1
|
Okai T, Chan CW, Kc A, Omondi P, Musyoka K, Kongere J, Kagaya W, Okomo G, Kanoi BN, Kido Y, Gitaka J, Kaneko A. Plasmodium falciparum with pfhrp2 and pfhrp3 gene deletions in asymptomatic malaria infections in the Lake Victoria region, Kenya. Trop Med Health 2024; 52:94. [PMID: 39696727 DOI: 10.1186/s41182-024-00664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Malaria rapid diagnostic tests (RDTs) targeting the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) are widely used to diagnose P. falciparum infection. However, reports of P. falciparum strains lacking PfHRP2 and the structurally similar PfHRP3 have raised concerns about the utility and reliability of PfHRP2-based RDTs. This study investigated the presence of P. falciparum with pfhrp2 and/or pfhrp3 gene deletions among infected residents in the Lake Victoria region, Kenya. Four cross-sectional malaria, surveys were conducted in four sites (Suba South, Mfangano, Kibuogi, and Ngodhe) from September 2018 to January 2020. P. falciparum infections were detected using a PfHRP2-based RDT, microscopy, and PCR on 9120 finger-prick blood samples. Samples negative by RDT but positive by PCR were selected for PCR amplification of pfmsp1 and pfmsp2 to confirm the quality and quantity of P. falciparum DNA. Samples positive for both pfmsp1 and pfmsp2 were included for detection of deletions of exons 1 and 2 in pfhrp2 and pfhrp3 PCR. The multiplicity of infection (MOI) was determined as the higher allele count between pfmsp1 and pfmsp2. Logistic regression analysis was performed to analyze the association between pfhrp2 and/or pfhrp3 deletions and demographic and infection variables. Of the 445 RDT-negative and PCR-positive samples, 125 (28.1%) were analyzed for pfhrp2 and pfhrp3 deletions. Single pfhrp2 deletion, single pfhrp3 deletion, and pfhrp2/3 double deletions were detected in 13 (10.4%), 19 (15.2%), and 36 (28.8%) samples, respectively. Single pfhrp2 deletion was found in all sites while single pfhrp3 deletion was found in all sites except Kibuogi. The majority of samples with pfhrp2 and/or pfhrp3 deletions were submicroscopic (73.5%), asymptomatic (80.9%), and monoclonal (80.9%). Polyclonal infection was significantly (p = 0.022) associated with a lower odds of pfhrp2/3 double deletion, suggesting detection of intact pfhrp2/3 in mixed infections. We report the presence of P. falciparum with pfhrp2/pfhrp3 double deletions among asymptomatic and submicroscopic infections in Kenya. Our findings highlight the need for active monitoring of pfhrp2 and pfhrp3 deletions at the community level to improve malaria detection and control in the region.
Collapse
Affiliation(s)
- Takatsugu Okai
- Department of Virology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chim W Chan
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Achyut Kc
- Department of Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ubuntu Health, Atlanta, GA, USA
| | - Protus Omondi
- Department of Virology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kelvin Musyoka
- Department of Virology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - James Kongere
- Department of Virology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Wataru Kagaya
- Department of Eco-Epidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Gordon Okomo
- Homa Bay County Ministry of Health, Homa Bay, Kenya
| | - Bernard N Kanoi
- Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Yasutoshi Kido
- Department of Virology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Jesse Gitaka
- Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Akira Kaneko
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan.
| |
Collapse
|
2
|
Omondi P, Musyoka B, Okai T, Kongere J, Kagaya W, Chan CW, Ngara M, Kanoi BN, Kido Y, Gitaka J, Kaneko A. Non-random distribution of Plasmodium Species infections and associated clinical features in children in the lake Victoria region, Kenya, 2012-2018. Trop Med Health 2024; 52:52. [PMID: 39103954 PMCID: PMC11299388 DOI: 10.1186/s41182-024-00622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND While Plasmodium falciparum (Pf) stands out as the most lethal malaria parasite species in humans, the impact of other species should not be dismissed. Moreover, there is a notable lack of understanding of mixed-species infections and their clinical implications. METHODS We conducted eight school-based cross-sectional malariometric surveys in the Lake Victoria region of western Kenya between January-February 2012 and September-October 2018. In each survey, a minimum of 100 children aged 3 to 15 years were randomly chosen from a school in Ungoye village on the mainland and as well as from each school selected in every catchment area on Mfangano island. Plasmodium infection was determined by microscopy and nested polymerase chain reaction (PCR). The multiple-kind lottery (MKL) model calculated the expected distribution of Plasmodium infections in the population and compared it to observed values using a chi-squared test (χ2). RESULTS The Plasmodium prevalence was 25.9% (2521/9724) by microscopy and 51.1% (4969/9724) by PCR. Among all infections detected by PCR, Pf, P. malariae (Pm), and P. ovale (Po) mono-infections were 58.6%, 3.1%, and 1.8%, respectively. Pf/Pm, Pf/Po, Pm/Po, and Pf/Pm/Po co-infections were 23.5%, 4.3%, 0.1%, and 8.6%, respectively. MKL modelling revealed non-random distributions, with frequencies of Pf/Pm and Pf/Pm/Po co-infections being significantly higher than expected (χ2 = 3385.60, p < 0.001). Pf co-infections with Pm and Po were associated with a decreased risk of fever (aOR 0.64, 95% CI 0.46-0.83; p = 0.01) and increased risks of splenomegaly (aOR 12.79, 95% CI 9.69-16.9; p < 0.001) and anaemia (aOR 2.57, 95% CI 2.09-3.15; p < 0.001), compared to single-species infections. CONCLUSION This study sheds light on the potential interaction between Pf and Pm and/or Po. Given the clinical significance of mixed-species infections, improved diagnostics, and case management of Pm and Po are urgently needed.
Collapse
Affiliation(s)
- Protus Omondi
- Department of Virology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Brian Musyoka
- Department of Virology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Takatsugu Okai
- Department of Virology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - James Kongere
- Department of Parasitology/ Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Wataru Kagaya
- Department of Eco-Epidemiology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Chim W Chan
- Department of Parasitology/ Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Mtakai Ngara
- Department of Clinical Medicine, Mount Kenya University, Thika, Kenya
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bernard N Kanoi
- Department of Clinical Medicine, Mount Kenya University, Thika, Kenya
| | - Yasutoshi Kido
- Department of Virology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Jesse Gitaka
- Department of Clinical Medicine, Mount Kenya University, Thika, Kenya
| | - Akira Kaneko
- Department of Parasitology/ Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan.
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Kagaya W, Chan CW, Kongere J, Kanoi BN, Ngara M, Omondi P, Osborne A, Barbieri L, Kc A, Minakawa N, Gitaka J, Kaneko A. Evaluation of the protective efficacy of Olyset®Plus ceiling net on reducing malaria prevalence in children in Lake Victoria Basin, Kenya: study protocol for a cluster-randomized controlled trial. Trials 2023; 24:354. [PMID: 37231429 DOI: 10.1186/s13063-023-07372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND In the Lake Victoria Basin of western Kenya, malaria remains highly endemic despite high coverage of interventions such as insecticide-impregnated long-lasting insecticidal nets (LLIN). The malaria-protective effect of LLINs is hampered by insecticide resistance in Anopheles vectors and its repurposing by the community. Ceiling nets and LLIN with synergist piperonyl butoxide (PBO-LLIN) are novel tools that can overcome the problems of behavioral variation of net use and metabolic resistance to insecticide, respectively. The two have been shown to reduce malaria prevalence when used independently. Integration of these two tools (i.e., ceiling nets made with PBO-LLIN or Olyset®Plus ceiling nets) appears promising in further reducing the malaria burden. METHODS A cluster-randomized controlled trial is designed to assess the effect of Olyset®Plus ceiling nets on reducing malaria prevalence in children on Mfangano Island in Homa Bay County, where malaria transmission is moderate. Olyset®Plus ceiling nets will be installed in 1315 residential structures. Malaria parasitological, entomological, and serological indicators will be measured for 12 months to compare the effectiveness of this new intervention against conventional LLIN in the control arm. DISCUSSION Wider adoption of Olyset®Plus ceiling nets to complement existing interventions may benefit other malaria-endemic counties and be incorporated as part of Kenya's national malaria elimination strategy. TRIAL REGISTRATION UMIN Clinical Trials Registry UMIN000045079. Registered on 4 August 2021.
Collapse
Affiliation(s)
- Wataru Kagaya
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
| | - Chim W Chan
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - James Kongere
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Bernard N Kanoi
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Mtakai Ngara
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Protus Omondi
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ashley Osborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Laura Barbieri
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Achyut Kc
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Akira Kaneko
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Rahim MAFA, Munajat MB, Dian ND, Seri Rakna MIM, Wahid W, Ghazali N, Hassan NW, Abdul Manap SNA, Kasri MRM, Mohamed AI, Osman E, Chuangchaiya S, Lubis IND, Divis PCS, Kaneko A, Tetteh KKA, Idris ZM. Naturally acquired antibody response to Plasmodium falciparum and Plasmodium vivax among indigenous Orang Asli communities in Peninsular Malaysia. Front Cell Infect Microbiol 2023; 13:1165634. [PMID: 37153151 PMCID: PMC10157193 DOI: 10.3389/fcimb.2023.1165634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Malaria remains a public health problem in many parts of the world. In Malaysia, the significant progress towards the national elimination programme and effective disease notification on malaria has resulted in zero indigenous human malaria cases since 2018. However, the country still needs to determine the extent of malaria exposure and transmission patterns, particularly in high-risk populations. In this study, a serological method was used to measure transmission levels of Plasmodium falciparum and Plasmodium vivax among indigenous Orang Asli communities in Kelantan, Peninsular Malaysia. A community-based cross-sectional survey was conducted in three Orang Asli communities (i.e., Pos Bihai, Pos Gob, and Pos Kuala Betis) in Kelantan from June to July 2019. Antibody responses to malaria were assessed by enzyme-linked immunosorbent assay (ELISA) using two P. falciparum (PfAMA-1 and PfMSP-119) and two P. vivax (PvAMA-1 and PvMSP-119) antigens. Age-adjusted antibody responses were analysed using a reversible catalytic model to calculate seroconversion rates (SCRs). Multiple logistic regression was used to investigate factors associated with malaria exposure. The overall malaria seroprevalence was 38.8% for PfAMA-1, 36.4% for PfMSP-119, 2.2% for PvAMA-1, and 9.3% for PvMSP-119. Between study areas, the proportion of seropositivity for any P. falciparum and P. vivax antigens was significantly highest in Pos Kuala Betis with 34.7% (p < 0.001) and 13.6% (p < 0.001), respectively. For all parasite antigens except for PvAMA-1, the proportion of seropositive individuals significantly increased with age (all p < 0.001). Based on the SCR, there was a higher level of P. falciparum transmission than P. vivax in the study area. Multivariate regression analyses showed that living in Pos Kuala Betis was associated with both P. falciparum (adjusted odds ratio [aOR] 5.6, p < 0.001) and P. vivax (aOR 2.1, p < 0.001) seropositivities. Significant associations were also found between age and seropositivity to P. falciparum and P. vivax antigens. Analysis of community-based serological data helps describe the level of transmission, heterogeneity, and factors associated with malaria exposure among indigenous communities in Peninsular Malaysia. This approach could be an important adjunct tool for malaria monitoring and surveillance in low malaria transmission settings in the country.
Collapse
Affiliation(s)
- Mohd Amirul Fitri A. Rahim
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Bakhtiar Munajat
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nor Diyana Dian
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | | | - Wathiqah Wahid
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nuraffini Ghazali
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Noor Wanie Hassan
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Siti Nor Azreen Abdul Manap
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | | | | | - Emelia Osman
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Sriwipa Chuangchaiya
- Department of Community Health, Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| | - Inke Nadia D. Lubis
- Department of Paediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Paul C. S. Divis
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kevin K. A. Tetteh
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Zulkarnain Md Idris
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- *Correspondence: Zulkarnain Md Idris,
| |
Collapse
|
5
|
Rahim MAFA, Chuangchaiya S, Chanpum P, Palawong L, Kantee P, Dian ND, Lubis IND, Divis PCS, Kaneko A, Tetteh KKA, Idris ZM. Seroepidemiological surveillance, community perceptions and associated risk factors of malaria exposure among forest-goers in Northeastern Thailand. Front Cell Infect Microbiol 2022; 12:953585. [PMID: 36093204 PMCID: PMC9450859 DOI: 10.3389/fcimb.2022.953585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Malaria remains a major public health challenge in Thailand. Continuous assessment and understanding of the behavior and perceptions related to malaria exposure in the high-risk group are necessary to achieve the elimination goal. This study aimed to investigate the parasite prevalence, seroprevalence rate, knowledge, attitudes, and practices (KAP), and malaria risk factors in rural communities living close to a forested area in the northeastern part of Thailand. A community-based cross-sectional survey was conducted in three forest-goer communities (i.e., Ban Khok, Ban Koh, and Dong Yang) located in Khamcha-i district, Mukdahan Province, Thailand, from July to August 2019. Demographic, socioeconomic information and KAP data were collected using a structured questionnaire. Parasite prevalence was determined by microscopy. Seroprevalence was determined via ELISA using two Plasmodium falciparum (PfAMA-1 and PfMSP-119) and two Plasmodium vivax (PvAMA-1 and PvMSP-119) antigens. Age-adjusted antibody responses were analyzed using a reversible catalytic model to calculate seroconversion rate (SCR). Malaria parasite was not detected in any of the 345 participants. The overall malaria seroprevalence was 72.2% for PfAMA-1, 18.8% for PfMSP-119, 32.5% for PvAMA-1, and 4.4% for PvMSP-119. The proportion of seroprevalence for P. falciparum and P. vivax antigens was significantly highest in Ban Koh (35.1%, P < 0.001) and Don Yang (18.8%, P < 0.001), respectively. For all parasite antigens except PvMSP-119, the proportion of seropositive individuals significantly increased with age (P < 0.001). Based on the SCRs, there was a higher level of P. falciparum transmission than P. vivax. Regarding KAP, almost all respondents showed adequate knowledge and awareness about malaria. Nevertheless, significant effort is needed to improve positive attitudes and practices concerning malaria prevention measures. Multivariate regression analyses showed that living in Ban Koh was associated with both P. falciparum (adjusted odds ratio [aOR] 12.87, P < 0.001) and P. vivax (aOR 9.78, P < 0.001) seropositivities. We also found significant associations between age and seropositivity against P. falciparum and P. vivax antigens. The data suggest that seroepidemiological surveillance using AMA-1 and MSP-119 antigens may provide further evidence to reconstruct malaria exposure history. The absence of weak evidence of recent malaria transmission in Mukdahan Province is promising in the context of the disease elimination program.
Collapse
Affiliation(s)
- Mohd Amirul Fitri A. Rahim
- Deparment of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sriwipa Chuangchaiya
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
- *Correspondence: Zulkarnain Md Idris, ; Sriwipa Chuangchaiya,
| | - Paisit Chanpum
- Vector Borne Disease Unit, Ban Koh Sub-District Health Promoting Hospital, Mukdahan, Thailand
| | - Laun Palawong
- Vector Borne Disease Unit, Ban Koh Sub-District Health Promoting Hospital, Mukdahan, Thailand
| | - Panuwat Kantee
- Vector Borne Disease Unit, Ban Koh Sub-District Health Promoting Hospital, Mukdahan, Thailand
| | - Nor Diyana Dian
- Deparment of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Inke Nadia D. Lubis
- Department of Paediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Paul C. S. Divis
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kevin K. A. Tetteh
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Zulkarnain Md Idris
- Deparment of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Zulkarnain Md Idris, ; Sriwipa Chuangchaiya,
| |
Collapse
|
6
|
Dias MHF, Guimarães LFF, Barcelos MG, Moreira EUM, do Nascimento MFA, de Souza TN, Pires CV, Monteiro TAF, Middeldorp JM, Soares IS, Fontes CJF, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Impact of Epstein-Barr virus co-infection on natural acquired Plasmodium vivax antibody response. PLoS Negl Trop Dis 2022; 16:e0010305. [PMID: 35921373 PMCID: PMC9377613 DOI: 10.1371/journal.pntd.0010305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/15/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The simultaneous infection of Plasmodium falciparum and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt’s Lymphoma (eBL) in children living in P. falciparum holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to P. vivax, the most widespread human malaria parasite.
Methodology/Principal findings
The study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term P. vivax exposed individuals living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of balf-5 gene) was persistently detected in the peripheral blood (PersVDNA, n = 27), and an age-matched malaria-exposed group whose EBV-DNA could never be detected during the follow-up (NegVDNA, n = 29). During the follow-up period, the serological detection of EBV antibodies to lytic/ latent viral antigens showed that IgG antibodies to viral capsid antigen (VCA-p18) were significantly different between groups (PersVDNA > NegVDNA). A panel of blood-stage P. vivax antigens covering a wide range of immunogenicity confirmed that in general PersVDNA group showed low levels of antibodies as compared with NegVDNA. Interestingly, more significant differences were observed to a novel DBPII immunogen, named DEKnull-2, which has been associated with long-term neutralizing antibody response. Differences between groups were less pronounced with blood-stage antigens (such as MSP1-19) whose levels can fluctuate according to malaria transmission.
Conclusions/Significance
In a proof-of-concept study we provide evidence that a persistent detection of EBV-DNA in peripheral blood of adults in a P. vivax semi-immune population may impact the long-term immune response to major malaria vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | | | - Taís N. de Souza
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Camilla V. Pires
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Talita A. F. Monteiro
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde (IEC/SVS/MS), Belém, Pará, Brazil
| | - Jaap M. Middeldorp
- Department of Pathology, Free University Medical Center, Amsterdam, The Netherlands
| | - Irene S. Soares
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Cor J. F. Fontes
- Julio Müller School Hospital, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Flora S. Kano
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Luzia H. Carvalho
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
7
|
Muthui MK, Takashima E, Omondi BR, Kinya C, Muasya WI, Nagaoka H, Mwai KW, Orindi B, Wambua J, Bousema T, Drakeley C, Blagborough AM, Marsh K, Bejon P, Kapulu MC. Characterization of Naturally Acquired Immunity to a Panel of Antigens Expressed in Mature P. falciparum Gametocytes. Front Cell Infect Microbiol 2021; 11:774537. [PMID: 34869075 PMCID: PMC8633105 DOI: 10.3389/fcimb.2021.774537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Naturally acquired immune responses against antigens expressed on the surface of mature gametocytes develop in individuals living in malaria-endemic areas. Evidence suggests that such anti-gametocyte immunity can block the development of the parasite in the mosquito, thus playing a role in interrupting transmission. A better comprehension of naturally acquired immunity to these gametocyte antigens can aid the development of transmission-blocking vaccines and improve our understanding of the human infectious reservoir. Methods Antigens expressed on the surface of mature gametocytes that had not previously been widely studied for evidence of naturally acquired immunity were identified for protein expression alongside Pfs230-C using either the mammalian HEK293E or the wheat germ cell-free expression systems. Where there was sequence variation in the candidate antigens (3D7 vs a clinical isolate PfKE04), both variants were expressed. ELISA was used to assess antibody responses against these antigens, as well as against crude stage V gametocyte extract (GE) and AMA1 using archived plasma samples from individuals recruited to participate in malaria cohort studies. We analyzed antibody levels (estimated from optical density units using a standardized ELISA) and seroprevalence (defined as antibody levels greater than three standard deviations above the mean levels of a pool of malaria naïve sera). We described the dynamics of antibody responses to these antigens by identifying factors predictive of antibody levels using linear regression models. Results Of the 25 antigens selected, seven antigens were produced successfully as recombinant proteins, with one variant antigen, giving a total of eight proteins for evaluation. Antibodies to the candidate antigens were detectable in the study population (N = 216), with seroprevalence ranging from 37.0% (95% CI: 30.6%, 43.9%) for PSOP1 to 77.8% (95% CI: 71.6%, 83.1%) for G377 (3D7 variant). Responses to AMA1 and GE were more prevalent than those to the gametocyte proteins at 87.9% (95% CI: 82.8%, 91.9%) and 88.3% (95% CI: 83.1%, 92.4%), respectively. Additionally, both antibody levels and breadth of antibody responses were associated with age and concurrent parasitaemia. Conclusion Age and concurrent parasitaemia remain important determinants of naturally acquired immunity to gametocyte antigens. Furthermore, we identify novel candidates for transmission-blocking activity evaluation.
Collapse
Affiliation(s)
- Michelle K Muthui
- Department of Biosciences, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Brian R Omondi
- Department of Biosciences, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
| | - Christine Kinya
- Department of Biosciences, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
| | - William I Muasya
- Department of Biosciences, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Kennedy W Mwai
- Department of Biosciences, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Benedict Orindi
- Department of Biosciences, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
| | - Juliana Wambua
- Department of Biosciences, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew M Blagborough
- Division of Microbiology and Parasitology, Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, United Kingdom
| | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Department of Biosciences, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa C Kapulu
- Department of Biosciences, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Camponovo F, Lee TE, Russell JR, Burgert L, Gerardin J, Penny MA. Mechanistic within-host models of the asexual Plasmodium falciparum infection: a review and analytical assessment. Malar J 2021; 20:309. [PMID: 34246274 PMCID: PMC8272282 DOI: 10.1186/s12936-021-03813-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/11/2021] [Indexed: 12/03/2022] Open
Abstract
Background Malaria blood-stage infection length and intensity are important drivers of disease and transmission; however, the underlying mechanisms of parasite growth and the host’s immune response during infection remain largely unknown. Over the last 30 years, several mechanistic mathematical models of malaria parasite within-host dynamics have been published and used in malaria transmission models. Methods Mechanistic within-host models of parasite dynamics were identified through a review of published literature. For a subset of these, model code was reproduced and descriptive statistics compared between the models using fitted data. Through simulation and model analysis, key features of the models were compared, including assumptions on growth, immune response components, variant switching mechanisms, and inter-individual variability. Results The assessed within-host malaria models generally replicate infection dynamics in malaria-naïve individuals. However, there are substantial differences between the model dynamics after disease onset, and models do not always reproduce late infection parasitaemia data used for calibration of the within host infections. Models have attempted to capture the considerable variability in parasite dynamics between individuals by including stochastic parasite multiplication rates; variant switching dynamics leading to immune escape; variable effects of the host immune responses; or via probabilistic events. For models that capture realistic length of infections, model representations of innate immunity explain early peaks in infection density that cause clinical symptoms, and model representations of antibody immune responses control the length of infection. Models differed in their assumptions concerning variant switching dynamics, reflecting uncertainty in the underlying mechanisms of variant switching revealed by recent clinical data during early infection. Overall, given the scarce availability of the biological evidence there is limited support for complex models. Conclusions This study suggests that much of the inter-individual variability observed in clinical malaria infections has traditionally been attributed in models to random variability, rather than mechanistic disease dynamics. Thus, it is proposed that newly developed models should assume simple immune dynamics that minimally capture mechanistic understandings and avoid over-parameterization and large stochasticity which inaccurately represent unknown disease mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03813-z.
Collapse
Affiliation(s)
- Flavia Camponovo
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Tamsin E Lee
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jonathan R Russell
- Institute of Disease Modeling, Bill & Melinda Gates Foundation, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Lydia Burgert
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jaline Gerardin
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, IL, USA
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Kyei-Baafour E, Oppong M, Kusi KA, Frempong AF, Aculley B, Arthur FKN, Tiendrebeogo RW, Singh SK, Theisen M, Kweku M, Adu B, Hviid L, Ofori MF. Suitability of IgG responses to multiple Plasmodium falciparum antigens as markers of transmission intensity and pattern. PLoS One 2021; 16:e0249936. [PMID: 33886601 PMCID: PMC8062017 DOI: 10.1371/journal.pone.0249936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/27/2021] [Indexed: 12/05/2022] Open
Abstract
Detection of antibody reactivity to appropriate, specific parasite antigens may constitute a sensitive and cost-effective alternative to current tools to monitor malaria transmission across different endemicity settings. This study aimed to determine the suitability of IgG responses to a number of P. falciparum antigens as markers of transmission intensity and pattern. Antibody responses to multiple malaria antigens were determined in 905 participants aged 1–12 years from three districts with low (Keta), medium (Hohoe) and high (Krachi) transmission intensity in the Volta region of Ghana. Blood film microscopy slides and dry blood spots (DBS) were obtained for parasitaemia detection and antibody measurement, respectively. Sera were eluted from DBS and levels of IgG specific for 10 malaria antigens determined by a multiplex assay. Results were compared within and among the districts. Total IgG responses to MSPDBL1, MSPDBLLeucine, MSP2-FC27, RAMA, and PfRh2a and PfRh2b were higher in Krachi than in Hohoe and Keta. Seroprevalence of IgG specific for MSPDBLLeucine, RON4, and PfRh2b were also highest in Krachi. Responses to RALP-1, PfRh2a and PfRh2b were associated with patent but asymptomatic parasitaemia in Keta, while responses to MSPDBL1, MSPDBLLeucine, MSP2-FC27, RAMA, Rh2-2030, and PfRh2b were associated with parasite carriage in Hohoe, but not in Krachi. Using ROC analysis, only PfRh2b was found to predict patent, but asymptomatic, parasitaemia in Keta and Hohoe. Antibody breadth correlated positively with age (r = 0.29, p<0.0001) and parasitaemia (β = 3.91; CI = 1.53 to 6.29), and medium to high transmission (p<0.0001). Our findings suggest differences in malaria-specific antibody responses across the three transmission zones and that PfRh2b has potential as a marker of malaria transmission intensity and pattern. This could have implications for malaria control programs and vaccine trials.
Collapse
Affiliation(s)
- Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mavis Oppong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abena Fremaah Frempong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Belinda Aculley
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Fareed K. N. Arthur
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Regis Wendpayangde Tiendrebeogo
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, and at Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Susheel K. Singh
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, and at Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Theisen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, and at Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Margaret Kweku
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, and at Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Michael Fokuo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- * E-mail:
| |
Collapse
|
10
|
Wong LW, Ong KS, Khoo JR, Goh CBS, Hor JW, Lee SM. Human intestinal parasitic infection: a narrative review on global prevalence and epidemiological insights on preventive, therapeutic and diagnostic strategies for future perspectives. Expert Rev Gastroenterol Hepatol 2020; 14:1093-1105. [PMID: 32755242 DOI: 10.1080/17474124.2020.1806711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Intestinal parasitic infection (IPI) is a global health concern among socioeconomically deprived communities in many developing countries. Many preventative strategies have been deployed to control IPI, however, there is a lack in standards on the techniques used to diagnose and monitor the prevalence of IPI. AREAS COVERED The present article will review the diseases associated with IPI and discuss the current IPI control strategies such as the water, sanitation, and hygiene (WASH) interventions, community-led total sanitation (CLTS) approach, and regular anthelminthic treatments. For the first time, this review will also evaluate all currently practised diagnostic techniques for the detection of intestinal parasites and provide insights on future IPI control strategies. EXPERT OPINION Advanced and improved diagnostic methods such as qPCR coupled with a high-resolution melting curve, aptamers, biosensors, and detection of extracellular vesicles can be used for detection of IPI. Vaccination against intestinal parasites can be made available to increase antibodies to interfere with the blood-feeding process by the parasites, which subsequently reduces the reproductive rates of the parasites. These methods collectively can serve as future management strategies for intestinal parasitic infections.
Collapse
Affiliation(s)
- Li Wen Wong
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia
| | - Kuan Shion Ong
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia , Bandar Sunway, Malaysia
| | - Jun Rong Khoo
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia , Bandar Sunway, Malaysia
| | - Jia Wei Hor
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University Malaysia , Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia , Bandar Sunway, Malaysia
| |
Collapse
|
11
|
Makenga G, Baraka V, Francis F, Nakato S, Gesase S, Mtove G, Madebe R, Kyaruzi E, Minja DT, Lusingu JP, Van geertruyden JP. Effectiveness and safety of intermittent preventive treatment for malaria using either dihydroartemisinin-piperaquine or artesunate-amodiaquine in reducing malaria related morbidities and improving cognitive ability in school-aged children in Tanzania: A study protocol for a controlled randomised trial. Contemp Clin Trials Commun 2020; 17:100546. [PMID: 32382685 PMCID: PMC7201189 DOI: 10.1016/j.conctc.2020.100546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND In high transmission settings, up to 70% of school-aged children harbour malaria parasites without showing any clinical symptoms. Thus, epidemiologically, school aged children act as a substantial reservoir for malaria transmission. Asymptomatic Plasmodium infections induce inflammation leading to iron deficiency anaemia. Consequently, anaemia retards child growth, predisposes children to other diseases and reduces cognitive potential that could lead to poor academic performance. School aged children become increasingly more vulnerable as compared to those aged less than five years due to delayed acquisition of protective immunity. None of the existing Intermittent Preventive Treatment (IPT) strategies is targeting school-aged children. Here, we describe the study protocol of a clinical trial conducted in north-eastern Tanzania to expand the IPT by assessing the effectiveness and safety of two antimalarial drugs, Dihydroartemisinin-Piperaquine (DP) and Artesunate-Amodiaquine (ASAQ) in preventing malaria related morbidities in school-aged children (IPTsc) living in a high endemic area. METHODS/DESIGN The trial is a phase IIIb, individual randomized, open label, controlled trial enrolling school children aged 5-15 years, who receive either DP or ASAQ or control (no drug), using a "balanced block design" with the "standard of care" arm as reference. The interventional treatments are given three times a year for the first year. A second non-interventional year will assess possible rebound effects. Sample size was estimated to 1602 school children (534 per group) from selected primary schools in an area with high malaria endemicity. Thick and thin blood smears (to measure malaria parasitaemia using microscope) were obtained prior to treatment at baseline, and will be obtained again at month 12 and 20 from all participants. Haemoglobin concentration using a haemoglobinometer (HemoCue AB, Sweden) will be measured four monthly. Finger-prick blood (dried bloodspot-DBS) prepared on Whatman 3 M filter paper, will be used for sub-microscopic malaria parasite detection usingPCR, detect markers of drug resistance (using next generation sequencing (NGS) technology), and malaria serological assays (using enzyme-linked immunosorbent assay, ELISA). To determine the benefit of IPTsc on cognitive and psychomotor ability test of everyday attention for children (TEA-Ch) and a '20 m Shuttle run' respectively, will be conducted at baseline, month 12 and 20. The primary endpoints are change in mean haemoglobin from baseline concentration and reduction in clinical malaria incidence at month 12 and 20 of follow up. Mixed design methods are used to assess the acceptability, cost-effectiveness and feasibility of IPTsc as part of a more comprehensive school children health package. Statistical analysis will be in the form of multilevel modelling, owing to repeated measurements and clustering effect of participants. DISCUSSION Malaria intervention using IPTsc strategy may be integrated in the existing national school health programme. However, there is limited systematic evidence to assess the effectiveness and operational feasibility of this approach. School-aged children are easily accessible in most endemic malaria settings. The evidence from this study will guide the implementation of the strategy to provide complementary approach to reduce malaria related morbidity, anaemia and contribute to the overall burden reduction. TRIAL REGISTRATION Clinicaltrials.gov: NCT03640403, registered on Aug 21, 2018, prospectively registered.Url https://www.clinicaltrials.gov/ct2/show/NCT03640403?term=NCT03640403&rank=1.
Collapse
Affiliation(s)
- Geofrey Makenga
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Vito Baraka
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Swabra Nakato
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Samwel Gesase
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - George Mtove
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Rashid Madebe
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Edna Kyaruzi
- College of Education (DUCE), University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Daniel T.R. Minja
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - John P.A. Lusingu
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | | |
Collapse
|
12
|
Seck MC, Thwing J, Badiane AS, Rogier E, Fall FB, Ndiaye PI, Diongue K, Mbow M, Ndiaye M, Diallo MA, Gomis JF, Mbaye A, Ndiaye T, Gaye A, Sy M, Déme AB, Ndiaye YD, Ndiaye D. Analysis of anti-Plasmodium IgG profiles among Fulani nomadic pastoralists in northern Senegal to assess malaria exposure. Malar J 2020; 19:15. [PMID: 31931834 PMCID: PMC6958760 DOI: 10.1186/s12936-020-3114-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Northern Senegal is a zone of very low malaria transmission, with an annual incidence of < 5/1000 inhabitants. This area, where the Senegal National Malaria Control Programme has initiated elimination activities, hosts Fulani, nomadic, pastoralists that spend the dry season in the south where malaria incidence is higher (150-450/1000 inhabitants) and return to the north with the first rains. Previous research demonstrated parasite prevalence of < 1% in this Fulani population upon return from the south, similar to that documented in the north in cross-sectional surveys. METHODS A modified snowball sampling survey of nomadic pastoralists was conducted in five districts in northern Senegal during September and October 2014. Demographic information and dried blood spots were collected. Multiplex bead-based assays were used to assess antibody responses to merozoite surface protein (MSP-119) antigen of the four primary Plasmodium species, as well as circumsporozoite protein (CSP) and liver stage antigen (LSA-1) of Plasmodium falciparum. RESULTS In the five study districts, 1472 individuals were enrolled, with a median age of 22 years (range 1 to 80 years). Thirty-two percent of subjects were under 14 years and 57% were male. The overall seroprevalence of P. falciparum MSP-119, CSP and LSA-1 antibodies were 45, 12 and 5%, respectively. Plasmodium falciparum MSP-119 antibody responses increased significantly with age in all study areas, and were significantly higher among males. The highest seroprevalence to P. falciparum antigens was observed in the Kanel district (63%) and the lowest observed in Podor (28%). Low seroprevalence was observed for non-falciparum species in all the study sites: 0.4, 0.7 and 1.8%, respectively, for Plasmodium ovale, Plasmodium vivax and Plasmodium malariae MSP-1. Antibody responses to P. vivax were observed in all study sites except Kanel. CONCLUSION Prevalence of P. falciparum MSP-119 antibodies and increases by study participant age provided data for low levels of exposure among this transient nomadic population. In addition, antibody responses to P. falciparum short half-life markers (CSP and LSA-1) and non-falciparum species were low. Further investigations are needed to understand the exposure of the Fulani population to P. vivax.
Collapse
Affiliation(s)
- Mame Cheikh Seck
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal. .,Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal.
| | - Julie Thwing
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30029, USA
| | - Aida Sadikh Badiane
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal.,Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30029, USA
| | - Fatou Ba Fall
- Senegal National Malaria Control Programme, Dakar, Senegal
| | - Pape Ibrahima Ndiaye
- Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Khadim Diongue
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal.,Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Moustapha Mbow
- Department of Immunology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Mouhamadou Ndiaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal.,Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Jules François Gomis
- Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Aminata Mbaye
- Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Tolla Ndiaye
- Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Aminata Gaye
- Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Mohamad Sy
- Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Awa Bineta Déme
- Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Yaye Die Ndiaye
- Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| | - Daouda Ndiaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal.,Laboratory of Parasitology, Aristide Le Dantec Teaching Hospital, Dakar, Senegal
| |
Collapse
|
13
|
Kale S, Yadav CP, Rao PN, Shalini S, Eapen A, Srivasatava HC, Sharma SK, Pande V, Carlton JM, Singh OP, Mallick PK. Antibody responses within two leading Plasmodium vivax vaccine candidate antigens in three geographically diverse malaria-endemic regions of India. Malar J 2019; 18:425. [PMID: 31842894 PMCID: PMC6916228 DOI: 10.1186/s12936-019-3066-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/08/2019] [Indexed: 01/28/2023] Open
Abstract
Background Identifying highly immunogenic blood stage antigens which can work as target for naturally acquired antibodies in different eco-epidemiological settings is an important step for designing malaria vaccine. Blood stage proteins of Plasmodium vivax, apical membrane antigen-1 (PvAMA-1) and 19 kDa fragment of merozoite surface protein (PvMSP-119) are such promising vaccine candidate antigens. This study determined the naturally-acquired antibody response to PvAMA-1 and PvMSP-119 antigens in individuals living in three geographically diverse malaria endemic regions of India. Methods A total of 234 blood samples were collected from individuals living in three different eco-epidemiological settings, Chennai, Nadiad, and Rourkela of India. Indirect ELISA was performed to measure human IgG antibodies against recombinant PvAMA-1 and PvMSP-119 antigens. The difference in seroprevalence and factors associated with antibody responses at each site was statistically analysed. Results The overall seroprevalence was 40.6% for PvAMA-1 and 62.4% for PvMSP-119. Seroprevalence to PvAMA-1 was higher in Chennai (47%) followed by Nadiad (46.7%) and Rourkela (27.6%). For PvMSP-119, seroprevalence was higher in Chennai (80.3%) as compared to Nadiad (53.3%) and Rourkela (57.9%). Seroprevalence for both the antigens were found to be higher in Chennai where P. vivax is the dominant malaria species. In addition, heterogeneous antibody response was observed for PvAMA-1 and PvMSP-119 antigens at each of the study sites. Two factors, age and malaria positivity were significantly associated with seropositivity for both the antigens PvAMA-1 and PvMSP-119. Conclusion These data suggest that natural acquired antibody response is higher for PvMSP-119 antigen as compared to PvAMA-1 antigen in individuals living in three geographically diverse malaria endemic regions in India. PvMSP-119 appears to be highly immunogenic in Indian population and has great potential as a malaria vaccine candidate. The differences in immune response against vaccine candidate antigens in different endemic settings should be taken into account for development of asexual stage based P. vivax malaria vaccine, which in turn can enhance malaria control efforts.
Collapse
Affiliation(s)
- Sonal Kale
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Chander P Yadav
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Pavitra N Rao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, USA
| | - Sneh Shalini
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Alex Eapen
- National Institute of Malaria Research Field Unit, Indian Council of Medical Research, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Harish C Srivasatava
- National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Surya K Sharma
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, USA
| | - Om P Singh
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.
| | - Prashant K Mallick
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.
| |
Collapse
|
14
|
Kagaya W, Gitaka J, Chan CW, Kongere J, Md Idris Z, Deng C, Kaneko A. Malaria resurgence after significant reduction by mass drug administration on Ngodhe Island, Kenya. Sci Rep 2019; 9:19060. [PMID: 31836757 PMCID: PMC6910941 DOI: 10.1038/s41598-019-55437-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Although WHO recommends mass drug administration (MDA) for malaria elimination, further evidence is required for understanding the obstacles for the optimum implementation of MDA. Just before the long rain in 2016, two rounds of MDA with artemisinin/piperaquine (Artequick) and low-dose primaquine were conducted with a 35-day interval for the entire population of Ngodhe Island (~500 inhabitants) in Lake Victoria, Kenya, which is surrounded by areas with moderate and high transmission. With approximately 90% compliance, Plasmodium prevalence decreased from 3% to 0% by microscopy and from 10% to 2% by PCR. However, prevalence rebounded to 9% by PCR two months after conclusion of MDA. Besides the remained local transmission, parasite importation caused by human movement likely contributed to the resurgence. Analyses of 419 arrivals to Ngodhe between July 2016 and September 2017 revealed Plasmodium prevalence of 4.6% and 16.0% by microscopy and PCR, respectively. Risk factors for infection among arrivals included age (0 to 5 and 11 to 15 years), and travelers from Siaya County, located to the north of Ngodhe Island. Parasite importation caused by human movement is one of major obstacles to sustain malaria elimination, suggesting the importance of cross-regional initiatives together with local vector control.
Collapse
Affiliation(s)
- Wataru Kagaya
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Jesse Gitaka
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Chim W Chan
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden.,Department of Anthropology, Binghamton University, Binghamton, NY, 13905, USA
| | - James Kongere
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, PO Box 19993-00202, Nairobi, Kenya
| | - Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden.,Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Changsheng Deng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Akira Kaneko
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan. .,Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden. .,Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
15
|
Pires CV, Alves JRS, Lima BAS, Paula RB, Costa HL, Torres LM, Sousa TN, Soares IS, Sanchez BAM, Fontes CJF, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Blood-stage Plasmodium vivax antibody dynamics in a low transmission setting: A nine year follow-up study in the Amazon region. PLoS One 2018; 13:e0207244. [PMID: 30419071 PMCID: PMC6231651 DOI: 10.1371/journal.pone.0207244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax remains a global health problem and its ability to cause relapses and subpatent infections challenge control and elimination strategies. Even in low malaria transmission settings, such as the Amazon basin, where progress in malaria control has caused a remarkable reduction in case incidence, a recent increase in P. vivax transmission demonstrates the continued vulnerability of P.vivax-exposed populations. As part of a search for complementary approaches to P.vivax surveillance in areas in which adults are the majority of the exposed-population, here we evaluated the potential of serological markers covering a wide range of immunogenicity to estimate malaria transmission trends. For this, antibodies against leading P. vivax blood-stage vaccine candidates were assessed during a 9 year follow-up study among adults exposed to unstable malaria transmission in the Amazon rainforest. Circulating antibody levels against immunogenic P. vivax proteins, such as the Apical Membrane Antigen-1, were a sensitive measure of recent P. vivax exposure, while antibodies against less immunogenic proteins were indicative of naturally-acquired immunity, including the novel engineered Duffy binding protein II immunogen (DEKnull-2). Our results suggest that the robustness of serology to estimate trends in P.vivax malaria transmission will depend on the immunological background of the study population, and that for adult populations exposed to unstable P.vivax malaria transmission, the local heterogeneity of antibody responses should be considered when considering use of serological surveillance.
Collapse
Affiliation(s)
- Camilla V. Pires
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Ruth B. Paula
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Helena L. Costa
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Taís N. Sousa
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Irene S. Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruno A. M. Sanchez
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Campus Sinop, Sinop, Mato Grosso, Brazil
| | - Cor J. F. Fontes
- Hospital Júlio Muller, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Flora S. Kano
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (LHC); (FSK)
| | - Luzia H. Carvalho
- Instituto René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (LHC); (FSK)
| |
Collapse
|