1
|
Kobayashi S, Hahn Y, Silverstein B, Singh M, Fleitz A, Van J, Chen H, Liang Q. Lysosomal dysfunction in diabetic cardiomyopathy. FRONTIERS IN AGING 2023; 4:1113200. [PMID: 36742461 PMCID: PMC9894896 DOI: 10.3389/fragi.2023.1113200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Diabetes is a major risk factor for a variety of cardiovascular complications, while diabetic cardiomyopathy, a disease specific to the myocardium independent of vascular lesions, is an important causative factor for increased risk of heart failure and mortality in diabetic populations. Lysosomes have long been recognized as intracellular trash bags and recycling facilities. However, recent studies have revealed that lysosomes are sophisticated signaling hubs that play remarkably diverse roles in adapting cell metabolism to an ever-changing environment. Despite advances in our understanding of the physiological roles of lysosomes, the events leading to lysosomal dysfunction and how they relate to the overall pathophysiology of the diabetic heart remain unclear and are under intense investigation. In this review, we summarize recent advances regarding lysosomal injury and its roles in diabetic cardiomyopathy.
Collapse
|
2
|
Chai W, Hao W, Liu J, Han Z, Chang S, Cheng L, Sun M, Yan G, Liu Z, Liu Y, Zhang G, Xing L, Chen H, Liu P. Visualizing Cathepsin K-Cre Expression at the Single-Cell Level with GFP Reporters. JBMR Plus 2022; 7:e10706. [PMID: 36699636 PMCID: PMC9850439 DOI: 10.1002/jbm4.10706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The Cre/lox system is a fundamental tool for functional genomic studies, and a number of Cre lines have been generated to target genes of interest spatially and temporally in defined cells or tissues; this approach has greatly expanded our knowledge of gene functions. However, the limitations of this system have recently been recognized, and we must address the challenge of so-called nonspecific/off-target effects when a Cre line is utilized to investigate a gene of interest. For example, cathepsin K (Ctsk) has been used as a specific osteoclast marker, and Cre driven by its promoter is widely utilized for osteoclast investigations. However, Ctsk-Cre expression has recently been identified in other cell types, such as osteocytes, periosteal stem cells, and tenocytes. To better understand Ctsk-Cre expression and ensure appropriate use of this Cre line, we performed a comprehensive analysis of Ctsk-Cre expression at the single-cell level in major organs and tissues using two green fluorescent protein (GFP) reporters (ROSA nT-nG and ROSA tdT) and a tissue clearing technique in young and aging mice. The expression profile was further verified by immunofluorescence staining and droplet digital RT-PCR. The results demonstrate that Ctsk-Cre is expressed not only in osteoclasts but also at various levels in osteoblast lineage cells and other major organs/tissues, particularly in the brain, kidney, pancreas, and blood vessels. Furthermore, Ctsk-Cre expression increases markedly in the bone marrow, skeletal muscle, and intervertebral discs in aging mice. These data will be valuable for accurately interpreting data obtained from in vivo studies using Ctsk-Cre mice to avoid potentially misleading conclusions. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wenhuan Chai
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Weiwei Hao
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Jintao Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Zhenglin Han
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Shiyu Chang
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Liben Cheng
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Mingxin Sun
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Guofang Yan
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Zemin Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Yin Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Guodong Zhang
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Li Xing
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Hongqian Chen
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Peng Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
3
|
Mijanović O, Jakovleva A, Branković A, Zdravkova K, Pualic M, Belozerskaya TA, Nikitkina AI, Parodi A, Zamyatnin AA. Cathepsin K in Pathological Conditions and New Therapeutic and Diagnostic Perspectives. Int J Mol Sci 2022; 23:ijms232213762. [PMID: 36430239 PMCID: PMC9698382 DOI: 10.3390/ijms232213762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cathepsin K (CatK) is a part of the family of cysteine proteases involved in many important processes, including the degradation activity of collagen 1 and elastin in bone resorption. Changes in levels of CatK are associated with various pathological conditions, primarily related to bone and cartilage degradation, such as pycnodysostosis (associated with CatK deficiency), osteoporosis, and osteoarthritis (associated with CatK overexpression). Recently, the increased secretion of CatK is being highly correlated to vascular inflammation, hypersensitivity pneumonitis, Wegener granulomatosis, berylliosis, tuberculosis, as well as with tumor progression. Due to the wide spectrum of diseases in which CatK is involved, the design and validation of active site-specific inhibitors has been a subject of keen interest in pharmaceutical companies in recent decades. In this review, we summarized the molecular background of CatK and its involvement in various diseases, as well as its clinical significance for diagnosis and therapy.
Collapse
Affiliation(s)
- Olja Mijanović
- Dia-M, LCC, 7 b.3 Magadanskaya Str., 129345 Moscow, Russia
- The Human Pathology Department, Sechenov First Moscow State University, 119991 Moscow, Russia
| | | | - Ana Branković
- Department of Forensics Engineering, University of Criminal Investigation and Police Studies, Cara Dusana 196, 11000 Belgrade, Serbia
| | - Kristina Zdravkova
- AD Alkaloid Skopje, Boulevar Alexander the Great 12, 1000 Skopje, North Macedonia
| | - Milena Pualic
- Institute Cardiovascular Diseases Dedinje, Heroja Milana Tepica 1, 11000 Belgrade, Serbia
| | - Tatiana A. Belozerskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Angelina I. Nikitkina
- ArhiMed Clinique for New Medical Technologies, Vavilova St. 68/2, 119261 Moscow, Russia
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
- Correspondence: ; Tel.: +7-9261180220
| |
Collapse
|
4
|
Paracha M, Thakar A, Darling RA, Wulff SS, Rule DC, Nair S, Brown TE. Role of cathepsin K in the expression of mechanical hypersensitivity following intra-plantar inflammation. Sci Rep 2022; 12:7108. [PMID: 35501334 PMCID: PMC9061763 DOI: 10.1038/s41598-022-11043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022] Open
Abstract
Persistent/chronic inflammatory pain involves multiple pathophysiological mechanisms and is far more complex than acute/momentary pain. Current therapeutics for chronic inflammatory pain are often not effective because the etiology responsible for the pain is not addressed by traditional pharmacological treatments. Cathepsin K is a cysteine protease that has mostly been studied in the context of bone and joint disorders. Previous work by others has shown that inhibition of cathepsin K activity reduces osteoarthritis-associated nociception in joints. However, the role of cathepsin K in cutaneous inflammation is understudied. We assessed the effectiveness of genetic deletion or pharmacological inhibition of cathepsin K in male mice on the expression of nocifensive behaviors after formalin injection or mechanical and thermal hypersensitivity after injection of complete Freund’s adjuvant (CFA) into the mouse hind paw. Our data demonstrate that cathepsin K knockout mice (Ctsk−/−) have a reduction in nocifensive behaviors in the formalin test. In addition, Ctsk−/− do not develop mechanical hypersensitivity after CFA injection for up to 7 days. Moreover, we found that inhibition of cathepsin K reduced mechanical hypersensitivity after CFA injection and mRNA levels, protein levels, and cathepsin K activity levels were elevated after CFA injection. Based upon our data, cathepsin K is indicated to play a role in the expression of chemically-induced cutaneous hypersensitivity, as Ctsk−/− mice do not develop mechanical hypersensitivity and show a reduction in nocifensive behaviors. Further research is needed to determine whether attenuating cathepsin K activity may generate a clinically relevant therapeutic.
Collapse
|
5
|
Meng X, Huang Z, Inoue A, Wang H, Wan Y, Yue X, Xu S, Jin X, Shi GP, Kuzuya M, Cheng XW. Cathepsin K activity controls cachexia-induced muscle atrophy via the modulation of IRS1 ubiquitination. J Cachexia Sarcopenia Muscle 2022; 13:1197-1209. [PMID: 35098692 PMCID: PMC8978007 DOI: 10.1002/jcsm.12919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cachexia is a complicated metabolic disorder that is characterize by progressive atrophy of skeletal muscle. Cathepsin K (CTSK) is a widely expressed cysteine protease that has garnered attention because of its enzymatic and non-enzymatic functions in signalling in various pathological conditions. Here, we examined whether CTSK participates in cancer-induced skeletal muscle loss and dysfunction, focusing on protein metabolic imbalance. METHODS Male 9-week-old wild-type (CTSK+/+ , n = 10) and CTSK-knockout (CTSK-/- , n = 10) mice were injected subcutaneously with Lewis lung carcinoma cells (LLC; 5 × 105 ) or saline, respectively. The mice were then subjected to muscle mass and muscle function measurements. HE staining, immunostaining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting were used to explore the CTSK expression and IRS1/Akt pathway in the gastrocnemius muscle at various time points. In vitro measurements included CTSK expression, IRS1/Akt pathway-related target molecule expressions, and the diameter of C2C12 myotubes with or without LLC-conditioned medium (LCM). An IRS1 ubiquitin assay, and truncation, co-immunoprecipitation, and co-localization experiments were also performed. RESULTS CTSK+/+ cachectic animals exhibited loss of skeletal muscle mass (muscle weight loss of 15%, n = 10, P < 0.01), muscle dysfunction (grip strength loss > 15%, n = 10, P < 0.01), and fibre area (average area reduction > 30%, n = 5, P < 0.01). Compared with that of non-cachectic CTSK+/+ mice, the skeletal muscle of cachectic CTSK+/+ mice exhibited greater degradation of insulin receptor substrate 1 (IRS1, P < 0.01). In this setting, cachectic muscles exhibited decreases in the phosphorylation levels of protein kinase B (Akt308 , P < 0.01; Akt473 , P < 0.05) and anabolic-related proteins (the mammalian target of rapamycin, P < 0.01) and increased levels of catabolism-related proteins (muscle RING-finger protein-1, P < 0.01; MAFbx1, P < 0.01) in CTSK+/+ mice (n = 3). Although there was no difference in LLC tumour growth (n = 10, P = 0.44), CTSK deletion mitigated the IRS1 degradation, loss of the skeletal muscle mass (n = 10, P < 0.01), and dysfunction (n = 10, P < 0.01). In vitro, CTSK silencing prevented the IRS1 ubiquitination and loss of the myotube myosin heavy chain content (P < 0.01) induced by LCM, and these changes were accelerated by CTSK overexpression even without LCM. Immunoprecipitation showed that CTSK selectively acted on IRS1 in the region of amino acids 268 to 574. The results of co-transfection of IRS1-N-FLAG or IRS1-C-FLAG with CTSK suggested that CTSK selectively cleaves IRS1 and causes ubiquitination-related degradation of IRS1. CONCLUSIONS These results demonstrate that CTSK plays a novel role in IRS1 ubiquitination in LLC-induced muscle wasting, and suggest that CTSK could be an effective therapeutic target for cancer-related cachexia.
Collapse
Affiliation(s)
- Xiangkun Meng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Zhe Huang
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China.,Department of Human Cord Stem Cell Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hailong Wang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ying Wan
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xueling Yue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shengnan Xu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xueying Jin
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China.,Department of Human Cord Stem Cell Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Chen Y, Yang J, Wang Y, Shen W, Liu J, Yuan M, Hao X, Zhong L, Guo R. Identification and Analysis of Hub Genes in Diabetic Cardiomyopathy: Potential Role of Cytochrome P450 1A1 in Mitochondrial Metabolism and STZ-Induced Myocardial Dysfunction. Front Cardiovasc Med 2022; 9:835244. [PMID: 35387435 PMCID: PMC8977650 DOI: 10.3389/fcvm.2022.835244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a primary cause of death in diabetic patients; however, its molecular mechanism is not yet clear, and there is no uniform standard for diagnosis. The aim of this study is to discover the pathogenesis and potential therapeutic targets of DCM through screening and analysis of differentially expressed genes (DEGs) in heart ventricles of DCM, and to testify the role of key hub genes in DCM-induced myocardial dysfunction. Datasets GSE4745 and GSE6880 were downloaded from the GEO database. The difference analysis, visual analysis, cluster analysis and enrichment analysis were performed by using R language, python scripts and bioinformatics software followed by the construction of protein-protein interaction (PPI) network to obtain hub genes. The DCM models were established by streptozocin (STZ) injection to the male mice. The cardiac function and the expressions of hub genes were examined by using echocardiography and real-time quantitative poly-merase chain reaction (RT-qPCR), followed by multiple statistical analyses. Bioinformatic results indicate that mitochondrial dysfunction, disturbed lipid metabolism and decreased collagen synthesis are the main causes of the DCM development. In particular, the hub gene Cyp1a1 that encodes Cytochrome P450 1A1 (CYP4501A1) enzyme has the highest connectivity in the interaction network, and is associated with mitochondrial homeostasis and energy metabolism. It plays a critical role in the oxidation of endogenous or exogenous substrates. Our RT-qPCR results confirmed that ventricular Cyp1a1 mRNA level was nearly 12-fold upregulated in DCM model compared to normal control, which was correlated with abnormal cardiac function in diabetic individuals. CYP4501A1 protein expression in mitochondria was also increased in diabetic hearts. However, we found no significant changes in collagen expressions in cardiac ventricles of mice with DCM. This study provided compact data support for understanding the pathogenesis of DCM. CYP4501A1 might be considered as a potential candidate targeting for DCM therapy. Follow-up animal and clinical verifications need to be further explored.
Collapse
Affiliation(s)
- Yinliang Chen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jinbao Yang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ying Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Weike Shen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jinlin Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Meng Yuan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Xiaoyu Hao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
- *Correspondence: Rui Guo
| |
Collapse
|
7
|
Zhao M, Lian A, Zhong L, Guo R. The regulatory mechanism between lysosomes and mitochondria in the aetiology of cardiovascular diseases. Acta Physiol (Oxf) 2022; 234:e13757. [PMID: 34978753 DOI: 10.1111/apha.13757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
Coordinated action among various organelles maintains cellular functions. For instance, mitochondria and lysosomes are the main organelles contributing to cellular metabolism and provide energy for cardiomyocyte contraction. They also provide essential signalling platforms in the cell that regulate many key processes such as autophagy, apoptosis, oxidative stress, inflammation and cell death. Often, abnormalities in mitochondrial or lysosomal structures and functions bring about cardiovascular diseases (CVDs). Although the communication between mitochondria and lysosomes throughout the cardiovascular system is intensely studied, the regulatory mechanisms have not been completely understood. Thus, we summarize the most recent studies related to mitochondria and lysosomes' role in CVDs and their potential connections and communications under cardiac pathophysiological conditions. Further, we discuss limitations and future perspectives regarding diagnosis, therapeutic strategies and drug discovery in CVDs.
Collapse
Affiliation(s)
- Mengxue Zhao
- College of Life Sciences Institute of Life Science and Green Development Hebei University Baoding China
| | - Andrew Lian
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona California USA
| | - Li Zhong
- College of Life Sciences Institute of Life Science and Green Development Hebei University Baoding China
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona California USA
| | - Rui Guo
- College of Life Sciences Institute of Life Science and Green Development Hebei University Baoding China
- The Key Laboratory of Zoological Systematics and Application College of Life Sciences Hebei University Baoding China
| |
Collapse
|
8
|
Peng L, Zhu M, Huo S, Shi W, Jiang T, Peng D, Wang M, Jiang Y, Guo J, Men L, Huang B, Wang Q, Lv J, Lin L, Li S. Myocardial protection of S-nitroso-L-cysteine in diabetic cardiomyopathy mice. Front Endocrinol (Lausanne) 2022; 13:1011383. [PMID: 36313766 PMCID: PMC9602402 DOI: 10.3389/fendo.2022.1011383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe complication of diabetes mellitus that is characterized by aberrant myocardial structure and function and is the primary cause of heart failure and death in diabetic patients. Endothelial dysfunction plays an essential role in diabetes and is associated with an increased risk of cardiovascular events, but its role in DCM is unclear. Previously, we showed that S-nitroso-L-cysteine(CSNO), an endogenous S-nitrosothiol derived from eNOS, inhibited the activity of protein tyrosine phosphatase 1B (PTP1B), a critical negative modulator of insulin signaling. In this study, we reported that CSNO treatment induced cellular insulin-dependent and insulin-independent glucose uptake. In addition, CSNO activated insulin signaling pathway and promoted GLUT4 membrane translocation. CSNO protected cardiomyocytes against high glucose-induced injury by ameliorating excessive autophagy activation, mitochondrial impairment and oxidative stress. Furthermore, nebulized CSNO improved cardiac function and myocardial fibrosis in diabetic mice. These results suggested a potential site for endothelial modulation of insulin sensitivity and energy metabolism in the development of DCM. Data from these studies will not only help us understand the mechanisms of DCM, but also provide new therapeutic options for treatment.
Collapse
Affiliation(s)
- Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Sheng Li, ;
| |
Collapse
|
9
|
Aykac I, Podesser BK, Kiss A. Reverse remodelling in diabetic cardiomyopathy: the role of extracellular matrix. Minerva Cardiol Angiol 2021; 70:385-392. [PMID: 34713679 DOI: 10.23736/s2724-5683.21.05794-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetic patients are prone to suffer from cardiovascular disease, specifically from ischemic heart disease and diabetic cardiomyopathy, which have a huge impact on morbidity and mortality worldwide. Cardiac fibrosis due to alteration of the extracellular matrix (ECM) remodelling is often observed in diabetes and myocardial fibrosis is an important part of cardiac remodeling that leads to heart failure and death. At single-cell level, the ECM govern, metabolism, motility, orientation and proliferation. However, in pathological condition such as diabetes, changes in ECM lead to fibrosis and subsequently cardiac stiffness and cardiomyocytes dysfunction. Anti-diabetic drugs, particularly sodium-glucose cotransporter-2 (SGLT2) inhibitors have anti-fibrotic effects, and may promote ECM reverse remodelling. In this mini-review, the mechanisms and the role of ECM remodelling and reverse remodelling as a potential therapeutic targets for diabetic cardiomyopathy are discussed.
Collapse
Affiliation(s)
- Ibrahim Aykac
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria -
| |
Collapse
|
10
|
O'Toole D, Zaeri AAI, Nicklin SA, French AT, Loughrey CM, Martin TP. Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cell Signal 2020; 76:109770. [PMID: 32891693 DOI: 10.1016/j.cellsig.2020.109770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Adverse cardiac remodelling clinically manifests as deleterious changes to heart architecture (size, mass and geometry) and function. These changes, which include alterations to ventricular wall thickness, chamber dilation and poor contractility, are important because they progressively drive patients with cardiac disease towards heart failure and are associated with poor prognosis. Cysteine cathepsins contribute to key signalling pathways involved in adverse cardiac remodelling including synthesis and degradation of the cardiac extracellular matrix (ECM), cardiomyocyte hypertrophy, impaired cardiomyocyte contractility and apoptosis. In this review, we highlight the role of cathepsins in these signalling pathways as well as their translational potential as therapeutic targets in cardiac disease.
Collapse
Affiliation(s)
- Dylan O'Toole
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Ali Abdullah I Zaeri
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Anne T French
- Clinical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies, Saint Kitts and Nevis
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| |
Collapse
|
11
|
Miotto PM, Petrick HL, Holloway GP. Acute insulin deprivation results in altered mitochondrial substrate sensitivity conducive to greater fatty acid transport. Am J Physiol Endocrinol Metab 2020; 319:E345-E353. [PMID: 32543943 PMCID: PMC7473910 DOI: 10.1152/ajpendo.00495.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 and type 2 diabetes are both tightly associated with impaired glucose control. Although both pathologies stem from different mechanisms, a reduction in insulin action coincides with drastic metabolic dysfunction in skeletal muscle and metabolic inflexibility. However, the underlying explanation for this response remains poorly understood, particularly since it is difficult to distinguish the role of attenuated insulin action from the detrimental effects of reactive lipid accumulation, which impairs mitochondrial function and promotes reactive oxygen species (ROS) emission. We therefore utilized streptozotocin to examine the effects of acute insulin deprivation, in the absence of a high-lipid/nutrient excess environment, on the regulation of mitochondrial substrate sensitivity and ROS emission. The ablation of insulin resulted in reductions in absolute mitochondrial oxidative capacity and ADP-supported respiration and reduced the ability for malonyl-CoA to inhibit carnitine palmitoyltransferase I (CPT-I) and suppress fatty acid-supported respiration. These bioenergetic responses coincided with increased mitochondrial-derived H2O2 emission and lipid transporter content, independent of major mitochondrial substrate transporter proteins and enzymes involved in fatty acid oxidation. Together, these data suggest that attenuated/ablated insulin signaling does not affect mitochondrial ADP sensitivity, whereas the increased reliance on fatty acid oxidation in situations where insulin action is reduced may occur as a result of altered regulation of mitochondrial fatty acid transport through CPT-I.
Collapse
Affiliation(s)
- Paula M Miotto
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Heather L Petrick
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G. Cathepsin K: The Action in and Beyond Bone. Front Cell Dev Biol 2020; 8:433. [PMID: 32582709 PMCID: PMC7287012 DOI: 10.3389/fcell.2020.00433] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Cathepsin K (CatK) is one of the most potent proteases in lysosomal cysteine proteases family, of which main function is to mediate bone resorption. Currently, CatK is among the most attractive targets for anti-osteoporosis drug development. Although many pharmaceutical companies are working on the development of selective inhibitors for CatK, there is no FDA approved drug till now. Odanacatib (ODN) developed by Merck & Co. is the only CatK inhibitor candidate which demonstrated high therapeutic efficacy in patients with postmenopausal osteoporosis in Phase III clinical trials. Unfortunately, the development of ODN was finally terminated due to the cardio-cerebrovascular adverse effects. Therefore, it arouses concerns on the undesirable CatK inhibition in non-bone sites. It is known that CatK has far-reaching actions throughout various organs besides bone. Many studies have also demonstrated the involvement of CatK in various diseases beyond the musculoskeletal system. This review not only summarized the functional roles of CatK in bone and beyond bone, but also discussed the potential relevance of the CatK action beyond bone to the adverse effects of inhibiting CatK in non-bone sites.
Collapse
Affiliation(s)
- Rongchen Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Jin Liu,
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- Ge Zhang,
| |
Collapse
|
14
|
Lin HH, Chen SJ, Shen MR, Huang YT, Hsieh HP, Lin SY, Lin CC, Chang WSW, Chang JY. Lysosomal cysteine protease cathepsin S is involved in cancer cell motility by regulating store-operated Ca2+ entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118517. [DOI: 10.1016/j.bbamcr.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
|
15
|
Yuan L, Zou C, Ge W, Liu Y, Hu B, Wang J, Lin B, Li Y, Ma E. A novel cathepsin L inhibitor prevents the progression of idiopathic pulmonary fibrosis. Bioorg Chem 2019; 94:103417. [PMID: 31744600 DOI: 10.1016/j.bioorg.2019.103417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023]
Abstract
In previous work, the target of asperphenamate as a natural product was successfully determined as cathepsin by the natural product consensus pharmacophore strategy. In order to develop accurate SAR (structure-activity relationship) of asperphenamate-type cathepsin inhibitor, we chose several novel analogs with heterocyclic moiety to perform further study. The molecular simulation showed that 4-pyridyl derivative 3 with the greatest cathepsin inhibitory activity presented new interaction modes with protein utilizing its B-ring moiety. And then molecular dynamics (MD) simulation further revealed that 3 and cathepsin kept stable interaction in the binding site, which validated the molecular docking results. In view that cathepsins play an important role in fibrosis and some cathepsin inhibitors display the therapeutic ability for fibrosis, we investigated the anti-fibrotic effect of 3in vitro and in vivo. The results indicated that 3 displayed the strongest inhibitory effect on the formation of α-SMA and collagen I as the protein markers of fibrosis among all tested derivatives. Further in vivo assay confirmed that 3 indeed showed significant inhibitory ability against pulmonary fibrosis by the method of H&E and Masson staining as well as immunohistochemical staining for characteristic α-SMA proteins.
Collapse
Affiliation(s)
- Lei Yuan
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China, Benxi 117000, PR China
| | - Chunyang Zou
- Department of Pharmacy, Liaoning Vocational College of Medicine, Shenyang 110101, PR China
| | - Wentao Ge
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China, Benxi 117000, PR China
| | - Yutong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China, Benxi 117000, PR China
| | - Yanchun Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Enlong Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
16
|
Dheer D, Nicolas J, Shankar R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv Drug Deliv Rev 2019; 151-152:130-151. [PMID: 30690054 DOI: 10.1016/j.addr.2019.01.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Cathepsins are an important category of enzymes that have attracted great attention for the delivery of drugs to improve the therapeutic outcome of a broad range of nanoscale drug delivery systems. These proteases can be utilized for instance through actuation of polymer-drug conjugates (e.g., triggering the drug release) to bypass limitations of many drug candidates. A substantial amount of work has been witnessed in the design and the evaluation of Cathepsin-sensitive drug delivery systems, especially based on the tetra-peptide sequence (Gly-Phe-Leu-Gly, GFLG) which has been extensively used as a spacer that can be cleaved in the presence of Cathepsin B. This Review Article will give an in-depth overview of the design and the biological evaluation of Cathepsin-sensitive drug delivery systems and their application in different pathologies including cancer before discussing Cathepsin B-cleavable prodrugs under clinical trials.
Collapse
|
17
|
Sergeys J, Etienne I, Van Hove I, Lefevere E, Stalmans I, Feyen JHM, Moons L, Van Bergen T. Longitudinal In Vivo Characterization of the Streptozotocin-Induced Diabetic Mouse Model: Focus on Early Inner Retinal Responses. Invest Ophthalmol Vis Sci 2019; 60:807-822. [PMID: 30811545 DOI: 10.1167/iovs.18-25372] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The goal of this study was to perform an extensive temporal characterization of the early pathologic processes in the streptozotocin (STZ)-induced diabetic retinopathy (DR) mouse model, beyond the vascular phenotype, and to investigate the potential of clinically relevant compounds in attenuating these processes. Methods Visual acuity and contrast sensitivity (CS) were studied in the mouse STZ model until 24 weeks postdiabetes onset. ERG, spectral domain optical coherence tomography (SD-OCT), leukostasis, and immunohistochemistry were applied to investigate neurodegeneration, inflammation, and gliosis during early-, mid- and late-phase diabetes. Aflibercept or triamcinolone acetonide (TAAC) was administered to investigate their efficacy on the aforementioned processes. Results Visual acuity and CS loss started at 4 and 18 weeks postdiabetes onset, respectively, and progressively declined over time. ERG amplitudes were diminished and OP latencies increased after 6 weeks, whereas SD-OCT revealed retinal thinning from 4 weeks postdiabetes. Immunohistochemical analyses linked these findings to retinal ganglion and cholinergic amacrine cell loss at 4 and 8 weeks postdiabetes onset, respectively, which was further decreased after aflibercept administration. The number of adherent leukocytes was augmented after 2 weeks, whereas increased micro- and macroglia reactivity was present from 4 weeks postdiabetes. Aflibercept or TAAC showed improved efficacy on inflammation and gliosis. Conclusions STZ-induced diabetic mice developed early pathologic DR hallmarks, from which inflammation seemed the initial trigger, leading to further development of functional and morphologic retinal changes. These findings indicate that the mouse STZ model is suitable to study novel integrative non-vascular therapies to treat early DR.
Collapse
Affiliation(s)
- Jurgen Sergeys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium
| | | | - Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium.,Oxurion NV, Leuven, Belgium
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Ingeborg Stalmans
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, O&N II, KU Leuven, Leuven, Belgium
| | | | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
18
|
Wang H, Meng X, Piao L, Inoue A, Xu W, Yu C, Nakamura K, Hu L, Sasaki T, Wu H, Unno K, Umegaki H, Murohara T, Shi GP, Kuzuya M, Cheng XW. Cathepsin S Deficiency Mitigated Chronic Stress-Related Neointimal Hyperplasia in Mice. J Am Heart Assoc 2019; 8:e011994. [PMID: 31296090 PMCID: PMC6662117 DOI: 10.1161/jaha.119.011994] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Exposure to chronic psychosocial stress is a risk factor for atherosclerosis-based cardiovascular disease. We previously demonstrated the increased expressions of cathepsin S (CatS) in atherosclerotic lesions. Whether CatS participates directly in stress-related neointimal hyperplasia has been unknown. Methods and Results Male wild-type and CatS-deficient mice that underwent carotid ligation injury were subjected to chronic immobilization stress for morphological and biochemical studies at specific times. On day 14 after stress/surgery, stress enhanced the neointima formation. At the early time points, the stressed mice had increased plaque elastin disruption, cell proliferation, macrophage accumulation, mRNA and/or protein levels of vascular cell adhesion molecule-1, angiotensin II type 1 receptor, monocyte chemoattractant protein-1, gp91phox, stromal cell-derived factor-1, C-X-C chemokine receptor-4, toll-like receptor-2, toll-like receptor-4, SC 35, galectin-3, and CatS as well as targeted intracellular proliferating-related molecules (mammalian target of rapamycin, phosphorylated protein kinase B, and p-glycogen synthase kinase-3α/β). Stress also increased the plaque matrix metalloproteinase-9 and matrix metalloproteinase-2 mRNA expressions and activities and aorta-derived smooth muscle cell migration and proliferation. The genetic or pharmacological inhibition of CatS by its specific inhibitor (Z- FL -COCHO) ameliorated the stressed arterial targeted molecular and morphological changes and stressed aorta-derived smooth muscle cell migration. Both the genetic and pharmacological interventions had no effect on increased blood pressure in stressed mice. Conclusions These results demonstrate an essential role of CatS in chronic stress-related neointimal hyperplasia in response to injury, possibly via the reduction of toll-like receptor-2/toll-like receptor-4-mediated inflammation, immune action, and smooth muscle cell proliferation, suggesting that CatS will be a novel therapeutic target for stress-related atherosclerosis-based cardiovascular disease.
Collapse
Affiliation(s)
- Hailong Wang
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xiangkun Meng
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Limei Piao
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Aiko Inoue
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Wenhu Xu
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Chenglin Yu
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Kae Nakamura
- 4 Department of Obstetrics and Gynecology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Lina Hu
- 5 Department of Public Health Guilin Medical College Guangxi China
| | - Takeshi Sasaki
- 6 Department of Anatomy and Neuroscience Hamamatsu University School of Medicine Hamamatsu Japan
| | - Hongxian Wu
- 7 Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Kazumasa Unno
- 8 Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hiroyuki Umegaki
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Toyoaki Murohara
- 8 Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guo-Ping Shi
- 9 Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Masafumi Kuzuya
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xian Wu Cheng
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
19
|
Li CC, Qiu XT, Sun Q, Zhou JP, Yang HJ, Wu WZ, He LF, Tang CE, Zhang GG, Bai YP. Endogenous reduction of miR-185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K. J Cell Mol Med 2018; 23:1164-1173. [PMID: 30450725 PMCID: PMC6349160 DOI: 10.1111/jcmm.14016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.
Collapse
Affiliation(s)
- Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Sun
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Peng Zhou
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Jun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Wan-Zhou Wu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Fang He
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Can-E Tang
- Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Gang Zhang
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Ping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death Dis 2018; 9:692. [PMID: 29880809 PMCID: PMC5992138 DOI: 10.1038/s41419-018-0727-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
The lysosomal cysteine protease Cathepsin K is elevated in humans and animal models of heart failure. Our recent studies show that whole-body deletion of Cathepsin K protects mice against cardiac dysfunction. Whether this is attributable to a direct effect on cardiomyocytes or is a consequence of the global metabolic alterations associated with Cathepsin K deletion is unknown. To determine the role of Cathepsin K in cardiomyocytes, we developed a cardiomyocyte-specific Cathepsin K-deficient mouse model and tested the hypothesis that ablation of Cathepsin K in cardiomyocytes would ameliorate the cardiotoxic side-effects of the anticancer drug doxorubicin. We used an α-myosin heavy chain promoter to drive expression of Cre, which resulted in over 80% reduction in protein and mRNA levels of cardiac Cathepsin K at baseline. Four-month-old control (Myh-Cre-; Ctskfl/fl) and Cathepsin K knockout (Myh-Cre+; Ctskfl/fl) mice received intraperitoneal injections of doxorubicin or vehicle, 1 week following which, body and tissue weight, echocardiographic properties, cardiomyocyte contractile function and Ca2+-handling were evaluated. Control mice treated with doxorubicin exhibited a marked increase in cardiac Cathepsin K, which was associated with an impairment in cardiac structure and function, evidenced as an increase in end-systolic and end-diastolic diameters, decreased fractional shortening and wall thickness, disruption in cardiac sarcomere and microfilaments and impaired intracellular Ca2+ homeostasis. In contrast, the aforementioned cardiotoxic effects of doxorubicin were attenuated or reversed in mice lacking cardiac Cathepsin K. Mechanistically, Cathepsin K-deficiency reconciled the disturbance in cardiac energy homeostasis and attenuated NF-κB signaling and apoptosis to ameliorate doxorubicin-induced cardiotoxicity. Cathepsin K may represent a viable drug target to treat cardiac disease.
Collapse
|