken together, the results suggest that the NRBC is a cell source for cardiomyocyte renewal/regeneration in the toad; cardiomyocyte loss triggers a series of biological processes, facilitating NRBC infiltration and transition to cardiomyocytes. This finding may guide a new direction for improving human myocardial regeneration.
Collapse
Affiliation(s)
- Shu-Qin Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao-Ye Hou
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Feng Zhao
- The Basic Medical Central Laboratory, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao-Ge Zhao
- The Central Laboratory For Biomedical Research, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
8
|
Bo B, Li S, Zhou K, Wei J. The Regulatory Role of Oxygen Metabolism in Exercise-Induced Cardiomyocyte Regeneration. Front Cell Dev Biol 2021; 9:664527. [PMID: 33937268 PMCID: PMC8083961 DOI: 10.3389/fcell.2021.664527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
During heart failure, the heart is unable to regenerate lost or damaged cardiomyocytes and is therefore unable to generate adequate cardiac output. Previous research has demonstrated that cardiac regeneration can be promoted by a hypoxia-related oxygen metabolic mechanism. Numerous studies have indicated that exercise plays a regulatory role in the activation of regeneration capacity in both healthy and injured adult cardiomyocytes. However, the role of oxygen metabolism in regulating exercise-induced cardiomyocyte regeneration is unclear. This review focuses on the alteration of the oxygen environment and metabolism in the myocardium induced by exercise, including the effects of mild hypoxia, changes in energy metabolism, enhanced elimination of reactive oxygen species, augmentation of antioxidative capacity, and regulation of the oxygen-related metabolic and molecular pathway in the heart. Deciphering the regulatory role of oxygen metabolism and related factors during and after exercise in cardiomyocyte regeneration will provide biological insight into endogenous cardiac repair mechanisms. Furthermore, this work provides strong evidence for exercise as a cost-effective intervention to improve cardiomyocyte regeneration and restore cardiac function in this patient population.
Collapse
Affiliation(s)
- Bing Bo
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Shuangshuang Li
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China
| | - Ke Zhou
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
9
|
Günthel M, van Duijvenboden K, Jeremiasse J, van den Hoff MJB, Christoffels VM. Early Postnatal Cardiac Stress Does Not Influence Ventricular Cardiomyocyte Cell-Cycle Withdrawal. J Cardiovasc Dev Dis 2021; 8:jcdd8040038. [PMID: 33917189 PMCID: PMC8068044 DOI: 10.3390/jcdd8040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect. After birth, patients with CHD may suffer from cardiac stress resulting from abnormal loading conditions. However, it is not known how this cardiac burden influences postnatal development and adaptation of the ventricles. To study the transcriptional and cell-cycle response of neonatal cardiomyocytes to cardiac stress, we used a genetic mouse model that develops left ventricular volume overload within 2 weeks after birth. The increased volume load caused upregulation of the cardiac stress marker Nppa in the left ventricle and interventricular septum as early as 12 days after birth. Transcriptome analysis revealed that cardiac stress induced the expression of cell-cycle genes. This did not influence postnatal cell-cycle withdrawal of cardiomyocytes and other cell types in the ventricles as measured by Ki-67 immunostaining.
Collapse
|
10
|
Marques EB, Souza KPD, Alvim-Silva T, Martins ILF, Pedro S, Scaramello CBV. Nutrition and Cardiovascular Diseases: Programming and Reprogramming. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
11
|
Leptin administration during lactation leads to different nutritional, biometric, hemodynamic, and cardiac outcomes in prepubertal and adult female Wistar rats. J Dev Orig Health Dis 2021; 12:870-875. [PMID: 33517945 DOI: 10.1017/s2040174420001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Literature reports that insults, such as hormonal disturbances, during critical periods of development may modulate organism physiology and metabolism favoring cardiovascular diseases (CVDs) later in life. Studies show that leptin administration during lactation leads to cardiovascular dysfunction in young and adult male Wistar rats. However, there are sex differences regarding CVD. Thus, the present work aimed to investigate neonatal leptin administration's consequences on different outcomes in female rats at prepubertal and adult age. Newborn Wistar female rats were divided into two groups, Leptin and Control, receiving daily subcutaneous injections of this adipokine (8 μg/100 g) or saline for the first 10 of 21 d of lactation. Nutritional, biometric, hemodynamic, and echocardiographic parameters, as well as maximal effort ergometer performance, were determined at postnatal days (PND) 30 and 150. Leptin group presented lower food intake (p = 0.0003) and higher feed efficiency (p = 0.0058) between PND 21 and 30. Differences concerning echocardiographic parameters revealed higher left ventricle internal diameter (LVID) in systole (p = 0.0051), as well as lower left ventricle ejection fraction (LVEF) (p = 0.0111) and fractional shortening (FS) (p = 0.0405) for this group at PND 30. Older rats treated with leptin during lactation presented only higher LVID in systole (p = 0.0270). Systolic blood pressure and maximum effort ergometer test performance was similar between groups at both ages. These data suggest that nutritional, biometric, and cardiac outcomes due to neonatal leptin administration in female rats are age-dependent.
Collapse
|
12
|
Santos F, Correia M, Nóbrega-Pereira S, Bernardes de Jesus B. Age-Related Pathways in Cardiac Regeneration: A Role for lncRNAs? Front Physiol 2021; 11:583191. [PMID: 33551829 PMCID: PMC7855957 DOI: 10.3389/fphys.2020.583191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Aging imposes a barrier for tissue regeneration. In the heart, aging leads to a severe rearrangement of the cardiac structure and function and to a subsequent increased risk of heart failure. An intricate network of distinct pathways contributes to age-related alterations during healthy heart aging and account for a higher susceptibility of heart disease. Our understanding of the systemic aging process has already led to the design of anti-aging strategies or to the adoption of protective interventions. Nevertheless, our understanding of the molecular determinants operating during cardiac aging or repair remains limited. Here, we will summarize the molecular and physiological alterations that occur during aging of the heart, highlighting the potential role for long non-coding RNAs (lncRNAs) as novel and valuable targets in cardiac regeneration/repair.
Collapse
Affiliation(s)
- Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Zhu Y, Do VD, Richards AM, Foo R. What we know about cardiomyocyte dedifferentiation. J Mol Cell Cardiol 2020; 152:80-91. [PMID: 33275936 DOI: 10.1016/j.yjmcc.2020.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Cardiomyocytes (CMs) lost during cardiac injury and heart failure (HF) cannot be replaced due to their limited proliferative capacity. Regenerating the failing heart by promoting CM cell-cycle re-entry is an ambitious solution, currently vigorously pursued. Some genes have been proven to promote endogenous CM proliferation, believed to be preceded by CM dedifferentiation, wherein terminally differentiated CMs are initially reversed back to the less mature state which precedes cell division. However, very little else is known about CM dedifferentiation which remains poorly defined. We lack robust molecular markers and proper understanding of the mechanisms driving dedifferentiation. Even the term dedifferentiation is debated because there is no objective evidence of pluripotency, and could rather reflect CM plasticity instead. Nonetheless, the significance of CM transition states on cardiac function, and whether they necessarily lead to CM proliferation, remains unclear. This review summarises the current state of knowledge of both natural and experimentally induced CM dedifferentiation in non-mammalian vertebrates (primarily the zebrafish) and mammals, as well as the phenotypes and molecular mechanisms involved. The significance and potential challenges of studying CM dedifferentiation are also discussed. In summary, CM dedifferentiation, essential for CM plasticity, may have an important role in heart regeneration, thereby contributing to the prevention and treatment of heart disease. More attention is needed in this field to overcome the technical limitations and knowledge gaps.
Collapse
Affiliation(s)
- Yike Zhu
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore; Genome Institute of Singapore, Agency of Science Research and Technology, Singapore
| | - Vinh Dang Do
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore; Genome Institute of Singapore, Agency of Science Research and Technology, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore; Genome Institute of Singapore, Agency of Science Research and Technology, Singapore.
| |
Collapse
|
14
|
Abstract
Purpose of Review The typical remodeling process after cardiac injury is scarring and compensatory hypertrophy. The limited regeneration potential of the adult heart is thought to be due to the post-mitotic status of postnatal cardiomyocytes, which are mostly binucleated and/or polyploid. Nevertheless, there is evidence for cardiomyocyte turnover in the adult heart. The purpose of this review is to describe the recent findings regarding the proliferative potential of mononuclear cardiomyocytes and to evaluate their function in cardiac turnover and disease. Recent Findings There is overwhelming evidence from carbon-dating in humans and multi-isotope imaging mass spectrometry in mice that there is a very low but detectable level of turnover of cardiomyocytes in the heart. The source of this renewal is not clear, but recent evidence points to a population of mononuclear, diploid cardiomyocytes that are still capable of authentic cell division. Controversy arises when their role in cardiac repair is considered, as some studies claim that they contribute to repair by cell division while other studies do not find evidence for hyperplasia but hypertrophy. Stimulation of the mononuclear cardiomyocyte population has been proposed as a therapeutic strategy in cardiac disease. Summary The studies reviewed here agree on the existence of a low annual cardiomyocyte turnover rate which can be attributed to the proliferation of mononuclear cardiomyocytes. Potential roles of mononucleated cardiomyocytes in cardiac repair after injury are discussed.
Collapse
|
15
|
Nalobin D, Alipkina S, Gaidamaka A, Glukhov A, Khuchua Z. Telomeres and Telomerase in Heart Ontogenesis, Aging and Regeneration. Cells 2020; 9:cells9020503. [PMID: 32098394 PMCID: PMC7072777 DOI: 10.3390/cells9020503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The main purpose of the review article is to assess the contributions of telomere length and telomerase activity to the cardiac function at different stages of development and clarify their role in cardiac disorders. It has been shown that the telomerase complex and telomeres are of great importance in many periods of ontogenesis due to the regulation of the proliferative capacity of heart cells. The review article also discusses the problems of heart regeneration and the identification of possible causes of dysfunction of telomeres and telomerase.
Collapse
Affiliation(s)
- Denis Nalobin
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russian
- Correspondence: ; Tel.: +7-916-939-0990
| | - Svetlana Alipkina
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russian
| | - Anna Gaidamaka
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russian
| | - Alexander Glukhov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russian
- Department of Biochemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russian
| | - Zaza Khuchua
- Department of Biochemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russian
- Institute of Chemical Biology Ilia State University, 0162 Tbilisi, Georgia
- Division of Molecular and Cardiovascular Biology, Cincinnati Children’s Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Soucy JR, Askaryan J, Diaz D, Koppes AN, Annabi N, Koppes RA. Glial cells influence cardiac permittivity as evidenced through in vitro and in silico models. Biofabrication 2019; 12:015014. [PMID: 31593932 PMCID: PMC11062241 DOI: 10.1088/1758-5090/ab4c0a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Excitation-contraction (EC) coupling in the heart has, until recently, been solely accredited to cardiomyocytes. The inherent complexities of the heart make it difficult to examine non-muscle contributions to contraction in vivo, and conventional in vitro models fail to capture multiple features and cellular heterogeneity of the myocardium. Here, we report on the development of a 3D cardiac μTissue to investigate changes in the cellular composition of native myocardium in vitro. Cells are encapsulated within micropatterned gelatin-based hydrogels formed via visible light photocrosslinking. This system enables spatial control of the microarchitecture, perturbation of the cellular composition, and functional measures of EC coupling via video microscopy and a custom algorithm to quantify beat frequency and degree of coordination. To demonstrate the robustness of these tools and evaluate the impact of altered cell population densities on cardiac μTissues, contractility and cell morphology were assessed with the inclusion of exogenous non-myelinating Schwann cells (SCs). Results demonstrate that the addition of exogenous SCs alter cardiomyocyte EC, profoundly inhibiting the response to electrical pacing. Computational modeling of connexin-mediated coupling suggests that SCs impact cardiomyocyte resting potential and rectification following depolarization. Cardiac μTissues hold potential for examining the role of cellular heterogeneity in heart health, pathologies, and cellular therapies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | | | | | | | | | | |
Collapse
|
17
|
Hesse M, Doengi M, Becker A, Kimura K, Voeltz N, Stein V, Fleischmann BK. Midbody Positioning and Distance Between Daughter Nuclei Enable Unequivocal Identification of Cardiomyocyte Cell Division in Mice. Circ Res 2019; 123:1039-1052. [PMID: 30355161 DOI: 10.1161/circresaha.118.312792] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE New strategies in the field of cardiac regeneration are directed at identifying proliferation-inducing substances to induce regrowth of myocardium. Current screening assays utilize neonatal cardiomyocytes and markers for cytokinesis, such as Aurora B-kinase. However, detection of cardiomyocyte division is complicated because of cell cycle variants, in particular, binucleation. OBJECTIVE To analyze the process of cardiomyocyte binucleation to identify definitive discriminators for cell cycle variants and authentic cardiomyocyte division. METHODS AND RESULTS Herein, we demonstrate by direct visualization of the contractile ring and midbody in Myh6 (myosin, heavy chain 6)-eGFP (enhanced green fluorescent protein)-anillin transgenic mice that cardiomyocyte binucleation starts by formation of a contractile ring. This is followed by irregular positioning of the midbody and movement of the 2 nuclei into close proximity to each other. In addition, the widespread used marker Aurora B-kinase was found to also label binucleating cardiomyocytes, complicating the interpretation of existing screening assays. Instead, atypical midbody positioning and the distance of daughter nuclei on karyokinesis are bona fide markers for cardiomyocyte binucleation enabling to unequivocally discern such events from cardiomyocyte division in vitro and in vivo. CONCLUSIONS The 2 criteria provide a new method for identifying cardiomyocyte division and should be considered in future studies investigating cardiomyocyte turnover and regeneration after injury, in particular in the postnatal heart to prevent the assignment of false positive proliferation events.
Collapse
Affiliation(s)
- Michael Hesse
- From the Institute of Physiology I, Life and Brain Center, Medical Faculty (M.H., A.B., K.K., N.V., B.K.F.), University of Bonn, Germany
| | - Michael Doengi
- Institute of Physiology II (M.D., V.S.), University of Bonn, Germany
| | - Alexandra Becker
- From the Institute of Physiology I, Life and Brain Center, Medical Faculty (M.H., A.B., K.K., N.V., B.K.F.), University of Bonn, Germany
| | - Kenichi Kimura
- From the Institute of Physiology I, Life and Brain Center, Medical Faculty (M.H., A.B., K.K., N.V., B.K.F.), University of Bonn, Germany
| | - Nadine Voeltz
- From the Institute of Physiology I, Life and Brain Center, Medical Faculty (M.H., A.B., K.K., N.V., B.K.F.), University of Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II (M.D., V.S.), University of Bonn, Germany
| | - Bernd K Fleischmann
- From the Institute of Physiology I, Life and Brain Center, Medical Faculty (M.H., A.B., K.K., N.V., B.K.F.), University of Bonn, Germany.,Pharma Center Bonn (B.K.F.), University of Bonn, Germany
| |
Collapse
|
18
|
Abstract
Heart failure is a major cause of death worldwide owing to the inability of the adult human heart to regenerate after a heart attack. However, many vertebrate species are capable of complete cardiac regeneration following injury. In this Review, we discuss the various model organisms of cardiac regeneration, and outline what they have taught us thus far about the cellular and molecular responses essential for optimal cardiac repair. We compare across different species, highlighting evolutionarily conserved mechanisms of regeneration and demonstrating the importance of developmental gene expression programmes, plasticity of the heart and the pathophysiological environment for the regenerative response. Additionally, we discuss how the findings from these studies have led to improvements in cardiac repair in preclinical models such as adult mice and pigs, and discuss the potential to translate these findings into therapeutic approaches for human patients following myocardial infarction.
Collapse
Affiliation(s)
- Eleanor L Price
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
19
|
Broughton KM, Sussman MA. Adult Cardiomyocyte Cell Cycle Detour: Off-ramp to Quiescent Destinations. Trends Endocrinol Metab 2019; 30:557-567. [PMID: 31262545 PMCID: PMC6703820 DOI: 10.1016/j.tem.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Ability to promote completion of mitotic cycling of adult mammalian cardiomyocytes remains an intractable and vexing challenge, despite being one of the most sought after 'holy grails' of cardiovascular research. While some of the struggle is attributable to adult cardiomyocytes themselves that are notoriously post-mitotic, another contributory factor rests with difficulty in definitive tracking of adult cardiomyocyte cell cycle and lack of rigorous measures to track proliferation in situ. This review summarizes past, present, and future directions to promote adult mammalian cardiomyocyte cell cycle progression, proliferation, and renewal. Establishing relationship(s) between cardiomyocyte cell cycle progression and cellular biological properties is sorely needed to understand the mechanistic basis for cardiomyocyte cell cycle withdrawal to enhance cardiomyocyte cell cycle progression and mitosis.
Collapse
Affiliation(s)
- Kathleen M Broughton
- San Diego State University, Department of Biology and Integrated Regenerative Research Institute, San Diego, CA 92182, USA
| | - Mark A Sussman
- San Diego State University, Department of Biology and Integrated Regenerative Research Institute, San Diego, CA 92182, USA.
| |
Collapse
|
20
|
Wang Y, Zhao S, Chen Y, Wang T, Dong C, Wo X, Zhang J, Dong Y, Xu W, Feng X, Qu C, Wang Y, Zhong Z, Zhao W. The Capsid Protein VP1 of Coxsackievirus B Induces Cell Cycle Arrest by Up-Regulating Heat Shock Protein 70. Front Microbiol 2019; 10:1633. [PMID: 31379784 PMCID: PMC6653663 DOI: 10.3389/fmicb.2019.01633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023] Open
Abstract
Manipulating cell cycle is one of the common strategies used by viruses to generate favorable cellular environment to facilitate viral replication. Coxsackievirus B (CVB) is one of the major viral pathogens of human myocarditis and cardiomyopathy. Because of its small genome, CVB depends on cellular machineries for productive replication. However, how the structural and non-structural components of CVB would manipulate cell cycle is not clearly understood. In this study, we demonstrated that the capsid protein VP1 of CVB type 3 (CVB3) induced cell cycle arrest at G1 phase. G1 arrest was the result of the decrease level of cyclin E and the accumulation of p27Kip1. Study on the gene expression profile of the cells expressing VP1 showed that the expression of both heat shock protein 70-1 (Hsp70-1) and Hsp70-2 was significantly up-regulated. Knockdown of Hsp70 resulted in the increased level of cyclin E and the reduction of p27Kip1. We further demonstrated that the phosphorylation of the heat shock factor 1, which directly promotes the expression of Hsp70, was also increased in the cell expressing VP1. Moreover, we show that CVB3 infection also induced G1 arrest, likely due to dysregulating Hsp70, cyclin E, and p27, while knockdown of Hsp70 dramatically inhibited viral replication. Cell cycle arrest at G1 phase facilitated CVB3 infection, since viral replication in the cells synchronized at G1 phase dramatically increased. Taken together, this study demonstrates that the VP1 of CVB3 induces cell cycle arrest at G1 phase through up-regulating Hsp70. Our findings suggest that the capsid protein VP1 of CVB is capable of manipulating cellular activities during viral infection.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Shuoxuan Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Chaorun Dong
- Northern Translational Medicine Research Center, Harbin Medical University, Harbin, China
| | - Xiaoman Wo
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Jian Zhang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Weizhen Xu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xiaofeng Feng
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Cong Qu
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
22
|
Advances in heart regeneration based on cardiomyocyte proliferation and regenerative potential of binucleated cardiomyocytes and polyploidization. Clin Sci (Lond) 2019; 133:1229-1253. [PMID: 31175264 DOI: 10.1042/cs20180560] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
One great achievement in medical practice is the reduction in acute mortality of myocardial infarction due to identifying risk factors, antiplatelet therapy, optimized hospitalization and acute percutaneous coronary intervention. Yet, the prevalence of heart failure is increasing presenting a major socio-economic burden. Thus, there is a great need for novel therapies that can reverse damage inflicted to the heart. In recent years, data have accumulated suggesting that induction of cardiomyocyte proliferation might be a future option for cardiac regeneration. Here, we review the relevant literature since September 2015 concluding that it remains a challenge to verify that a therapy induces indeed cardiomyocyte proliferation. Most importantly, it is unclear that the detected increase in cardiomyocyte cell cycle activity is required for an associated improved function. In addition, we review the literature regarding the evidence that binucleated and polyploid mononucleated cardiomyocytes can divide, and put this in context to other cell types. Our analysis shows that there is significant evidence that binucleated cardiomyocytes can divide. Yet, it remains elusive whether also polyploid mononucleated cardiomyocytes can divide, how efficient proliferation of binucleated cardiomyocytes can be induced, what mechanism regulates cell cycle progression in these cells, and what fate and physiological properties the daughter cells have. In summary, we propose to standardize and independently validate cardiac regeneration studies, encourage the field to study the proliferative potential of binucleated and polyploid mononucleated cardiomyocytes, and to determine whether induction of polyploidization can enhance cardiac function post-injury.
Collapse
|
23
|
Khan K, Makhoul G, Yu B, Schwertani A, Cecere R. The cytoprotective impact of yes-associated protein 1 after ischemia-reperfusion injury in AC16 human cardiomyocytes. Exp Biol Med (Maywood) 2019; 244:802-812. [PMID: 31142144 DOI: 10.1177/1535370219851243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Hippo-signaling pathway is a mechanism implicated in cardiomyocyte cytoprotection and regeneration after a myocardial infarction. Yes-associated protein 1, the main effector protein of this pathway, acts as a co-transcriptional activator to promote cardiomyocyte proliferation and survival. However, the biological mechanisms by which yes-associated protein 1 protects the heart post-MI are currently unknown. Here, we propose that yes-associated protein 1 plays a critical role in cardiomyocyte cytoprotection after simulated ischemia-reperfusion injury. AC16 human cardiomyocytes were infected with lentiviral plasmids containing normal human yes-associated protein 1 and a constitutively active form of YAP, YAP1S127A. Cells were exposed to ischemia-reperfusion injury using a hypoxic chamber. Hippo-signaling characterization after ischemia-reperfusion injury was performed via Western blotting and reverse transcriptase polymerase chain reaction. Cell viability, apoptosis, and cellular hypertrophy were assessed as a measure of cytoprotection. The GSK3β inhibitor CHIR99021 was used to investigate cross-talk between Hippo and Wnt-signaling and their role in cytoprotection after ischemia-reperfusion-injury. Ischemia-reperfusion injury resulted in significant decreased expression of the non-phosphorylated Hippo signaling kinases MST1 and LATS1, along with decreased expression of YAP/TAZ. Overexpression of yes-associated protein 1 improved cellular viability, while reducing hypertrophy and apoptosis via the ATM/ATR DNA damage response pathway. Activation of β-catenin in YAP-infected cardiomyocytes synergistically reduced cellular hypertrophy after ischemia-reperfusion-injury. Our findings indicate that yes-associated protein 1 is cytoprotective in AC16 human cardiomyocytes after ischemia-reperfusion injury, which may be mediated by co-activation of the canonical Wnt/β-catenin pathway. Thus, activation of yes-associated protein 1 may be a novel therapeutic to repair the infarcted myocardium. Impact statement Genetically engineering the cells of the heart after myocardial infarction to display a more regenerative phenotype is a promising therapy for heart failure patients. Here, we support a regenerative role for yes-associated protein 1, the main effector protein of the Hippo signaling pathway, in AC16 human cardiomyocytes as a potential therapeutic gene target for cardiac repair after myocardial infarction.
Collapse
Affiliation(s)
- Kashif Khan
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| | - Georges Makhoul
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| | - Bin Yu
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| | - Adel Schwertani
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| | - Renzo Cecere
- Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec H4AJ1, Canada
| |
Collapse
|
24
|
Abstract
BACKGROUND The adult mammalian heart is incapable of meaningful functional recovery after injury, and thus promoting heart regeneration is 1 of the most important therapeutic targets in cardiovascular medicine. In contrast to the adult mammalian heart, the neonatal mammalian heart is capable of regeneration after various types of injury. Since the first report in 2011, a number of groups have reported their findings on neonatal heart regeneration. The current review provides a comprehensive analysis of heart regeneration studies in neonatal mammals conducted to date, outlines lessons learned, and poses unanswered questions. METHODS We performed a PubMed search using the keywords "neonatal" and "heart" and "regeneration." In addition, we assessed all publications that cited the first neonatal heart regeneration reports: Porrello et al, Science, Feb 2011 for apical resection injury; Porrello et al, PNAS, Dec 2012 for coronary ligation injury; and Mahmoud et al, Nature Methods, Jan 2014 for surgical methodology. Publications were examined for surgical models used, timing of surgery, and postinjury assessment including anatomic, histological, and functional assessment, as well as conclusions drawn. RESULTS We found 30 publications that performed neonatal apical resection, 19 publications that performed neonatal myocardial infarction by coronary artery ligation, and 6 publications that performed cryoinjury using liquid nitrogen-cooled metal probes. Both apical resection and ischemic infarction injury in neonatal mice result in a robust regenerative response, mediated by cardiomyocyte proliferation. On the other hand, several reports have demonstrated that cryoinjury is associated with incomplete heart regeneration in neonatal mice. Not surprisingly, several studies suggest that injury size, as well as surgical and histological techniques, can strongly influence the observed regenerative response and final conclusions. Studies have utilized these neonatal cardiac injury models to identify factors that either inhibit or stimulate heart regeneration. CONCLUSIONS Overall, there is consensus that both apical resection and coronary ligation injuries during the first 2 days of life result in heart regeneration in neonatal mammals, whereas cryoinjury was not associated with a similar regenerative response. This regenerative response is mediated by proliferation of preexisting cardiomyocytes, and is modifiable by injury size and surgical technique, as well as metabolic, immunologic, genetic, and environmental factors.
Collapse
Affiliation(s)
- Nicholas T Lam
- Department of Internal Medicine, Division of Cardiology (N.T.L and H.A.S.)
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology (N.T.L and H.A.S.).,Hamon Center for Regenerative Science and Medicine (H.A.S.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
25
|
Marshall L, Girardot F, Demeneix BA, Coen L. Is adult cardiac regeneration absent in Xenopus laevis yet present in Xenopus tropicalis? Cell Biosci 2018; 8:31. [PMID: 29713454 PMCID: PMC5907698 DOI: 10.1186/s13578-018-0231-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
We recently used an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis, obtaining the result that the adult Xenopus heart is unable to regenerate. At 11 months post-amputation, cellular and biological marks of scarring persisted. We thus concluded that, contrary to urodeles and teleosts, adult anurans share a cardiac injury outcome similar to adult mammals. However, in their work published in this journal on the 13 December 2017, Liao et al. showed that the adult Xenopus tropicalis heart is capable of efficient, almost scar free regeneration, a result at odds with our previous observation. These findings contrast with and challenge the outcome of adult heart repair following injury in Xenopus species. Here we discuss the question of the intrinsic cardiac regenerative properties of an adult heart in anuran amphibians.
Collapse
Affiliation(s)
- Lindsey Marshall
- Evolution des Régulations Endocriniennes, Département Adaptation du vivant, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Fabrice Girardot
- Evolution des Régulations Endocriniennes, Département Adaptation du vivant, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Barbara A Demeneix
- Evolution des Régulations Endocriniennes, Département Adaptation du vivant, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Laurent Coen
- Evolution des Régulations Endocriniennes, Département Adaptation du vivant, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| |
Collapse
|
26
|
Sampaio-Pinto V, Rodrigues SC, Laundos TL, Silva ED, Vasques-Nóvoa F, Silva AC, Cerqueira RJ, Resende TP, Pianca N, Leite-Moreira A, D'Uva G, Thorsteinsdóttir S, Pinto-do-Ó P, Nascimento DS. Neonatal Apex Resection Triggers Cardiomyocyte Proliferation, Neovascularization and Functional Recovery Despite Local Fibrosis. Stem Cell Reports 2018; 10:860-874. [PMID: 29503089 PMCID: PMC5918841 DOI: 10.1016/j.stemcr.2018.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
So far, opposing outcomes have been reported following neonatal apex resection in mice, questioning the validity of this injury model to investigate regenerative mechanisms. We performed a systematic evaluation, up to 180 days after surgery, of the pathophysiological events activated upon apex resection. In response to cardiac injury, we observed increased cardiomyocyte proliferation in remote and apex regions, neovascularization, and local fibrosis. In adulthood, resected hearts remain consistently shorter and display permanent fibrotic tissue deposition in the center of the resection plane, indicating limited apex regrowth. However, thickening of the left ventricle wall, explained by an upsurge in cardiomyocyte proliferation during the initial response to injury, compensated cardiomyocyte loss and supported normal systolic function. Thus, apex resection triggers both regenerative and reparative mechanisms, endorsing this injury model for studies aimed at promoting cardiomyocyte proliferation and/or downplaying fibrosis. Apex resection triggers fibrosis, neovascularization, and cardiomyocyte proliferation Permanent fibrotic deposition is confined to the apex Injured hearts display morphometric alterations but regain functional competence Cardiomyocyte proliferation is sufficient to compensate tissue loss by resection
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sílvia C Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Tiago L Laundos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Elsa D Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Ana C Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Gladstone Institutes, University of California San Francisco, San Francisco 94158, USA
| | - Rui J Cerqueira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Tatiana P Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Nicola Pianca
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy
| | - Adelino Leite-Moreira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Gabriele D'Uva
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy
| | - Sólveig Thorsteinsdóttir
- Departamento de Biologia Animal, cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
27
|
Calderone A. The Biological Role of Nestin (+)-Cells in Physiological and Pathological Cardiovascular Remodeling. Front Cell Dev Biol 2018; 6:15. [PMID: 29492403 PMCID: PMC5817075 DOI: 10.3389/fcell.2018.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
The intermediate filament protein nestin was identified in diverse populations of cells implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells constitutively express nestin and following an ischemic insult migrate to the infarct region and participate in angiogenesis and neurogenesis. A modest number of normal adult ventricular fibroblasts express nestin and the intermediate filament protein is upregulated during the progression of reparative and reactive fibrosis. Nestin depletion attenuates cell cycle re-entry suggesting that increased expression of the intermediate filament protein in ventricular fibroblasts may represent an activated phenotype accelerating the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were identified in the infarcted human heart. The appearance of nestin(+)-ventricular cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response after an ischemic insult may represent a seminal event limiting the appearance of nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry. Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation of the intermediate filament protein may directly contribute to vascular remodeling. This review will highlight the biological role of nestin(+)-cells during physiological and pathological remodeling of the heart and vasculature and discuss the phenotypic advantage attributed to the intermediate filament protein.
Collapse
Affiliation(s)
- Angelino Calderone
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
28
|
Haubner BJ, Schuetz T, Penninger JM. Cardiac regeneration in a newborn: what does this mean for future cardiac repair research? Expert Rev Cardiovasc Ther 2018; 16:155-157. [PMID: 29411653 DOI: 10.1080/14779072.2018.1438268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bernhard J Haubner
- a IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences , Vienna , Austria.,b Department of Internal Medicine III (Cardiology and Angiology) , Medical University of Innsbruck , Innsbruck , Austria
| | - Thomas Schuetz
- a IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences , Vienna , Austria.,b Department of Internal Medicine III (Cardiology and Angiology) , Medical University of Innsbruck , Innsbruck , Austria
| | - Josef M Penninger
- a IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences , Vienna , Austria
| |
Collapse
|
29
|
Aix E, Gallinat A, Flores I. Telomeres and telomerase in heart regeneration. Differentiation 2018; 100:26-30. [PMID: 29453108 DOI: 10.1016/j.diff.2018.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 01/08/2023]
Abstract
Although recent advances have overturned the old view of the human heart as an inert postmitotic organ, it is clear that the adult heart´s capacity to regenerate after an ischemic episode is very limited. Unlike humans, zebrafish and other lower vertebrates vigorously regenerate damaged myocardium after cardiac injury. Understanding how the zebrafish is able to conserve life-long cardiac regeneration capacity while mammals lose it soon after birth is crucial for the development of new treatments for myocardial infarction. Mammals and lower vertebrates differ markedly in their rates of cardiomyocyte proliferation and levels of telomerase activity. Here, we review recent discoveries identifying lack of telomerase activity and concomitant telomere dysfunction as natural barriers to cardiomyocyte proliferation and cardiac regeneration.
Collapse
Affiliation(s)
- Esther Aix
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro 3, Madrid E-28029, Spain
| | - Alex Gallinat
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro 3, Madrid E-28029, Spain
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro 3, Madrid E-28029, Spain.
| |
Collapse
|