1
|
Ma Y, Deng B, He R, Huang P. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication. Heliyon 2024; 10:e24593. [PMID: 38318070 PMCID: PMC10838744 DOI: 10.1016/j.heliyon.2024.e24593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
3D bioprinting has unlocked new possibilities for generating complex and functional tissues and organs. However, one of the greatest challenges lies in selecting the appropriate seed cells for constructing fully functional 3D artificial organs. Currently, there are no cell sources available that can fulfill all requirements of 3D bioprinting technologies, and each cell source possesses unique characteristics suitable for specific applications. In this review, we explore the impact of different 3D bioprinting technologies and bioink materials on seed cells, providing a comprehensive overview of the current landscape of cell sources that have been used or hold potential in 3D bioprinting. We also summarized key points to guide the selection of seed cells for 3D bioprinting. Moreover, we offer insights into the prospects of seed cell sources in 3D bioprinted organs, highlighting their potential to revolutionize the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Runbang He
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
2
|
Kahraman D, İlhan S, Cangi S, Işık AF, Bağcı C, Sağlam E. Comparative assessment of primary cancer cell culture techniques and cellular composition analysis in non-small cell lung cancer. Pathol Res Pract 2023; 248:154580. [PMID: 37307622 DOI: 10.1016/j.prp.2023.154580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Preclinical models are required to study individual therapy responses to improve all cancer treatments, particularly non-small cell lung cancer (NSCLC). Patient-derived explants (PDEs) culture model is of great importance in terms of the possibility of tumor cell culture with the microenvironment, and the development of molecular mechanisms and personalized treatment methods. In our study, primary tumor culture with microenvironment was performed using different methods from tumor tissues obtained from 51 patients with NSCLC. To identify the most efficient method, mechanical, enzymatic, and tumor fluid techniques were applied. While the malignant cell rate was > 95% in 3 of these cases, the cancer-associated fibroblasts (CAF) microenvironment was high in 46 (80-94%) and low in 2 (1-79%). Subtyping of cells obtained from culture was performed using the light microscope and, if necessary, additional immunohistochemical markers. Consequently, using different techniques, here we successfully performed primary cell culture from patients with NSCLC with microenvironment. Depending on the cell type and culture conditions, proliferation rate was shown to be altered.
Collapse
Affiliation(s)
- Demet Kahraman
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| | - Sedat İlhan
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey
| | - Sibel Cangi
- Department of Pathology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ahmet Feridun Işık
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey; Department of Thoracic Surgery, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Cansu Bağcı
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey
| | - Ebru Sağlam
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
3
|
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12:3. [PMID: 36624542 PMCID: PMC9830930 DOI: 10.1186/s40164-022-00363-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer heterogeneity determines cancer progression, treatment effects, and prognosis. However, the precise mechanism for this heterogeneity remains unknown owing to its complexity. Here, we summarize the origins of breast cancer heterogeneity and its influence on disease progression, recurrence, and therapeutic resistance. We review the possible mechanisms of heterogeneity and the research methods used to analyze it. We also highlight the importance of cell interactions for the origins of breast cancer heterogeneity, which can be further categorized into cooperative and competitive interactions. Finally, we provide new insights into precise individual treatments based on heterogeneity.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ling Zhan
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lan Luo
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
4
|
Clinical significance of ALDH1A1 expression and its association with E-cadherin and N-cadherin in resected large cell neuroendocrine carcinoma. Transl Oncol 2022; 19:101379. [PMID: 35219092 PMCID: PMC8881670 DOI: 10.1016/j.tranon.2022.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
It is the first study on the effect of ALDH1A1 on the prognosis of LCNEC. And we found ALDH1A1 acts as a favorable independent prognostic factor in LCNEC. We investigated the relationship between ALDH1A1 and EMT markers (E-cadherin/ N-cadherin) and found that ALDH1A1 is associated with epithelial phenotype marker E-cadherin in LCNEC. Our sample size is large and simple and the clinical data is complete. The exploration of the prognostic mechanism of LCNEC is of great significance to its classification, treatment and prognosis.
Background The roles of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) in solid tumors are well established. However, the interaction between CSCs and EMT in pulmonary large cell neuroendocrine carcinoma (LCNEC) remains unknown. The aim of this study was to investigate the expression and clinical significance of a CSC marker (ALDH1A1) and its correlation with Epithelial-like phenotype marker (E-cadherin) and Mesenchymal-like phenotype marker (N-cadherin) in LCNEC patients. Methods Immunohistochemistry (IHC) for ALDH1A1, E-cadherin and N-cadherin expression was conducted on tissue microarrays made from 79 resected LCNEC patient samples. ALDH1A1 protein expression was evaluated by the IHC score, and its correlations with the expression of E-cadherin, N-cadherin and clinicopathological features were determined based on IHC data. Survival analyses were also performed. Results ALDH1A1 was positively expressed in 75.9% (60/79 cases) of LCNEC patients. No significant difference in clinicopathological variables was observed between the ALDH1A1-negative and ALDH1A1-positive groups. However, ALDH1A1 expression was positively correlated with E-cadherin (Spearman's rho = 0.229, p-value = 0.007), which represents the epithelial-like phenotype, but not with N-cadherin. Patients with expression of ALDH1A1 had significantly longer disease-free survival (DFS) and overall survival (OS) than those who were ALDH1A1 negative (median DFS: 52 vs 12 months, p = 0.028; median OS: not reached; p = 0.027). Multivariate analysis showed that ALDH1A1 was an independent favorable prognostic factor for DFS (p = 0.032, HR: 0.438, 95% CI: 0.206–0.932) and OS (p = 0.025, HR: 0.279, 95% CI: 0.091–0.852) in LCNEC patients. Conclusion This study suggests that ALDH1A1 can act as a favorable independent prognostic factor for LCNEC, which related to the epithelioid phenotype in EMT, and its internal mechanism needs further study.
Collapse
|
5
|
Polonio-Alcalá E, Rabionet M, Ruiz-Martínez S, Palomeras S, Porta R, Vásquez-Dongo C, Bosch-Barrera J, Puig T, Ciurana J. Polycaprolactone Electrospun Scaffolds Produce an Enrichment of Lung Cancer Stem Cells in Sensitive and Resistant EGFRm Lung Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13215320. [PMID: 34771484 PMCID: PMC8582538 DOI: 10.3390/cancers13215320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The culture of lung cancer stem cells (LCSCs) is not possible using traditional flat polystyrene surfaces. The study of these tumor-initiating cells is fundamental due to their key role in the resistance to anticancer therapies, tumor recurrence, and metastasis. Hence, we evaluated the use of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSC population in sensitive and resistant EGFR-mutated lung adenocarcinoma models. Our findings revealed that both cell models seeded on PCL-ES structures showed a higher drug resistance, enhanced levels of several genes and proteins related to epithelial-to-mesenchymal process, stemness, and surface markers, and the activation of the Hedgehog pathway. We also determined that the non-expression of CD133 was associated with a low degree of histological differentiation, disease progression, distant metastasis, and worse overall survival in EGFR-mutated non-small cell lung cancer patients. Therefore, we confirmed PCL-ES scaffolds as a suitable three-dimensional cell culture model for the study of LCSC niche. Abstract The establishment of a three-dimensional (3D) cell culture model for lung cancer stem cells (LCSCs) is needed because the study of these stem cells is unable to be done using flat surfaces. The study of LCSCs is fundamental due to their key role in drug resistance, tumor recurrence, and metastasis. Hence, the purpose of this work is the evaluation of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSCs in sensitive and resistant EGFR-mutated (EGFRm) lung adenocarcinoma cell models. We performed a thermal, physical, and biological characterization of 10% and 15%-PCL-ES structures. Several genes and proteins associated with LCSC features were analyzed by RT-qPCR and Western blot. Vimentin and CD133 tumor expression were evaluated in samples from 36 patients with EGFRm non-small cell lung cancer through immunohistochemistry. Our findings revealed that PC9 and PC9-GR3 models cultured on PCL-ES scaffolds showed higher resistance to osimertinib, upregulation of ABCB1, Vimentin, Snail, Twist, Sox2, Oct-4, and CD166, downregulation of E-cadherin and CD133, and the activation of Hedgehog pathway. Additionally, we determined that the non-expression of CD133 was significantly associated with a low degree of histological differentiation, disease progression, and distant metastasis. To sum up, we confirmed PCL-ES scaffolds as a suitable 3D cell culture model for the study of the LCSC niche.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Marc Rabionet
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Sònia Palomeras
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Rut Porta
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Medical Oncology Department, Catalan Institute of Oncology, 17007 Girona, Spain;
| | - Carmen Vásquez-Dongo
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Department of Pathology, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | | | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| |
Collapse
|
6
|
Enkhbat M, Liu Y, Kim J, Xu Y, Yin Z, Liu T, Deng C, Zou C, Xie X, Li X, Wang P. Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yung‐Chiang Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Jua Kim
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Yanshan Xu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Zongyi Yin
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Tzu‐Ming Liu
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chu‐Xia Deng
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chang Zou
- The First Affiliated Hospital of Southern University Shenzhen People's Hospital Shenzhen Guangdong 518020 China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Peng‐Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- Department of Chemistry and Biotechnology Swinburne University of Technology Victoria 3122 Australia
| |
Collapse
|
7
|
Llamazares-Prada M, Espinet E, Mijošek V, Schwartz U, Lutsik P, Tamas R, Richter M, Behrendt A, Pohl ST, Benz NP, Muley T, Warth A, Heußel CP, Winter H, Landry JJM, Herth FJ, Mertens TC, Karmouty-Quintana H, Koch I, Benes V, Korbel JO, Waszak SM, Trumpp A, Wyatt DM, Stahl HF, Plass C, Jurkowska RZ. Versatile workflow for cell type-resolved transcriptional and epigenetic profiles from cryopreserved human lung. JCI Insight 2021; 6:140443. [PMID: 33630765 PMCID: PMC8026197 DOI: 10.1172/jci.insight.140443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type-resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue.
Collapse
Affiliation(s)
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | | | | | - Pavlo Lutsik
- Division of Cancer Epigenomics, DKFZ, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | | | | | | | | | | | - Thomas Muley
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, Member of the DZL, Heidelberg, Germany
| | - Arne Warth
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Peter Heußel
- Translational Lung Research Center, Member of the DZL, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Center, Member of the DZL, Heidelberg, Germany
- Department of Surgery, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Felix J.F. Herth
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
- Department of Pneumology and Critical Care Medicine and Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Tinne C.J. Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Ina Koch
- Asklepios Biobank for Lung Diseases, Department of Thoracic Surgery, Asklepios Fachkliniken München-Gauting, DZL, Gauting, Germany
| | | | | | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | | | - Heiko F. Stahl
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, DKFZ, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Renata Z. Jurkowska
- BioMed X Institute, Heidelberg, Germany
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
8
|
The MyoD family inhibitor domain-containing protein enhances the chemoresistance of cancer stem cells in the epithelial state by increasing β-catenin activity. Oncogene 2020; 39:2377-2390. [PMID: 31911618 DOI: 10.1038/s41388-019-1152-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Cancer cells with mesenchymal attributes potentially display chemoresistance. Cancer stem cells (CSCs), which are intrinsically resistant to most chemotherapy agents, exhibit considerable phenotypic heterogeneity in their epithelial versus mesenchymal states. However, the drug response of CSCs in the epithelial and mesenchymal states has not been completely investigated. In this study, we found that epithelial-type (E-cadherinhigh/CD133high) CSCs displayed a higher sphere formation ability and chemoresistance than mesenchymal-type (E-cadherinlowCD133high) CSCs. Gene expression profiling of the CSC and non-CSC subpopulations with distinct epithelial-to-mesenchymal transition (EMT) states showed that MyoD family inhibitor domain-containing (MDFIC) was selectively upregulated in epithelial-type CSCs. Knockdown of MDFIC sensitized epithelial-type CSCs to chemotherapy agents. Ectopic expression of MDFIC increased the chemoresistance of mesenchymal-type CSCs. In a tissue microarray, high MDFIC expression was associated with poor prognosis of non-small cell lung cancer (NSCLC) patients. A mechanistic study showed that the MDFIC p32 isoform, which is located in the cytoplasm, interacted with the destruction complex, Axin/GSK-3/β-catenin. This interaction stabilized β-catenin by inhibiting β-catenin phosphorylation at S33/37 and increased the nuclear translocation and transcriptional activity of β-catenin. Knockdown of β-catenin decreased MDFIC-enhanced chemoresistance. These results suggested that the upregulation of MDFIC enhanced the chemoresistance of epithelial-type CSCs by elevating β-catenin activity. Thus, targeting MDFIC-regulated β-catenin signaling of epithelial-type CSCs may be a potential strategy to overcome chemoresistance in NSCLC.
Collapse
|
9
|
Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Sighinolfi P, Stefani A, Morandi U, Dominici M, Aramini B. Isolation and Identification of Cancer Stem-Like Cells in Adenocarcinoma and Squamous Cell Carcinoma of the Lung: A Pilot Study. Front Oncol 2019; 9:1394. [PMID: 31921651 PMCID: PMC6930193 DOI: 10.3389/fonc.2019.01394] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Lung cancer stem cells (CSCs) share many characteristics with normal stem cells, such as self-renewal and multipotentiality. High expression of aldehyde dehydrogenase (ALDH) has been detected in many tumors, particularly in the CSC compartment, and it plays an important role in tumor proliferation, metastasis, and drug resistance. CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumors. The aim of this study was to isolate and analyze cancer stem-like cells from surgically removed specimens to compare lung adenocarcinoma (ADENO) and squamous (SQUAMO) cell carcinoma. Methods: The ALDEFLUOR assay was used to identify and sort ALDHhigh and ALDHlow human lung cancer cells following tissue digestion. Fluorescence-activated cell sorting analysis for CD44 was performed with tumor cells. Quantitative real-time PCR was performed to assess the expression of SOX2 and NANOG as stemness markers. ALDH1A1 expression was additionally determined by immunohistochemistry. Anchorage-independent ALDHhigh cell growth was also evaluated. ALDHhigh ADENO and SQUAMO cells were cultured to analyze spheroid formation. Results: All specimens contained 0.5-12.5% ALDHhigh cells with 3.8-18.9% CD44-positive cells. SOX2 and NANOG relative expression in ALDHhigh compared to ALDHlow cells in ADENO and SQUAMO was analyzed and compared between the histotypes. Immunohistochemistry confirmed the presence of ALDH1A1 in the sections. SOX2 and NANOG were expressed at higher levels in the ALDHhigh subpopulation than in the ALDHlow subpopulation only in ADENO cells, and the opposite result was seen in SQUAMO cells. In vitro functional assays demonstrated that ALDHhigh cells exhibited migration capacity with distinct behaviors between ALDHhigh spheres in ADENO vs. SQUAMO samples. Conclusions: Our results highlight the importance of a better characterization of cancer stem-like cells in ADENO and SQUAMO histotypes. This may suggest new differential approaches for prognostic and therapeutic purposes in patients with non-small-cell lung cancer.
Collapse
Affiliation(s)
- Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.,Rigenerand SRL, Modena, Italy
| | - Federico Banchelli
- Department of Medical and Surgical Sciences for Children & Adults, Center of Medical Statistic, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Department of Medical and Surgical Sciences for Children & Adults, Center of Medical Statistic, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Department of Medical and Surgical Sciences for Children & Adults, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Pamela Sighinolfi
- Department of Medical and Surgical Sciences for Children & Adults, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Stefani
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Serçin Ö, Reither S, Roidos P, Ballin N, Palikyras S, Baginska A, Rein K, Llamazares M, Halavatyi A, Winter H, Muley T, Jurkowska RZ, Abdollahi A, Zenke FT, Neumann B, Mardin BR. A solid-phase transfection platform for arrayed CRISPR screens. Mol Syst Biol 2019; 15:e8983. [PMID: 31885201 PMCID: PMC6926425 DOI: 10.15252/msb.20198983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Arrayed CRISPR-based screens emerge as a powerful alternative to pooled screens making it possible to investigate a wide range of cellular phenotypes that are typically not amenable to pooled screens. Here, we describe a solid-phase transfection platform that enables CRISPR-based genetic screens in arrayed format with flexible readouts. We demonstrate efficient gene knockout upon delivery of guide RNAs and Cas9/guide RNA ribonucleoprotein complexes into untransformed and cancer cell lines. In addition, we provide evidence that our platform can be easily adapted to high-throughput screens and we use this approach to study oncogene addiction in tumor cells. Finally demonstrating that the human primary cells can also be edited using this method, we pave the way for rapid testing of potential targeted therapies.
Collapse
Affiliation(s)
| | - Sabine Reither
- Advanced Light Microscopy FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | | | | | | | | | | | | | - Aliaksandr Halavatyi
- Advanced Light Microscopy FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Hauke Winter
- Department of SurgeryThoraxklinik at University Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
| | - Thomas Muley
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
- Thoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | | | - Amir Abdollahi
- Division of Molecular and Translational Radiation OncologyNational Center for Tumor Diseases (NCT)and German Cancer Research Center (DKFZ), Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Consortium (DKTK) Core Center HeidelbergHeidelbergGermany
| | - Frank T Zenke
- Translational Innovation Platform OncologyMerck KGaADarmstadtGermany
| | - Beate Neumann
- Advanced Light Microscopy FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | | |
Collapse
|
11
|
Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis 2019; 10:660. [PMID: 31506430 PMCID: PMC6737160 DOI: 10.1038/s41419-019-1898-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
The high resistance against current therapies found in non-small-cell lung cancer (NSCLC) has been associated to cancer stem-like cells (CSCs), a population for which the identification of targets and biomarkers is still under development. In this study, primary cultures from early-stage NSCLC patients were established, using sphere-forming assays for CSC enrichment and adherent conditions for the control counterparts. Patient-derived tumorspheres showed self-renewal and unlimited exponential growth potentials, resistance against chemotherapeutic agents, invasion and differentiation capacities in vitro, and superior tumorigenic potential in vivo. Using quantitative PCR, gene expression profiles were analyzed and NANOG, NOTCH3, CD44, CDKN1A, SNAI1, and ITGA6 were selected to distinguish tumorspheres from adherent cells. Immunoblot and immunofluorescence analyses confirmed that proteins encoded by these genes were consistently increased in tumorspheres from adenocarcinoma patients and showed differential localization and expression patterns. The prognostic role of genes significantly overexpressed in tumorspheres was evaluated in a NSCLC cohort (N = 661) from The Cancer Genome Atlas. Based on a Cox regression analysis, CDKN1A, SNAI1, and ITGA6 were found to be associated with prognosis and used to calculate a gene expression score, named CSC score. Kaplan–Meier survival analysis showed that patients with high CSC score have shorter overall survival (OS) in the entire cohort [37.7 vs. 60.4 months (mo), p = 0.001] and the adenocarcinoma subcohort [36.6 vs. 53.5 mo, p = 0.003], but not in the squamous cell carcinoma one. Multivariate analysis indicated that this gene expression score is an independent biomarker of prognosis for OS in both the entire cohort [hazard ratio (HR): 1.498; 95% confidence interval (CI), 1.167–1.922; p = 0.001] and the adenocarcinoma subcohort [HR: 1.869; 95% CI, 1.275–2.738; p = 0.001]. This score was also analyzed in an independent cohort of 114 adenocarcinoma patients, confirming its prognostic value [42.90 vs. not reached (NR) mo, p = 0.020]. In conclusion, our findings provide relevant prognostic information for lung adenocarcinoma patients and the basis for developing novel therapies. Further studies are required to identify suitable markers and targets for lung squamous cell carcinoma patients.
Collapse
|
12
|
ALDH1 expression correlates with an epithelial-like phenotype and favorable prognosis in lung adenocarcinoma: a study based on immunohistochemistry and mRNA expression data. J Cancer Res Clin Oncol 2019; 145:1427-1436. [PMID: 30923946 DOI: 10.1007/s00432-019-02906-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT) pathways are crucial for cancer progression. However, synergistic interactions between CSC and EMT are not clear in non-small cell lung cancer (NSCLC). The objective of this study was to investigate CSC markers such as CD44, NANOG, and ALDH1 expression and its correlation with EMT markers in NSCLC patients. Its association with survival was also determined. METHODS CD44, NANOG, and ALDH1 protein expression was evaluated in 267 resected NSCLC and its correlation with e-cadherin, β-catenin, p120 catenin, vimentin, SNAIL, and TWIST expressions was determined based on immunohistochemical and mRNA expression data from The Cancer Genome Atlas (TCGA) database. Survival analyses also were performed based on immunohistochemistry and mRNA expression data from Gene Expression Omnibus dataset. RESULTS ALDH1 expression in lung adenocarcinoma was positively correlated with the epithelial-like phenotype, low vimentin and low TWIST in immunohistochemical and mRNA expression data. NANOG and ALDH1 expressions measured by immunohistochemical and mRNA expression profiling data of adenocarcinomas were associated with a favorable prognosis. ALDH1 was an independent favorable prognostic marker for overall survival or recurrence-free survival in adenocarcinoma (P = 0.026 and P = 0.033, respectively). The epithelial-like phenotype expressing P120-catenin and beta-catenin was associated with a favorable prognosis; however, the TWIST-expressing mesenchymal-like phenotype was correlated with an unfavorable prognosis. CONCLUSIONS NANOG and ALDH1 protein or mRNA expression showed improved prognosis in adenocarcinoma alone. ALDH1 expression correlated with an epithelial-like phenotype.
Collapse
|
13
|
Abstract
Circulating tumor cells (CTCs) play a central role in tumor dissemination and metastases, which are ultimately responsible for most cancer deaths. Technologies that allow for identification and enumeration of rare CTC from cancer patients' blood have already established CTC as an important clinical biomarker for cancer diagnosis and prognosis. Indeed, current efforts to robustly characterize CTC as well as the associated cells of the tumor microenvironment such as circulating cancer associated fibroblasts (cCAF), are poised to unmask key insights into the metastatic process. Ultimately, the clinical utility of CTC will be fully realized once CTC can be reliably cultured and proliferated as a biospecimen for precision management of cancer patients, and for discovery of novel therapeutics. In this review, we highlight the latest CTC capture and analyses technologies, and discuss in vitro strategies for culturing and propagating CTC.
Collapse
Affiliation(s)
- Ashutosh Agarwal
- Assistant Professor, Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami
| | - Marija Balic
- Associate Professor, Division of Oncology, Department of Internal Medicine, Research Unit Circulating Tumor Cells and Cancer Stem Cells, Medical University of Graz, Austria
| | - Dorraya El-Ashry
- Associate Professor, Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Richard J. Cote
- Professor and Joseph R. Coulter Jr. Chair, Department of Pathology & Laboratory Medicine, Director, John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), University of Miami Miller School of Medicine
| |
Collapse
|
14
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
Affiliation(s)
- Njanja Enz
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
15
|
Petpiroon N, Bhummaphan N, Soonnarong R, Chantarawong W, Maluangnont T, Pongrakhananon V, Chanvorachote P. Ti0.8O2 Nanosheets Inhibit Lung Cancer Stem Cells by Inducing Production of Superoxide Anion. Mol Pharmacol 2019; 95:418-432. [DOI: 10.1124/mol.118.114447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/02/2019] [Indexed: 12/26/2022] Open
|
16
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
17
|
Choe C, Kim H, Min S, Park S, Seo J, Roh S. SOX2, a stemness gene, induces progression of NSCLC A549 cells toward anchorage-independent growth and chemoresistance to vinblastine. Onco Targets Ther 2018; 11:6197-6207. [PMID: 30288055 PMCID: PMC6163012 DOI: 10.2147/ott.s175810] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is difficult to treat successfully. This intractability is mainly due to the cancer progressing through invasion, metastasis, chemotherapeutic resistance and relapse. Stemness has been linked to the various steps of cancer progression in a variety of tumors, yet little is known regarding its role in NSCLC. Purpose In this study, we sought to determine the role of SOX2, a master regulator of pluripotency, in the growth of extracellular matrix (ECM)-detached cells during cancer progression. Methods We established a three-dimensional (3D) Poly-2-hydroxyethyl methacrylate (poly-HEMA) culture of lung adenocarcinoma (LUAD) A549 cells as an ECM-detached cell growth model and examined the role of stemness genes using siRNA and small molecule inhibitor in comparison to standard two dimensional (2D) culture. Results In poly-HEMA culture, A549 cells formed substratum-detached spheroids with characteristics of intermediate epithelial to mesenchymal transition (EMT) and exhibited greater expression of SOX2 than did control 2D cells. Knockdown of SOX2 markedly suppressed the growth of A549 cell aggregates in poly-HEMA culture conditions and furthermore increased their sensitivity to the anticancer drug vinblastine with concomitant downregulation of the activity of the anti-apoptotic AKT kinase. Interestingly, a small molecule, RepSox, which replaces SOX2, stimulated A549 cell growth in poly-HEMA 3D culture condition. Conclusion Our findings strongly indicate that SOX2 contributes to anchorage-independent growth and chemoresistance via its downstream signaling mediator AKT kinase during the disease progression of NSCLC. SOX2 may therefore be an invaluable therapeutic target of NSCLC.
Collapse
Affiliation(s)
- Chungyoul Choe
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea,
| | - Hyewon Kim
- Laboratory of Cellular Reprogramming and Embryo Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea,
| | - Sol Min
- Laboratory of Cellular Reprogramming and Embryo Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea,
| | - Sangkyu Park
- Laboratory of Cellular Reprogramming and Embryo Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea, .,Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do, Korea
| | - Jeongmin Seo
- Laboratory of Cellular Reprogramming and Embryo Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea, .,Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do, Korea
| | - Sangho Roh
- Laboratory of Cellular Reprogramming and Embryo Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea,
| |
Collapse
|
18
|
Chao HM, Chern E. Patient-derived induced pluripotent stem cells for models of cancer and cancer stem cell research. J Formos Med Assoc 2018; 117:1046-1057. [PMID: 30172452 DOI: 10.1016/j.jfma.2018.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are embryonic stem cell-like cells reprogrammed from somatic cells by four transcription factors, OCT4, SOX2, KLF4 and c-MYC. iPSCs derived from cancer cells (cancer-iPSCs) could be a novel strategy for studying cancer. During cancer cell reprogramming, the epigenetic status of the cancer cell may be altered, such that it acquires stemness and pluripotency. The cellular behavior of the reprogrammed cells exhibits dynamic changes during the different stages of reprogramming. The cells may acquire the properties of cancer stem cells (CSCs) during the process of reprogramming, and lose their carcinogenic properties during reprogramming into a cancer-iPSCs. Differentiation of cancer-iPSCs by teratoma formation or organoid culturing could mimic the process of tumorigenesis. Some of the molecular mechanisms associated with cancer progression could be elucidated using the cancer-iPSC model. Furthermore, cancer-iPSCs could be expanded in culture system or bioreactors, and serve as cell sources for research, and as personal disease models for therapy and drug screening. This article introduces cancer studies that used the cell reprogramming strategy.
Collapse
Affiliation(s)
- Hsiao-Mei Chao
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taiwan.
| |
Collapse
|
19
|
Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel) 2018; 10:E248. [PMID: 30060526 PMCID: PMC6116004 DOI: 10.3390/cancers10080248] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at 5 years). The two predominant NSCLC histological phenotypes are adenocarcinoma (ADC) and squamous cell carcinoma (LSQCC). ADCs display several recurrent genetic alterations, including: KRAS, BRAF and EGFR mutations; recurrent mutations and amplifications of several oncogenes, including ERBB2, MET, FGFR1 and FGFR2; fusion oncogenes involving ALK, ROS1, Neuregulin1 (NRG1) and RET. In LSQCC recurrent mutations of TP53, FGFR1, FGFR2, FGFR3, DDR2 and genes of the PI3K pathway have been detected, quantitative gene abnormalities of PTEN and CDKN2A. Developments in the characterization of lung cancer molecular abnormalities provided a strong rationale for new therapeutic options and for understanding the mechanisms of drug resistance. However, the complexity of lung cancer genomes is particularly high, as shown by deep-sequencing studies supporting the heterogeneity of lung tumors at cellular level, with sub-clones exhibiting different combinations of mutations. Molecular studies performed on lung tumors during treatment have shown the phenomenon of clonal evolution, thus supporting the occurrence of a temporal tumor heterogeneity.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
20
|
Fitches A. Molecular Med TRI-CON, 11–16 February 2018, San Francisco, USA. Mol Diagn Ther 2018; 22:255-258. [DOI: 10.1007/s40291-018-0326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Zhang R, Deng Y, Zhang Y, Zhai GQ, He RQ, Hu XH, Wei DM, Feng ZB, Chen G. Upregulation of HOXA13 as a potential tumorigenesis and progression promoter of LUSC based on qRT-PCR and bioinformatics. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10650-10665. [PMID: 31966409 PMCID: PMC6965808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the levels of homeobox A13 (HOXA13) and the mechanisms underlying the co-expressed genes of HOXA13 in lung squamous cancer (LUSC), the signaling pathways in which the co-expressed genes of HOXA13 are involved and their functional roles in LUSC. The clinical significance of 23 paired LUSC tissues and adjacent non-tumor tissues were gathered. HOXA13 levels in LUSC were detected by quantitative real-time polymerase chain reaction (qRT-PCR). HOXA13 levels in LUSC from The Cancer Genome Atlas (TCGA) and Oncomine were analyzed. We performed receiver operator characteristic (ROC) curves of various clinicopathological features of LUSC. Co-expressed of HOXA13 were collected from MEM, cBioPortal and GEPIA. The functions and pathways of the most reliable overlapped genes were achieved from the Gene Otology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. The protein-protein interaction (PPI) networks were mapped using STRING. HOXA13 in LUSC were markedly upregulated compared with those in the non-cancerous controls as demonstrated by qRT-PCR (LUSC: 0.330±0.360; CONTROLS: 0.155±0.142; P=0.021). TCGA (LUSC: 6.388±2.097, CONTROLS: 1.157±0.719; P<0.001) and Hou's study from Oncomine (LUSC: 1.154±0.260; CONTROLS: 0.957±0.065; P=0.001) showed the same tendency. Meanwhile, the area under the curve (AUC) of TNM was calculated as 0.877 with P=0.002. Based on the HOXA13 expression data from TCGA, the ROC of the tissue types was calculated as AUC=0.971 (P<0.001). In addition, 506 genes were filtered as co-expression genes of HOXA13. The 3 most significant KEGG pathways were metabolic pathways (P=5.41E-15), the calcium signaling pathway (P=3.01E-11), and the cAMP signaling pathway (P=5.63E-11). MAPK1, GNG7, GNG12, PRKCA were selected as the hub genes. In conclusion, HOXA13 was upregulated and related to the TNM stage in LUSC. The expression of hub genes in LUSC might be deregulated by HOXA13. Moreover, the 4 co-expressed hub genes of HOXA13 might be crucial biomarkers for the diagnosis and prognosis of LUSC, as well as the development of novel therapeutic targets against LUSC.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Yun Deng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Gao-Qiang Zhai
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Dan-Ming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|