1
|
Chen H, She Q, Liu Y, Chen J, Qin Y, Lu C. The peripheral Epac1/p-Cav-1 pathway underlies the disruption of the vascular endothelial barrier following skin/muscle incision and retraction-induced chronic postsurgical pain. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1377. [PMID: 36660643 PMCID: PMC9843368 DOI: 10.21037/atm-22-6069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Background Vascular endothelial barrier disruption is pivotal in the development of acute and chronic pain. Here, we demonstrate a previously unidentified molecular mechanism in which activation of the peripheral Epac1/p-Cav-1 pathway accelerated the disruption of the vascular endothelial barrier, thereby promoting chronic postsurgical pain (CPSP). Methods We established a rat model of CPSP induced by skin/muscle incision and retraction (SMIR). Pain behaviors were assessed by the mechanical withdrawal threshold (MWT) at different times. Local muscle tissues around the incision were isolated to detect the vascular permeability and the expression of Epac1 and Cav-1. They were assessed by western blot and immunofluorescence staining. Results SMIR increased vascular endothelial permeability and the number of macrophages and endothelial cells in the muscle tissues around the incision. The peripheral upregulation of Epac1 was macrophage-derived, whereas that of p-Cav-1 was both macrophage and endothelial cell-derived in the SMIR model. Moreover, the Epac1 agonist 8-pCPT could induce mechanical sensitivity, increase the expression of p-Cav-1, and disrupt vascular endothelial barrier in normal rats. The Epac1 inhibitor CE3F4 attenuated established SMIR-induced mechanical hyperalgesia, the upregulation of p-Cav-1 and vascular endothelial barrier. Finally, we showed that intrathecal injection of Cav-1siRNA relieved SMIR-induced mechanical allodynia, but had no effects of the expression of Epac1. Conclusions Collectively, these results revealed a molecular mechanism for modulating CPSP through the peripheral Epac1/Cav-1 pathway. Importantly, targeting Epac1/Cav-1 signaling might be a potential treatment for CPSP.
Collapse
Affiliation(s)
- Hongsheng Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qing She
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanfang Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Junjie Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yibin Qin
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cui'e Lu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Xiao J, Zhang B, Su Z, Liu Y, Shelite TR, Chang Q, Qiu Y, Bei J, Wang P, Bukreyev A, Soong L, Jin Y, Ksiazek T, Gaitas A, Rossi SL, Zhou J, Laposata M, Saito TB, Gong B. Intracellular receptor EPAC regulates von Willebrand factor secretion from endothelial cells in a PI3K-/eNOS-dependent manner during inflammation. J Biol Chem 2021; 297:101315. [PMID: 34678311 PMCID: PMC8526113 DOI: 10.1016/j.jbc.2021.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ben Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas R Shelite
- Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael Laposata
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
3
|
Balkenhol J, Kaltdorf KV, Mammadova-Bach E, Braun A, Nieswandt B, Dittrich M, Dandekar T. Comparison of the central human and mouse platelet signaling cascade by systems biological analysis. BMC Genomics 2020; 21:897. [PMID: 33353544 PMCID: PMC7756956 DOI: 10.1186/s12864-020-07215-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07215-4.
Collapse
Affiliation(s)
- Johannes Balkenhol
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany
| | - Kristin V Kaltdorf
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany
| | - Elmina Mammadova-Bach
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Würzburg, Germany.,Present address: Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig, Maximilian University of Munich, D-80336, Munich, Germany
| | - Attila Braun
- Member of the German Center for Lung Research (DZL), Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Würzburg, Germany
| | - Marcus Dittrich
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany.,Dept of Genetics, Biocenter, Am Hubland, University of Würzburg, Am Hubland, D 97074, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
4
|
Epac1 Is Crucial for Maintenance of Endothelial Barrier Function through A Mechanism Partly Independent of Rac1. Cells 2020; 9:cells9102170. [PMID: 32992982 PMCID: PMC7601253 DOI: 10.3390/cells9102170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Epac1 (exchange protein activated by cAMP) stabilizes the endothelial barrier, but detailed studies are limited by the side effects of pharmacological Epac1 modulators and transient transfections. Here, we compare the key properties of barriers between endothelial cells derived from wild-type (WT) and Epac1-knockout (KO) mice myocardium. We found that KO cell layers, unlike WT layers, had low and cAMP-insensitive trans-endothelial resistance (TER). They also had fragmented VE-cadherin staining despite having augmented cAMP levels and increased protein expression of Rap1, Rac1, RhoA, and VE-cadherin. The simultaneous direct activation of Rac1 and RhoA by CN04 compensated Epac1 loss, since TER was increased. In KO-cells, inhibition of Rac1 activity had no additional effect on TER, suggesting that other mechanisms compensate the inhibition of the Rac1 function to preserve barrier properties. In summary, Epac1 is crucial for baseline and cAMP-mediated barrier stabilization through mechanisms that are at least partially independent of Rac1.
Collapse
|
5
|
Boccella N, Paolillo R, Perrino C. Epac1 inhibition as a novel cardioprotective strategy: lights and shadows on GRK5 canonical and non-canonical functions. Cardiovasc Res 2020; 115:1684-1686. [PMID: 31304966 DOI: 10.1093/cvr/cvz188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nicola Boccella
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| | - Roberta Paolillo
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| |
Collapse
|
6
|
Laudette M, Coluccia A, Sainte-Marie Y, Solari A, Fazal L, Sicard P, Silvestri R, Mialet-Perez J, Pons S, Ghaleh B, Blondeau JP, Lezoualc'h F. Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovasc Res 2020; 115:1766-1777. [PMID: 30873562 DOI: 10.1093/cvr/cvz076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Recent studies reported that cAMP-binding protein Epac1-deficient mice were protected against various forms of cardiac stress, suggesting that pharmacological inhibition of Epac1 could be beneficial for the treatment of cardiac diseases. To test this assumption, we characterized an Epac1-selective inhibitory compound and investigated its potential cardioprotective properties. METHODS AND RESULTS We used the Epac1-BRET (bioluminescence resonance energy transfer) for searching for non-cyclic nucleotide Epac1 modulators. A thieno[2,3-b]pyridine derivative, designated as AM-001 was identified as a non-competitive inhibitor of Epac1. AM-001 has no antagonist effect on Epac2 or protein kinase A activity. This small molecule prevents the activation of the Epac1 downstream effector Rap1 in cultured cells, in response to the Epac1 preferential agonist, 8-CPT-AM. In addition, we found that AM-001 inhibited Epac1-dependent deleterious effects such as cardiomyocyte hypertrophy and death. Importantly, AM-001-mediated inhibition of Epac1 reduces infarct size after mouse myocardial ischaemia/reperfusion injury. Finally, AM-001 attenuates cardiac hypertrophy, inflammation and fibrosis, and improves cardiac function during chronic β-adrenergic receptor activation with isoprenaline (ISO) in mice. At the molecular level, ISO increased Epac1-G protein-coupled receptor kinase 5 (GRK5) interaction and induced GRK5 nuclear import and histone deacetylase type 5 (HDAC5) nuclear export to promote the activity of the prohypertrophic transcription factor, myocyte enhancer factor 2 (MEF2). Inversely, AM-001 prevented the non-canonical action of GRK5 on HDAC5 cytoplasmic shuttle to down-regulate MEF2 transcriptional activity. CONCLUSION Our study represents a 'proof-of-concept' for the therapeutic effectiveness of inhibiting Epac1 activity in cardiac disease using small-molecule pharmacotherapy.
Collapse
Affiliation(s)
- Marion Laudette
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - Yannis Sainte-Marie
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Andrea Solari
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Loubina Fazal
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Pierre Sicard
- INSERM, CNRS, Université de Montpellier, PHYMEDEXP, IPAM, Montpellier, France
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - Jeanne Mialet-Perez
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | | | - Bijan Ghaleh
- INSERM, U955, Equipe 03, F-94000 Créteil, France
| | - Jean-Paul Blondeau
- Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry Cedex, France
| | - Frank Lezoualc'h
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Sivertsen Åsrud K, Bjørnstad R, Kopperud R, Pedersen L, Hoeven B, Karlsen TV, Brekke Rygh C, Curry F, Bakke M, Reed RK, Tenstad O, Døskeland SO. Epac1 null mice have nephrogenic diabetes insipidus with deficient corticopapillary osmotic gradient and weaker collecting duct tight junctions. Acta Physiol (Oxf) 2020; 229:e13442. [PMID: 31943825 DOI: 10.1111/apha.13442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 01/03/2023]
Abstract
AIM The cAMP-mediator Epac1 (RapGef3) has high renal expression. Preliminary observations revealed increased diuresis in Epac1-/- mice. We hypothesized that Epac1 could restrict diuresis by promoting transcellular collecting duct (CD) water and urea transport or by stabilizing CD paracellular junctions to reduce osmolyte loss from the renal papillary interstitium. METHODS In Epac1-/- and Wt C57BL/6J mice, renal papillae, dissected from snap-frozen kidneys, were assayed for the content of key osmolytes. Cell junctions were analysed by transmission electron microscopy. Urea transport integrity was evaluated by urea loading with 40% protein diet, endogenous vasopressin production was manipulated by intragastric water loading and moderate dehydration and vasopressin type 2 receptors were stimulated selectively by i.p.-injected desmopressin (dDAVP). Glomerular filtration rate (GFR) was estimated as [14 C]inulin clearance. The glomerular filtration barrier was evaluated by urinary albumin excretion and microvascular leakage by the renal content of time-spaced intravenously injected 125 I- and 131 I-labelled albumin. RESULTS Epac1-/- mice had increased diuresis and increased free water clearance under antidiuretic conditions. They had shorter and less dense CD tight junction (TJs) and attenuated corticomedullary osmotic gradient. Epac1-/- mice had no increased protein diet-induced urea-dependent osmotic diuresis, and expressed Wt levels of aquaporin-2 (AQP-2) and urea transporter A1/3 (UT-A1/3). Epac1-/- mice had no urinary albumin leakage and unaltered renal microvascular albumin extravasation. Their GFR was moderately increased, unless when treated with furosemide. CONCLUSION Our results conform to the hypothesis that Epac1-dependent mechanisms protect against diabetes insipidus by maintaining renal papillary osmolarity and the integrity of CD TJs.
Collapse
Affiliation(s)
| | - Ronja Bjørnstad
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
| | - Reidun Kopperud
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
| | - Line Pedersen
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
| | - Barbara Hoeven
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
| | - Tine V. Karlsen
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
| | - Cecilie Brekke Rygh
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
- Faculty of Health and Social Sciences Western Norway University of Applied Sciences Bergen Norway
| | - Fitz‐Roy Curry
- Department of Physiology and Membrane Biology School of Medicine University of California Davis CA USA
| | - Marit Bakke
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
| | - Rolf K. Reed
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
- Centre for Cancer Biomarkers University of Bergen Bergen Norway
| | - Olav Tenstad
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
| | - Stein O. Døskeland
- Department of Biomedicine Faculty of Medicine University of Bergen Bergen Norway
| |
Collapse
|
8
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
9
|
Sivertsen Åsrud K, Pedersen L, Aesoy R, Muwonge H, Aasebø E, Nitschke Pettersen IK, Herfindal L, Dobie R, Jenkins S, Berge RK, Henderson NC, Selheim F, Døskeland SO, Bakke M. Mice depleted for Exchange Proteins Directly Activated by cAMP (Epac) exhibit irregular liver regeneration in response to partial hepatectomy. Sci Rep 2019; 9:13789. [PMID: 31551444 PMCID: PMC6760117 DOI: 10.1038/s41598-019-50219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
The exchange proteins directly activated by cAMP 1 and 2 (Epac1 and Epac2) are expressed in a cell specific manner in the liver, but their biological functions in this tissue are poorly understood. The current study was undertaken to begin to determine the potential roles of Epac1 and Epac2 in liver physiology and disease. Male C57BL/6J mice in which expression of Epac1 and/or Epac2 are deleted, were subjected to partial hepatectomy and the regenerating liver was analyzed with regard to lipid accumulation, cell replication and protein expression. In response to partial hepatectomy, deletion of Epac1 and/or Epac2 led to increased hepatocyte proliferation 36 h post surgery, and the transient steatosis observed in wild type mice was virtually absent in mice lacking both Epac1 and Epac2. The expression of the protein cytochrome P4504a14, which is implicated in hepatic steatosis and fibrosis, was substantially reduced upon deletion of Epac1/2, while a number of factors involved in lipid metabolism were significantly decreased. Moreover, the number of Küpffer cells was affected, and Epac2 expression was increased in the liver of wild type mice in response to partial hepatectomy, further supporting a role for these proteins in liver function. This study establishes hepatic phenotypic abnormalities in mice deleted for Epac1/2 for the first time, and introduces Epac1/2 as regulators of hepatocyte proliferation and lipid accumulation in the regenerative process.
Collapse
Affiliation(s)
| | - Line Pedersen
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Reidun Aesoy
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Haruna Muwonge
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Biomedicine, The Proteomic Unit at The University of Bergen (PROBE), University of Bergen, 5009, Bergen, Norway
| | | | - Lars Herfindal
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Stephen Jenkins
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rolf Kristian Berge
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Neil Cowan Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Frode Selheim
- Department of Biomedicine, The University of Bergen, Bergen, Norway
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | | | - Marit Bakke
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
|
11
|
Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. Int J Mol Sci 2018; 19:ijms19123720. [PMID: 30467295 PMCID: PMC6320976 DOI: 10.3390/ijms19123720] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of metabolic disorders, including diabetes, has elevated exponentially during the last decades and enhanced the risk of a variety of complications, such as diabetes and cardiovascular diseases. In the present review, we have highlighted the new insights on the complex relationships between diet-induced modulation of gut microbiota and metabolic disorders, including diabetes. Literature from various library databases and electronic searches (ScienceDirect, PubMed, and Google Scholar) were randomly collected. There exists a complex relationship between diet and gut microbiota, which alters the energy balance, health impacts, and autoimmunity, further causes inflammation and metabolic dysfunction, including diabetes. Faecalibacterium prausnitzii is a butyrate-producing bacterium, which plays a vital role in diabetes. Transplantation of F. prausnitzii has been used as an intervention strategy to treat dysbiosis of the gut’s microbial community that is linked to the inflammation, which precedes autoimmune disease and diabetes. The review focuses on literature that highlights the benefits of the microbiota especially, the abundant of F. prausnitzii in protecting the gut microbiota pattern and its therapeutic potential against inflammation and diabetes.
Collapse
|
12
|
Deletion of exchange proteins directly activated by cAMP (Epac) causes defects in hippocampal signaling in female mice. PLoS One 2018; 13:e0200935. [PMID: 30048476 PMCID: PMC6062027 DOI: 10.1371/journal.pone.0200935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Previous studies demonstrate essential roles for the exchange proteins directly activated by cAMP 1 and 2 (Epac1 and Epac2; here collectively referred to as Epac) in the brain. In the hippocampus, Epac contributes to the control of neuronal growth and differentiation and has been implicated in memory and learning as well as in anxiety and depression. In the present study we address the hypothesis that Epac affects hippocampal cellular responses to acute restraint stress. Stress causes activation of the hypothalamus-pituitary-adrenal (HPA)-axis, and glucocorticoid receptor (GR) signaling is essential for proper feedback regulation of the stress response, both in the brain and along the HPA axis. In the hippocampus, GR expression is regulated by cAMP and the brain enriched micro RNA miR-124. Epac has been associated with miR-124 expression in hippocampal neurons, but not in regulation of GR. We report that hippocampal expression of Epac1 and Epac2 increased in response to acute stress in female wild type mice. In female mice genetically deleted for Epac, nuclear translocation of GR in response to restraint stress was significantly delayed, and moreover, miR-124 expression was decreased in these mice. Male mice lacking Epac also showed abnormalities in miR-124 expression, but the phenotype was less profound than in females. Serum corticosterone levels were slightly altered immediately after stress in both male and female mice deleted for Epac. The presented data indicate that Epac1 and Epac2 are involved in controlling cellular responses to acute stress in the mouse hippocampus and provide novel insights into the underlying transcriptional and signaling networks. Interestingly, we observe sex specific differences when Epac is deleted. As the incidence and prevalence of stress-related diseases are higher in women than in men, the Epac knockout models might serve as genetic tools to further elucidate the cellular mechanisms underlying differences between male and female with regard to regulation of stress.
Collapse
|
13
|
Yang W, Mei FC, Cheng X. EPAC1 regulates endothelial annexin A2 cell surface translocation and plasminogen activation. FASEB J 2018; 32:2212-2222. [PMID: 29217666 DOI: 10.1096/fj.201701027r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Annexins, a family of highly conserved calcium- and phospholipid-binding proteins, play important roles in a wide range of physiologic functions. Among the 12 known annexins in humans, annexin A2 (AnxA2) is one of the most extensively studied and has been implicated in various human diseases. AnxA2 can exist as a monomer or a heterotetrameric complex with S100A10 (P11) and plays a critical role in many cellular processes, including exocytosis, endocytosis, and membrane organization. At the endothelial cell surface, the (AnxA2⋅P11)2 tetramer-acting as a coreceptor for plasminogen and tissue plasminogen activator (tPA)-accelerates tPA-dependent activation of the fibrinolytic protease, plasmin, the enzyme that is responsible for thrombus dissolution and the degradation of fibrin. This study demonstrates that EPAC1 (exchange proteins directly activated by cAMP isoform 1) interacts with AnxA2 and regulates its biologic functions by modulating its membrane translocation in endothelial cells. By using genetic and pharmacologic approaches, we demonstrate that EPAC1-acting via the PLCε-PKC pathway-inhibits AnxA2 surface translocation and plasminogen activation. These results suggest that EPAC1 plays a role in the regulation of fibrinolysis in endothelial cells and may represent a novel therapeutic target for disorders of fibrinolysis.-Yang, W., Mei, F. C., Cheng, X. EPAC1 regulates endothelial annexin A2 cell surface translocation and plasminogen activation.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|