1
|
Gandhi AC, Manjunatha K, Chan TS, Wu SY. Structural and Superconducting Proximity Effect of SnPb Bimetallic Nanoalloys. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4323. [PMID: 36500944 PMCID: PMC9738066 DOI: 10.3390/nano12234323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
We report the superconducting properties between a conventional strong-coupled Pb and weak-coupled Sn superconductor. A series of SnrPb1-r nanoalloys with various compositions r were synthesized, and their superconducting properties were measured using superconducting quantum interference devices (SQUIDs) magnetometer. Our results reveal a superconducting proximity effect (SPE) between immiscible Sn and Pb granules in the range of r = 0.2~0.9, as a weak superconducting coupling can be established with the coexistence of phonon hardening and increased Ginzburg-Landau coherence length. Furthermore, our results provide new insights into improving the study of the superconducting proximity effect introduced by Sn doping.
Collapse
Affiliation(s)
- Ashish Chhaganlal Gandhi
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sheng Yun Wu
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| |
Collapse
|
2
|
Campi D, Kumari S, Marzari N. Prediction of Phonon-Mediated Superconductivity with High Critical Temperature in the Two-Dimensional Topological Semimetal W 2N 3. NANO LETTERS 2021; 21:3435-3442. [PMID: 33856216 DOI: 10.1021/acs.nanolett.0c05125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional superconductors attract great interest both for their fundamental physics and for their potential applications, especially in the rapidly growing field of quantum computing. Despite intense theoretical and experimental efforts, materials with a reasonably high transition temperature are still rare. Even more rare are those that combine superconductivity with a nontrivial band topology that could potentially give rise to exotic states of matter. Here, we predict a remarkably high superconducting critical temperature of 21 K in the easily exfoliable, topologically nontrivial 2D semimetal W2N3. By studying its electronic and superconducting properties as a function of doping and strain, we also find large changes in the electron-phonon interactions that make this material a unique platform to study different coupling regimes and test the limits of current theories of superconductivity. Last, we discuss the possibility of tuning the material to achieve coexistence of superconductivity and topologically nontrivial edge states.
Collapse
Affiliation(s)
- Davide Campi
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Simran Kumari
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicola Marzari
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Gandhi AC, Lai CY, Wu KT, Ramacharyulu PVRK, Koli VB, Cheng CL, Ke SC, Wu SY. Phase transformation and room temperature stabilization of various Bi 2O 3 nano-polymorphs: effect of oxygen-vacancy defects and reduced surface energy due to adsorbed carbon species. NANOSCALE 2020; 12:24119-24137. [PMID: 33242052 DOI: 10.1039/d0nr06552h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the grain growth from the nanoscale to microscale and a transformation sequence from Bi →β-Bi2O3→γ-Bi2O3→α-Bi2O3 with the increase of annealing temperature. The room temperature (RT) stabilization of β-Bi2O3 nanoparticles (NPs) was attributed to the effect of reduced surface energy due to adsorbed carbon species, and oxygen vacancy defects may have played a significant role in the RT stabilization of γ-Bi2O3 NPs. An enhanced red emission band was evident from all the samples attributed to oxygen-vacancy defects formed during the growth process in contrast with the observed white emission band from the air annealed Bi ingots. Based on our experimental findings, the air annealing induced oxidation of Bi NPs and transformation mechanism within various Bi2O3 nano-polymorphs are presented. The outcome of this study suggests that oxygen vacancy defects at the nanoscale play a significant role in both structural stabilization and phase transformation within various Bi2O3 nano-polymorphs, which is significant from theoretical consideration.
Collapse
|
4
|
Gandhi AC, Wu SY. Phase Diagram and Superconductivity: New Insight into the Fundamentals of InSn Bimetallic Alloys. Inorg Chem 2019; 58:794-802. [PMID: 30557006 DOI: 10.1021/acs.inorgchem.8b02941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the crystal structure and superconducting phase diagram for In pSn1- p (0.01 ≤ p ≤ 0.99) bimetallic alloys. A weak electron-phonon coupling was observed in intergranular linked InSn superconductors over an infinite range mediated by high-energy phonons. An enhanced TC(0) ∼ 6.2 K and critical field HC(0) ∼ 2.7 kOe were determined from intermediate (γ-Sn + β-InSn) composite alloys attributed to internal strain possibly originating from thermal expansion effect of constituent phases.
Collapse
Affiliation(s)
- Ashish C Gandhi
- Department of Physics , National Dong Hwa University , Hualien 97401 , Taiwan
| | - Sheng Yun Wu
- Department of Physics , National Dong Hwa University , Hualien 97401 , Taiwan
| |
Collapse
|
5
|
Machado T, Macedo NG, Assis M, Doñate-Buendia C, Mínguez-Vega G, Teixeira MM, Foggi CC, Vergani CE, Beltrán-Mir H, Andrés J, Cordoncillo E, Longo E. From Complex Inorganic Oxides to Ag-Bi Nanoalloy: Synthesis by Femtosecond Laser Irradiation. ACS OMEGA 2018; 3:9880-9887. [PMID: 31459116 PMCID: PMC6644639 DOI: 10.1021/acsomega.8b01264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/13/2018] [Indexed: 05/17/2023]
Abstract
Bimetallic nanoalloys with a wide variety of structures and compositions have been fabricated through many diverse techniques. Generally, various steps and chemicals are involved in their fabrication. In this study, the synthesis of Ag-Bi nanoalloys by femtosecond laser irradiation of an inorganic oxide Ag2WO4/NaBiO3 target without any chemicals like reducing agents or solvent is presented. The interaction between these materials and the ultrashort pulse of light allows the migration of Ag and Bi atoms from the crystal lattice to the particles surfaces and then to the plasma plume, where the reduction of the positively charged Ag and Bi species in their respective metallic species takes place. Subsequently, the controlled nucleation and growth of the Ag-Bi alloyed nanoparticles occurs in situ during the irradiation process in air. Although at the bulk level, these elements are highly immiscible, it was experimentally demonstrated that at nanoscale, the Ag-Bi nanoalloy can assume a randomly mixed structure with up to 6 ± 1 atom % of Bi solubilized into the face-centered cubic structure of Ag. Furthermore, the Ag-Bi binary system possesses high antibacterial activity against Staphylococcus aureus (methicillin-resistant and methicilin-susceptible), which is interesting for potential antimicrobial applications, consequently increasing their range of applicability. The present results provide potential insights into the structures formed by the Ag-Bi systems at the nanoscale and reveal a new processing method where complex inorganic oxides can be used as precursors for the controlled synthesis of alloyed bimetallic nanoparticles.
Collapse
Affiliation(s)
- Thales
R. Machado
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Nadia G. Macedo
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Marcelo Assis
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Carlos Doñate-Buendia
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Gladys Mínguez-Vega
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Mayara M. Teixeira
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Camila C. Foggi
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Carlos E. Vergani
- Faculdade
de Odontologia, Universidade Estadual Paulista
(UNESP), Araraquara 14801-385, São Paulo, Brazil
| | - Héctor Beltrán-Mir
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Juan Andrés
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Eloisa Cordoncillo
- Institut de Noves Tecnologies de la Imatge (INIT),
GROC, Departament
de Química
Inorgànica i Orgànica, and Departament de Química Física
i Analítica, Universitat Jaume I
(UJI), Castellón de la Plana 12071, Castelló, Spain
| | - Elson Longo
- Departamento
de Química, CDMF, Universidade Federal
de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
- E-mail:
| |
Collapse
|