1
|
Finszter CK, Kemecsei R, Zachar G, Ádám Á, Csillag A. Gestational VPA exposure reduces the density of juxtapositions between TH+ axons and calretinin or calbindin expressing cells in the ventrobasal forebrain of neonatal mice. Front Neuroanat 2024; 18:1426042. [PMID: 39026519 PMCID: PMC11254666 DOI: 10.3389/fnana.2024.1426042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Gestational exposure to valproic acid (VPA) is a valid rodent model of human autism spectrum disorder (ASD). VPA treatment is known to bring about specific behavioral deficits of sociability, matching similar alterations in human autism. Previous quantitative morphometric studies from our laboratory showed a marked reduction and defasciculation of the mesotelencephalic dopaminergic pathway of VPA treated mice, along with a decrease in tissue dopamine in the nucleus accumbens (NAc), but not in the caudatoputamen (CPu). In the present study, the correlative distribution of tyrosine hydroxylase positive (TH+) putative axon terminals, presynaptic to the target neurons containing calretinin (CR) or calbindin (CB), was assessed using double fluorescent immunocytochemistry and confocal laser microscopy in two dopamine recipient forebrain regions, NAc and olfactory tubercle (OT) of neonatal mice (mothers injected with VPA on ED13.5, pups investigated on PD7). Representative image stacks were volumetrically analyzed for spatial proximity and abundance of presynaptic (TH+) and postsynaptic (CR+, CB+) structures with the help of an Imaris (Bitplane) software. In VPA mice, TH/CR juxtapositions were reduced in the NAc, whereas the TH/CB juxtapositions were impoverished in OT. Volume ratios of CR+ and CB+ elements remained unchanged in NAc, whereas that of CB+ was markedly reduced in OT; here the abundance of TH+ axons was also diminished. CR and CB were found to partially colocalize with TH in the VTA and SN. In VPA exposed mice, the abundance of CR+ (but not CB+) perikarya increased both in VTA and SN, however, this upregulation was not mirrored by an increase of the number of CR+/TH+ double labeled cells. The observed reduction of total CB (but not of CB+ perikarya) in the OT of VPA exposed animals signifies a diminished probability of synaptic contacts with afferent TH+ axons, presumably by reducing the available synaptic surface. Altered dopaminergic input to ventrobasal forebrain targets during late embryonic development will likely perturb the development and consolidation of neural and synaptic architecture, resulting in lasting changes of the neuronal patterning (detected here as reduced synaptic input to dopaminoceptive interneurons) in ventrobasal forebrain regions specifically involved in motivation and reward.
Collapse
Affiliation(s)
| | | | | | | | - András Csillag
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Sun L, Shi M, Wang J, Han X, Wei J, Huang Z, Yang X, Ding Y, Zhang P, He A, Liu M, Yan R, Yang X, Li R, Wang G. Overexpressed Trophoblast Glycoprotein Contributes to Preeclampsia Development by Inducing Abnormal Trophoblast Migration and Invasion Toward the Uterine Spiral Artery. Hypertension 2024; 81:1524-1536. [PMID: 38716674 DOI: 10.1161/hypertensionaha.124.22923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Preeclampsia is a significant pregnancy disorder with an unknown cause, mainly attributed to impaired spiral arterial remodeling. METHODS Using RNA sequencing, we identified key genes in placental tissues from healthy individuals and preeclampsia patients. Placenta and plasma samples from pregnant women were collected to detect the expression of TPBG (trophoblast glycoprotein). Pregnant rats were injected with TPBG-carrying adenovirus to detect preeclamptic features. HTR-8/SVneo cells transfected with a TPBG overexpression lentiviral vector were used in cell function experiments. The downstream molecular mechanisms of TPBG were explored using RNA sequencing and single-cell RNA sequencing data. TPBG expression was knocked down in the lipopolysaccharide-induced preeclampsia-like rat model to rescue the preeclampsia features. We also assessed TPBG's potential as an early preeclampsia predictor using clinical plasma samples. RESULTS TPBG emerged as a crucial differentially expressed gene, expressed specifically in syncytiotrophoblasts and extravillous trophoblasts. Subsequently, we established a rat model with preeclampsia-like phenotypes by intravenously injecting TPBG-expressing adenoviruses, observing impaired spiral arterial remodeling, thus indicating a causal correlation between TPBG overexpression and preeclampsia. Studies with HTR-8/SVneo cells, chorionic villous explants, and transwell assays showed TPBG overexpression disrupts trophoblast/extravillous trophoblast migration/invasion and chemotaxis. Notably, TPBG knockdown alleviated the lipopolysaccharide-induced preeclampsia-like rat model. We enhanced preeclampsia risk prediction in early gestation by combining TPBG expression with established clinical predictors. CONCLUSIONS These findings are the first to show that TPBG overexpression contributes to preeclampsia development by affecting uterine spiral artery remodeling. We propose TPBG levels in maternal blood as a predictor of preeclampsia risk. The proposed mechanism by which TPBG overexpression contributes to the occurrence of preeclampsia via its disruptive effect on trophoblast and extravillous trophoblast migration/invasion on uterine spiral artery remodeling, thereby increasing the risk of preeclampsia.
Collapse
Affiliation(s)
- Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Xiaoxue Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Jiachun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine (P.Z., X.Y., G.W.), Jinan University, Guangzhou, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine (P.Z., X.Y., G.W.), Jinan University, Guangzhou, China
| | - Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Mengyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Ruiling Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education (X.Y., G.W.), Jinan University, Guangzhou, China
- Clinical Research Center, Clifford Hospital, Guangzhou, China (X.Y.)
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine (P.Z., X.Y., G.W.), Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education (X.Y., G.W.), Jinan University, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine (G.W.), Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Fernandes L, Kleene R, Congiu L, Freitag S, Kneussel M, Loers G, Schachner M. CHL1 depletion affects dopamine receptor D2-dependent modulation of mouse behavior. Front Behav Neurosci 2023; 17:1288509. [PMID: 38025382 PMCID: PMC10665519 DOI: 10.3389/fnbeh.2023.1288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The dopaminergic system plays a key role in the appropriate functioning of the central nervous system, where it is essential for emotional balance, arousal, reward, and motor control. The cell adhesion molecule close homolog of L1 (CHL1) contributes to dopaminergic system development, and CHL1 and the dopamine receptor D2 (D2R) are associated with mental disorders like schizophrenia, addiction, autism spectrum disorder and depression. Methods Here, we investigated how the interplay between CHL1 and D2R affects the behavior of young adult male and female wild-type (CHL+/+) and CHL1-deficient (CHL1-/-) mice, when D2R agonist quinpirole and antagonist sulpiride are applied. Results Low doses of quinpirole (0.02 mg/kg body weight) induced hypolocomotion of CHL1+/+ and CHL1-/- males and females, but led to a delayed response in CHL1-/- mice. Sulpiride (1 mg/kg body weight) affected locomotion of CHL1-/- females and social interaction of CHL1+/+ females as well as social interactions of CHL1-/- and CHL1+/+ males. Quinpirole increased novelty-seeking behavior of CHL1-/- males compared to CHL1+/+ males. Vehicle-treated CHL1-/- males and females showed enhanced working memory and reduced stress-related behavior. Discussion We propose that CHL1 regulates D2R-dependent functions in vivo. Deficiency of CHL1 leads to abnormal locomotor activity and emotionality, and to sex-dependent behavioral differences.
Collapse
Affiliation(s)
- Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Freitag
- Institut für Molekulare Neurogenetik, Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Institut für Molekulare Neurogenetik, Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
4
|
Finszter CK, Kemecsei R, Zachar G, Holtkamp S, Echevarría D, Adorján I, Ádám Á, Csillag A. Early cellular and synaptic changes in dopaminoceptive forebrain regions of juvenile mice following gestational exposure to valproate. Front Neuroanat 2023; 17:1235047. [PMID: 37603782 PMCID: PMC10435871 DOI: 10.3389/fnana.2023.1235047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
Gestational exposure of mice to valproic acid (VPA) is one currently used experimental model for the investigation of typical failure symptoms associated with autism spectrum disorder (ASD). In the present study we hypothesized that the reduction of dopaminergic source neurons of the VTA, followed by perturbed growth of the mesotelencephalic dopamine pathway (MT), should also modify pattern formation in the dopaminoceptive target regions (particularly its mesoaccumbens/mesolimbic portion). Here, we investigated VPA-evoked cellular morphological (apoptosis-frequency detected by Caspase-3, abundance of Ca-binding proteins, CaBP), as well as synaptic proteomic (western blotting) changes, in selected dopaminoceptive subpallial, as compared to pallial, regions of mice, born to mothers treated with 500 mg/kg VPA on day 13.5 of pregnancy. We observed a surge of apoptosis on VPA treatment in nearly all investigated subpallial and pallial regions; with a non-significant trend of similar increase the nucleus accumbens (NAc) at P7, the age at which the MT pathway reduction has been reported (also supplemented by current findings). Of the CaBPs, calretinin (CR) expression was decreased in pallial regions, most prominently in retrosplenial cortex, but not in the subpallium of P7 mice. Calbindin-D 28K (CB) was selectively reduced in the caudate-putamen (CPu) of VPA exposed animals at P7 but no longer at P60, pointing to a potency of repairment. The VPA-associated overall increase in apoptosis at P7 did not correlate with the abundance and distribution of CaBPs, except in CPu, in which the marked drop of CB was negatively correlated with increased apoptosis. Abundance of parvalbumin (PV) at P60 showed no significant response to VPA treatment in any of the observed regions we did not find colocalization of apoptotic (Casp3+) cells with CaBP-immunoreactive neurons. The proteomic findings suggest reduction of tyrosine hydroxylase in the crude synaptosome fraction of NAc, but not in the CPu, without simultaneous decrease of the synaptic protein, synaptophysin, indicating selective impairment of dopaminergic synapses. The morpho-functional changes found in forebrain regions of VPA-exposed mice may signify dendritic and synaptic reorganization in dopaminergic target regions, with potential translational value to similar impairments in the pathogenesis of human ASD.
Collapse
Affiliation(s)
- Cintia Klaudia Finszter
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Róbert Kemecsei
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sophie Holtkamp
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Diego Echevarría
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - István Adorján
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ágota Ádám
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Buhusi M, Griffin D, Buhusi CV. Brain-Derived Neurotrophic Factor Val66Met Genotype Modulates Latent Inhibition: Relevance for Schizophrenia. Schizophr Bull 2023; 49:626-634. [PMID: 36484490 PMCID: PMC10154718 DOI: 10.1093/schbul/sbac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND HYPOTHESIS Latent inhibition (LI) is a measure of selective attention and learning relevant to Schizophrenia (SZ), with 2 abnormality poles: Disrupted LI in acute SZ, thought to underlie positive symptoms, and persistent LI (PLI) in schizotypy and chronic SZ under conditions where normal participants fail to show LI. We hypothesized that Brain-Derived Neurotrophic Factor (BDNF)-Met genotype shifts LI toward the PLI pole. STUDY DESIGN We investigated the role of BDNF-Val66Met polymorphism and neural activation in regions involved in LI in mice, and the interaction between the BDNF and CHL1, a gene associated with SZ. STUDY RESULTS No LI differences occurred between BDNF-wild-type (WT) (Val/Val) and knock-in (KI) (Met/Met) mice after weak conditioning. Chronic stress or stronger conditioning disrupted LI in WT but not KI mice. Behavior correlated with activation in infralimbic and orbitofrontal cortices, and nucleus accumbens. Examination of LI in CHL1-KO mice revealed no LI with no Met alleles (BDNF-WTs), PLI in CHL1-WT mice with 1 Met allele (BDNF-HETs), and PLI in both CHL1-WTs and CHL1-KOs with 2 Met alleles (BDNF-KIs), suggesting a shift to LI persistence with the number of BDNF-Met alleles in the CHL1 model of acute SZ. CONCLUSIONS Results support a role for BDNF polymorphisms in gene-gene and gene-environment interactions relevant to SZ. BDNF-Met allele may reduce expression of some acute SZ symptoms, and may increase expression of negative symptoms in individuals with chronic SZ. Evaluation of (screening for) SZ phenotypes associated with mutations at a particular locus (eg, CHL1), may be masked by strong effects at different loci (eg, BDNF).
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Daniel Griffin
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| |
Collapse
|
6
|
The Influence of Prenatal Exposure to Methamphetamine on the Development of Dopaminergic Neurons in the Ventral Midbrain. Int J Mol Sci 2023; 24:ijms24065668. [PMID: 36982742 PMCID: PMC10056332 DOI: 10.3390/ijms24065668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Methamphetamine, a highly addictive central nervous system (CNS) stimulant, is used worldwide as an anorexiant and attention enhancer. Methamphetamine use during pregnancy, even at therapeutic doses, may harm fetal development. Here, we examined whether exposure to methamphetamine affects the morphogenesis and diversity of ventral midbrain dopaminergic neurons (VMDNs). The effects of methamphetamine on morphogenesis, viability, the release of mediator chemicals (such as ATP), and the expression of genes involved in neurogenesis were evaluated using VMDNs isolated from the embryos of timed-mated mice on embryonic day 12.5. We demonstrated that methamphetamine (10 µM; equivalent to its therapeutic dose) did not affect the viability and morphogenesis of VMDNs, but it reduced the ATP release negligibly. It significantly downregulated Lmx1a, En1, Pitx3, Th, Chl1, Dat, and Drd1 but did not affect Nurr1 or Bdnf expression. Our results illustrate that methamphetamine could impair VMDN differentiation by altering the expression of important neurogenesis-related genes. Overall, this study suggests that methamphetamine use may impair VMDNs in the fetus if taken during pregnancy. Therefore, it is essential to exercise strict caution for its use in expectant mothers.
Collapse
|
7
|
Alsanie WF, Abdelrahman S, Alhomrani M, Gaber A, Alosimi EA, Habeeballah H, Alkhatabi HA, Felimban RI, Hauser CAE, Tayeb HH, Alamri AS, Alamri A, Raafat BM, Alswat KA, Althobaiti YS, Asiri YA. The Influence of Prenatal Exposure to Quetiapine Fumarate on the Development of Dopaminergic Neurons in the Ventral Midbrain of Mouse Embryos. Int J Mol Sci 2022; 23:ijms232012352. [PMID: 36293205 PMCID: PMC9603924 DOI: 10.3390/ijms232012352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The effects of second-generation antipsychotics on prenatal neurodevelopment, apoptotic neurodegeneration, and postnatal developmental delays have been poorly investigated. Even at standard doses, the use of quetiapine fumarate (QEPF) in pregnant women might be detrimental to fetal development. We used primary mouse embryonic neurons to evaluate the disruption of morphogenesis and differentiation of ventral midbrain (VM) neurons after exposure to QEPF. The dopaminergic VM neurons were deliberately targeted due to their roles in cognition, motor activity, and behavior. The results revealed that exposure to QEPF during early brain development decreased the effects of the dopaminergic lineage-related genes Tyrosine hydroxylase(Th), Dopamine receptor D1 (Drd1), Dopamine transporter (Dat), LIM homeobox transcription factor 1 alfa (Lmx1a), and Cell adhesion molecule L1 (Chl1), and the senescent dopaminergic gene Pituitary homeobox 3 (Pitx3). In contrast, Brain derived neurotrophic factor (Bdnf) and Nuclear receptor-related 1 (Nurr1) expressions were significantly upregulated. Interestingly, QEPF had variable effects on the development of non-dopaminergic neurons in VM. An optimal dose of QEPF (10 µM) was found to insignificantly affect the viability of neurons isolated from the VM. It also instigated a non-significant reduction in adenosine triphosphate formation in these neuronal populations. Exposure to QEPF during the early stages of brain development could also hinder the formation of VM and their structural phenotypes. These findings could aid therapeutic decision-making when prescribing 2nd generation antipsychotics in pregnant populations.
Collapse
Affiliation(s)
- Walaa F. Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Gaber
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ebtisam Abdulah Alosimi
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamza Habeeballah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Centre, Hematology Research Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed I. Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia
| | - Hossam H. Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Nanomedicine Unit, Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia
| | - Bassem M. Raafat
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khaled A. Alswat
- Department of Internal Medicine, School of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yousif A. Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Hesperidin Improves Memory Function by Enhancing Neurogenesis in a Mouse Model of Alzheimer’s Disease. Nutrients 2022; 14:nu14153125. [PMID: 35956303 PMCID: PMC9370591 DOI: 10.3390/nu14153125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by memory and cognitive impairments. Neurogenesis, which is related to memory and cognitive function, is reduced in the brains of patients with AD. Therefore, enhancing neurogenesis is a potential therapeutic strategy for neurodegenerative diseases, including AD. Hesperidin (HSP), a bioflavonoid found primarily in citrus plants, has anti-inflammatory, antioxidant, and neuroprotective effects. The objective of this study was to determine the effects of HSP on neurogenesis in neural stem cells (NSCs) isolated from the brain of mouse embryos and five familial AD (5xFAD) mice. In NSCs, HSP significantly increased the proliferation of NSCs by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK)/cAMP-response element-binding protein (CREB) signaling, but did not affect NSC differentiation into neurons and astrocytes. HSP administration restored neurogenesis in the hippocampus of 5xFAD mice via AMPK/brain-derived neurotrophic factor/tropomyosin receptor kinase B/CREB signaling, thereby decreasing amyloid-beta accumulation and ameliorating memory dysfunction. Collectively, these preclinical findings suggest that HSP is a promising candidate for the prevention and treatment of AD.
Collapse
|
9
|
Alsanie WF, Abdelrahman S, Alhomrani M, Gaber A, Habeeballah H, Alkhatabi HA, Felimban RI, Hauser CAE, Tayeb HH, Alamri AS, Raafat BM, Anwar S, Alswat KA, Althobaiti YS, Asiri YA. Prenatal Exposure to Gabapentin Alters the Development of Ventral Midbrain Dopaminergic Neurons. Front Pharmacol 2022; 13:923113. [PMID: 35942222 PMCID: PMC9356305 DOI: 10.3389/fphar.2022.923113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Gabapentin is widely prescribed as an off-label drug for the treatment of various diseases, including drug and alcohol addiction. Approximately 83–95% of the usage of gabapentin is off-label, accounting for more than 90% of its sales in the market, which indicates an alarming situation of drug abuse. Such misuse of gabapentin has serious negative consequences. The safety of the use of gabapentin in pregnant women has always been a serious issue, as gabapentin can cross placental barriers. The impact of gabapentin on brain development in the fetus is not sufficiently investigated, which poses difficulties in clinical decisions regarding prescriptions.Methods: The consequences effect of prenatal gabapentin exposure on the development of ventral midbrain dopaminergic neurons were investigated using three-dimensional neuronal cell cultures. Time-mated Swiss mice were used to isolate embryos. The ventral third of the midbrain was removed and used to enrich the dopaminergic population in 3D cell cultures that were subsequently exposed to gabapentin. The effects of gabapentin on the viability, ATP release, morphogenesis and genes expression of ventral midbrain dopaminergic neurons were investigated.Results: Gabapentin treatment at the therapeutic level interfered with the neurogenesis and morphogenesis of vmDA neurons in the fetal brain by causing changes in morphology and alterations in the expression of key developmental genes, such as Nurr1, Chl1, En1, Bdnf, Drd2, and Pitx3. The TH + total neurite length and dominant neurite length were significantly altered. We also found that gabapentin could halt the metabolic state of these neuronal cells by blocking the generation of ATP.Conclusion: Our findings clearly indicate that gabapentin hampers the morphogenesis and development of dopaminergic neurons. This implies that the use of gabapentin could lead to serious complications in child-bearing women. Therefore, caution must be exercised in clinical decisions regarding the prescription of gabapentin in pregnant women.
Collapse
Affiliation(s)
- Walaa F. Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
- *Correspondence: Walaa F. Alsanie,
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, (KAUST), Jeddah, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hamza Habeeballah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Centre, Hematology Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed I. Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University (KAUST), Jeddah, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, (KAUST), Jeddah, Saudi Arabia
| | - Hossam H. Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), Nanomedicine Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Bassem M. Raafat
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Khaled A. Alswat
- Department of Internal Medicine, School of Medicine, Taif University, Taif, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
| | - Yousif A. Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
10
|
Abdelrahman S, Alsanie WF, Khan ZN, Albalawi HI, Felimban RI, Moretti M, Steiner N, Chaudhary AG, Hauser CAE. A Parkinson's disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic peptide scaffold. Biofabrication 2022; 14. [PMID: 35793642 DOI: 10.1088/1758-5090/ac7eec] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder that affects movement. It is associated with lost dopaminergic (DA) neurons in thesubstantia nigra, a process that is not yet fully understood. To understand this deleterious disorder, there is an immense need to develop efficientin vitrothree-dimensional (3D) models that can recapitulate complex organs such as the brain. However, due to the complexity of neurons, selecting suitable biomaterials to accommodate them is challenging. Here, we report on the fabrication of functional DA neuronal 3D models using ultrashort self-assembling tetrapeptide scaffolds. Our peptide-based models demonstrate biocompatibility both for primary mouse embryonic DA neurons and for human DA neurons derived from human embryonic stem cells. DA neurons encapsulated in these scaffolds responded to 6-hydroxydopamine, a neurotoxin that selectively induces loss of DA neurons. Using multi-electrode arrays, we recorded spontaneous activity in DA neurons encapsulated within these 3D peptide scaffolds for more than 1 month without decrease of signal intensity. Additionally, vascularization of our 3D models in a co-culture with endothelial cells greatly promoted neurite outgrowth, leading to denser network formation. This increase of neuronal networks through vascularization was observed for both primary mouse DA and cortical neurons. Furthermore, we present a 3D bioprinted model of DA neurons inspired by the mouse brain and created with an extrusion-based 3D robotic bioprinting system that was developed during previous studies and is optimized with time-dependent pulsing by microfluidic pumps. We employed a hybrid fabrication strategy that relies on an external mold of the mouse brain construct that complements the shape and size of the desired bioprinted model to offer better support during printing. We hope that our 3D model provides a platform for studies of the pathogenesis of PD and other neurodegenerative disorders that may lead to better understanding and more efficient treatment strategies.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Zainab N Khan
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hamed I Albalawi
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nadia Steiner
- Biological and Environmental Science and Engineering (BESE), Laboratory of Cellular Imaging and Energetics (LCIE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adeel G Chaudhary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Cukier HN, Kim H, Griswold AJ, Codreanu SG, Prince LM, Sherrod SD, McLean JA, Dykxhoorn DM, Ess KC, Hedera P, Bowman AB, Neely MD. Genomic, transcriptomic, and metabolomic profiles of hiPSC-derived dopamine neurons from clinically discordant brothers with identical PRKN deletions. NPJ Parkinsons Dis 2022; 8:84. [PMID: 35768426 PMCID: PMC9243035 DOI: 10.1038/s41531-022-00346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating. Thus, we hypothesized that the presence of additional genetic modifiers, including genetic loci relevant to mesencephalic dopamine neuron development, could potentially contribute to the different clinical manifestations of the two brothers. We differentiated human-induced pluripotent stem cells (hiPSCs) derived from the two brothers into mesencephalic neural precursor cells and early postmitotic dopaminergic neurons and performed wholeexome sequencing and transcriptomic and metabolomic analyses. No significant differences in the expression of canonical dopamine neuron differentiation markers were observed. Yet our transcriptomic analysis revealed a significant downregulation of the expression of three neurodevelopmentally relevant cell adhesion molecules, CNTN6, CNTN4 and CHL1, in the cultures of the more severely affected brother. In addition, several HLA genes, known to play a role in neurodevelopment, were differentially regulated. The expression of EN2, a transcription factor crucial for mesencephalic dopamine neuron development, was also differentially regulated. We further identified differences in cellular processes relevant to dopamine metabolism. Lastly, wholeexome sequencing, transcriptomics and metabolomics data all revealed differences in glutathione (GSH) homeostasis, the dysregulation of which has been previously associated with PD. In summary, we identified genetic differences which could potentially, at least partially, contribute to the discordant clinical PD presentation of the two brothers.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simona G Codreanu
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin C Ess
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA.
| | - M Diana Neely
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
13
|
The Effects of Prenatal Exposure to Pregabalin on the Development of Ventral Midbrain Dopaminergic Neurons. Cells 2022; 11:cells11050852. [PMID: 35269474 PMCID: PMC8909856 DOI: 10.3390/cells11050852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/04/2022] Open
Abstract
Pregabalin is widely used as a treatment for multiple neurological disorders; however, it has been reported to have the potential for misuse. Due to a lack of safety studies in pregnancy, pregabalin is considered the last treatment option for various neurological diseases, such as neuropathic pain. Therefore, pregabalin abuse in pregnant women, even at therapeutic doses, may impair fetal development. We used primary mouse embryonic neurons to investigate whether exposure to pregabalin can impair the morphogenesis and differentiation of ventral midbrain neurons. This study focused on ventral midbrain dopaminergic neurons, as they are responsible for cognition, movement, and behavior. The results showed that pregabalin exposure during early brain development induced upregulation of the dopaminergic progenitor genes Lmx1a and Nurr1 and the mature dopaminergic gene Pitx3. Interestingly, pregabalin had different effects on the morphogenesis of non-dopaminergic ventral midbrain neurons. Importantly, our findings illustrated that a therapeutic dose of pregabalin (10 μM) did not affect the viability of neurons. However, it caused a decrease in ATP release in ventral midbrain neurons. We demonstrated that exposure to pregabalin during early brain development could interfere with the neurogenesis and morphogenesis of ventral midbrain dopaminergic neurons. These findings are crucial for clinical consideration of the use of pregabalin during pregnancy.
Collapse
|
14
|
Bartlett TE, Kosmidis I, Silva R. Two-way sparsity for time-varying networks with applications in genomics. Ann Appl Stat 2021. [DOI: 10.1214/20-aoas1416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Yang S, Emelyanov A, You MS, Sin M, Korzh V. Camel regulates development of the brain ventricular system. Cell Tissue Res 2021; 383:835-852. [PMID: 32902807 PMCID: PMC7904751 DOI: 10.1007/s00441-020-03270-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/29/2020] [Indexed: 10/25/2022]
Abstract
Development of the brain ventricular system of vertebrates and the molecular mechanisms involved are not fully understood. The developmental genes expressed in the elements of the brain ventricular system such as the ependyma and circumventricular organs act as molecular determinants of cell adhesion critical for the formation of brain ventricular system. They control brain development and function, including the flow of cerebrospinal fluid. Here, we describe the novel distantly related member of the zebrafish L1-CAM family of genes-camel. Whereas its maternal transcripts distributed uniformly, the zygotic transcripts demonstrate clearly defined expression patterns, in particular in the axial structures: floor plate, hypochord, and roof plate. camel expresses in several other cell lineages with access to the brain ventricular system, including the midbrain roof plate, subcommissural organ, organum vasculosum lamina terminalis, median eminence, paraventricular organ, flexural organ, and inter-rhombomeric boundaries. This expression pattern suggests a role of Camel in neural development. Several isoforms of Camel generated by differential splicing of exons encoding the sixth fibronectin type III domain enhance cell adhesion differentially. The antisense oligomer morpholino-mediated loss-of-function of Camel affects cell adhesion and causes hydrocephalus and scoliosis manifested via the tail curled down phenotype. The subcommissural organ's derivative-the Reissner fiber-participates in the flow of cerebrospinal fluid. The Reissner fiber fails to form upon morpholino-mediated Camel loss-of-function. The Camel mRNA-mediated gain-of-function causes the Reissner fiber misdirection. This study revealed a link between Chl1a/Camel and Reissner fiber formation, and this supports the idea that CHL1 is one of the scoliosis factors.
Collapse
Affiliation(s)
- Shulan Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Alexander Emelyanov
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Institute for Research on Cancer and Aging, Nice, France
| | - May-Su You
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- National Health Research Institutes, Zhunan, Taiwan
| | - Melvin Sin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
16
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Ádám Á, Kemecsei R, Company V, Murcia-Ramón R, Juarez I, Gerecsei LI, Zachar G, Echevarría D, Puelles E, Martínez S, Csillag A. Gestational Exposure to Sodium Valproate Disrupts Fasciculation of the Mesotelencephalic Dopaminergic Tract, With a Selective Reduction of Dopaminergic Output From the Ventral Tegmental Area. Front Neuroanat 2020; 14:29. [PMID: 32581730 PMCID: PMC7290005 DOI: 10.3389/fnana.2020.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/11/2020] [Indexed: 01/14/2023] Open
Abstract
Gestational exposure to valproic acid (VPA) is known to cause behavioral deficits of sociability, matching similar alterations in human autism spectrum disorder (ASD). Available data are scarce on the neuromorphological changes in VPA-exposed animals. Here, we focused on alterations of the dopaminergic system, which is implicated in motivation and reward, with relevance to social cohesion. Whole brains from 7-day-old mice born to mothers given a single injection of VPA (400 mg/kg b.wt.) on E13.5 were immunostained against tyrosine hydroxylase (TH). They were scanned using the iDISCO method with a laser light-sheet microscope, and the reconstructed images were analyzed in 3D for quantitative morphometry. A marked reduction of mesotelencephalic (MT) axonal fascicles together with a widening of the MT tract were observed in VPA treated mice, while other major brain tracts appeared anatomically intact. We also found a reduction in the abundance of dopaminergic ventral tegmental (VTA) neurons, accompanied by diminished tissue level of DA in ventrobasal telencephalic regions (including the nucleus accumbens (NAc), olfactory tubercle, BST, substantia innominata). Such a reduction of DA was not observed in the non-limbic caudate-putamen. Conversely, the abundance of TH+ cells in the substantia nigra (SN) was increased, presumably due to a compensatory mechanism or to an altered distribution of TH+ neurons occupying the SN and the VTA. The findings suggest that defasciculation of the MT tract and neuronal loss in VTA, followed by diminished dopaminergic input to the ventrobasal telencephalon at a critical time point of embryonic development (E13-E14) may hinder the patterning of certain brain centers underlying decision making and sociability.
Collapse
Affiliation(s)
- Ágota Ádám
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Róbert Kemecsei
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Verónica Company
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - Raquel Murcia-Ramón
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - Iris Juarez
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - László I Gerecsei
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Diego Echevarría
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - Eduardo Puelles
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - Salvador Martínez
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - András Csillag
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Kotarska A, Fernandes L, Kleene R, Schachner M. Cell adhesion molecule close homolog of L1 binds to the dopamine receptor D2 and inhibits the internalization of its short isoform. FASEB J 2020; 34:4832-4851. [PMID: 32052901 DOI: 10.1096/fj.201900577rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023]
Abstract
Cell adhesion molecule close homolog of L1 (CHL1) and the dopamine receptor D2 (DRD2) are associated with psychiatric and mental disorders. We here show that DRD2 interacts with CHL1 in mouse brain, as evidenced by co-immunostaining, proximity ligation assay, co-immunoprecipitation, and pull-down assay with recombinant extracellular CHL1 domain fused to Fc (CHL1-Fc). Direct binding of CHL1-Fc to the first extracellular loop of DRD2 was shown by ELISA. Using HEK cells transfected to co-express CHL1 and the short (DRD2-S) or long (DRD2-L) DRD2 isoforms, co-localization of CHL1 and both isoforms was observed by immunostaining and proximity ligation assay. Moreover, CHL1 inhibited agonist-triggered internalization of DRD2-S. Proximity ligation assay showed close interaction between CHL1 and DRD2 in neurons expressing dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP32) or tyrosine hydroxylase (TH) in tissue sections of adult mouse striatum. In cultures of striatum or ventral midbrain, CHL1 was also closely associated with DRD2 in DARPP32- or TH-immunopositive cells, respectively. In the dorsal striatum of CHL1-deficient mice, lower levels of DRD2 and phosphorylated TH were observed, when compared to wild-type littermates. In the ventral striatum of CHL1-deficient mice, levels of phosphorylated DARPP32 were reduced. We propose that CHL1 regulates DRD2-dependent presynaptic and postsynaptic functions.
Collapse
Affiliation(s)
- Agnieszka Kotarska
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
19
|
Axonal Growth of Midbrain Dopamine Neurons is Modulated by the Cell Adhesion Molecule ALCAM Through Trans-Heterophilic Interactions with L1cam, Chl1, and Semaphorins. J Neurosci 2019; 39:6656-6667. [PMID: 31300520 DOI: 10.1523/jneurosci.0278-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
The growth of axons corresponding to different neuronal subtypes is governed by unique expression profiles of molecules on the growth cone. These molecules respond to extracellular cues either locally though cell adhesion interactions or over long distances through diffusible gradients. Here, we report that that the cell adhesion molecule ALCAM (CD166) can act as an extracellular substrate to selectively promote the growth of murine midbrain dopamine (mDA) neuron axons through a trans-heterophilic interaction with mDA-bound adhesion molecules. In mixed-sex primary midbrain cultures, the growth-promoting effect of ALCAM was abolished by neutralizing antibodies for components of the Semaphorin receptor complex Nrp1, Chl1, or L1cam. The ALCAM substrate was also found to modulate the response of mDA neurites to soluble semaphorins in a context-specific manner by abolishing the growth-promoting effect of Sema3A but inducing a branching response in the presence of Sema3C. These findings identify a previously unrecognized guidance mechanism whereby cell adhesion molecules act in trans to modulate the response of axonal growth cones to soluble gradients to selectively orchestrate the growth and guidance of mDA neurons.SIGNIFICANCE STATEMENT The mechanisms governing the axonal connectivity of midbrain dopamine (mDA) neurons during neural development have remained rather poorly understood relative to other model systems for axonal growth and guidance. Here, we report a series of novel interactions between proteins previously not identified in the context of mDA neuronal growth. Significantly, the results suggest a previously unrecognized mechanism involving the convergence in signaling between local, adhesion and long-distance, soluble cues. A better understanding of the molecules and mechanisms involved in establishment of the mDA system is important as a part of ongoing efforts to understand the consequence of conditions that may result from aberrant connectivity and also for cell replacement strategies for Parkinson's disease.
Collapse
|