1
|
Ramasamy S, Madhu S, Choi J. Rapid and receptor-free Prussian blue electrochemical sensor for the detection of pathogenic bacteria in blood. Bioelectrochemistry 2025; 163:108902. [PMID: 39798421 DOI: 10.1016/j.bioelechem.2025.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO2-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture. PB thin films were electrodeposited onto a screen-printed carbon electrode (SPCE) via cyclic voltammetry (CV) technique under optimal conditions. The electrochemical performance of PB/SPCE was assessed using differential pulse voltammetry (DPV) against exoelectrogenic bacteria, including E. coli, P. aeruginosa, S. aureus, and E. faecalis. The proposed sensor exhibited surface-controlled electrochemical kinetics and bacteria-driven metal reduction from PB to Prussian white (PW), facilitated by extracellular electron transfer (EET). It showed significant sensitivity with an extensive detection range of 102-108 CFU/mL for E. coli and S. aureus, and 103-108 CFU/mL for P. aeruginosa and E. faecalis, with reliable detection limits. The sensor accessed the viability of the pathogen within 3 hrs, offering a rapid, efficient alternative to traditional, labor-intensive methods for blood-based diagnostics.
Collapse
Affiliation(s)
| | - Sekar Madhu
- Department of Mechanical Engineering, Ajou University, South Korea
| | - Jungil Choi
- Department of Mechanical Engineering, Ajou University, South Korea.
| |
Collapse
|
2
|
Manceau M, Farre C, Lagarde F, Mathey R, Buhot A, Vidic J, Léguillier V, Hou Y, Chaix C. Investigation of the Affinity of Aptamers for Bacteria by Surface Plasmon Resonance Imaging Using Nanosomes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29645-29656. [PMID: 38809175 DOI: 10.1021/acsami.4c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The cell-SELEX method enables efficient selection of aptamers that bind whole bacterial cells. However, after selection, it is difficult to determine their binding affinities using common screening methods because of the large size of the bacteria. Here we propose a simple surface plasmon resonance imaging method (SPRi) for aptamer characterization using bacterial membrane vesicles, called nanosomes, instead of whole cells. Nanosomes were obtained from membrane fragments after mechanical cell disruption in order to preserve the external surface epitopes of the bacterium used for their production. The study was conducted on Bacillus cereus (B. cereus), a Gram-positive bacterium commonly found in soil, rice, vegetables, and dairy products. Four aptamers and one negative control were initially grafted onto a biochip. The binding of B. cereus cells and nanosomes to immobilized aptamers was then compared. The use of nanosomes instead of cells provided a 30-fold amplification of the SPRi signal, thus allowing the selection of aptamers with higher affinities. Aptamer SP15 was found to be the most sensitive and selective for B. cereus ATCC14579 nanosomes. It was then truncated into three new sequences (SP15M, SP15S1, and SP15S2) to reduce its size while preserving the binding site. Fitting the results of the SPRi signal for B. cereus nanosomes showed a similar trend for SP15 and SP15M, and a slightly higher apparent association rate constant kon for SP15S2, which is the truncation with a high probability of a G-quadruplex structure. These observations were confirmed on nanosomes from B. cereus ATCC14579 grown in milk and from the clinical strain B. cereus J066. The developed method was validated using fluorescence microscopy on whole B. cereus cells and the SP15M aptamer labeled with a rhodamine. This study showed that nanosomes can successfully mimic the bacterial membrane with great potential for facilitating the screening of specific ligands for bacteria.
Collapse
Affiliation(s)
- Mathilde Manceau
- Université Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 69100 Villeurbanne, France
| | - Carole Farre
- Université Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 69100 Villeurbanne, France
| | - Florence Lagarde
- Université Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 69100 Villeurbanne, France
| | - Raphaël Mathey
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Arnaud Buhot
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 1319, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Vincent Léguillier
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 1319, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Yanxia Hou
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Carole Chaix
- Université Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 69100 Villeurbanne, France
| |
Collapse
|
3
|
Costa SP, Carvalho CM. Burden of bacterial bloodstream infections and recent advances for diagnosis. Pathog Dis 2022; 80:6631550. [PMID: 35790126 DOI: 10.1093/femspd/ftac027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bloodstream infections (BSIs) and subsequent organ dysfunction (sepsis and septic shock) are conditions that rank among the top reasons for human mortality and have a great impact on healthcare systems. Their treatment mainly relies on the administration of broad-spectrum antimicrobials since the standard blood culture-based diagnostic methods remain time-consuming for the pathogen's identification. Consequently, the routine use of these antibiotics may lead to downstream antimicrobial resistance and failure in treatment outcomes. Recently, significant advances have been made in improving several methodologies for the identification of pathogens directly in whole blood especially regarding specificity and time to detection. Nevertheless, for the widespread implementation of these novel methods in healthcare facilities, further improvements are still needed concerning the sensitivity and cost-effectiveness to allow a faster and more appropriate antimicrobial therapy. This review is focused on the problem of BSIs and sepsis addressing several aspects like their origin, challenges, and causative agents. Also, it highlights current and emerging diagnostics technologies, discussing their strengths and weaknesses.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.,International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Rua Alves Redol, 9 1000-029 Lisbon, Portugal
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
4
|
Technique Evolutions for Microorganism Detection in Complex Samples: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid detection of microorganisms is a major challenge in the medical and industrial sectors. In a pharmaceutical laboratory, contamination of medical products may lead to severe health risks for patients, such as sepsis. In the specific case of advanced therapy medicinal products, contamination must be detected as early as possible to avoid late production stop and unnecessary costs. Unfortunately, the conventional methods used to detect microorganisms are based on time-consuming and labor-intensive approaches. Therefore, it is important to find new tools to detect microorganisms in a shorter time frame. This review sums up the current methods and represents the evolution in techniques for microorganism detection. First, there is a focus on promising ligands, such as aptamers and antimicrobial peptides, cheaper to produce and with a broader spectrum of detection. Then, we describe methods achieving low limits of detection, thanks to Raman spectroscopy or precise handling of samples through microfluids devices. The last part is dedicated to techniques in real-time, such as surface plasmon resonance, preventing the risk of contamination. Detection of pathogens in complex biological fluids remains a scientific challenge, and this review points toward important areas for future research.
Collapse
|
5
|
Barbé B, Corsmit E, Jans J, Kaur K, Baets R, Jacobs J, Hardy L. Pilot Testing of the "Turbidimeter", a Simple, Universal Reader Intended to Complement and Enhance Bacterial Growth Detection in Manual Blood Culture Systems in Low-Resource Settings. Diagnostics (Basel) 2022; 12:615. [PMID: 35328168 PMCID: PMC8946860 DOI: 10.3390/diagnostics12030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bloodstream infections and antimicrobial resistance are an increasing problem in low-income countries. There is a clear need for adapted diagnostic tools. To address this need, we developed a simple, universal reader prototype that detects bacterial growth in blood culture bottles. Our "turbidimeter" evaluates bacterial growth, based on the turbidity of the broth and the color change of the colorimetric CO2 indicator in commercially available blood culture bottles. A total of 60 measurements were performed using 10 relevant microbial species, spiked in horse blood, to compare the turbidimeter's performance with that of an automatic reference system. The turbidimeter was able to detect growth in all but one of the spiked blood culture bottles. In the majority (7/10) of the species tested, time-to-detection of the turbidimeter was shown to be non-inferior to the reference automated time-to-detection. This was, however, only the case when both the turbidity and color change in the colorimetric CO2-indicator were used to evaluate growth. We could not demonstrate the non-inferiority of the turbidity measurement alone. Overall, the turbidimeter performed well, but we also identified some improvements that will be implemented in the next version of the prototype.
Collapse
Affiliation(s)
- Barbara Barbé
- Clinical Sciences Department, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (B.B.); (E.C.); (J.J.)
| | - Ellen Corsmit
- Clinical Sciences Department, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (B.B.); (E.C.); (J.J.)
| | - Jasper Jans
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium; (J.J.); (K.K.); (R.B.)
- Photonics Research Group, Department of Information Technology, Ghent University-imec, 9000 Ghent, Belgium
| | - Kamalpreet Kaur
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium; (J.J.); (K.K.); (R.B.)
- Photonics Research Group, Department of Information Technology, Ghent University-imec, 9000 Ghent, Belgium
| | - Roel Baets
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium; (J.J.); (K.K.); (R.B.)
- Photonics Research Group, Department of Information Technology, Ghent University-imec, 9000 Ghent, Belgium
| | - Jan Jacobs
- Clinical Sciences Department, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (B.B.); (E.C.); (J.J.)
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Liselotte Hardy
- Clinical Sciences Department, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (B.B.); (E.C.); (J.J.)
| |
Collapse
|
6
|
Bandemia as an Early Predictive Marker of Bacteremia: A Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042275. [PMID: 35206462 PMCID: PMC8872314 DOI: 10.3390/ijerph19042275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
This single-center retrospective observational study aimed to verify whether a diagnosis of bandemia could be a predictive marker for bacteremia. We assessed 970 consecutive patients (median age 73 years; male 64.8%) who underwent two or more sets of blood cultures between April 2015 and March 2016 in both inpatient and outpatient settings. We assessed the value of bandemia (band count > 10%) and the percentage band count for predicting bacteremia using logistic regression models. Bandemia was detected in 151 cases (15.6%) and bacteremia was detected in 188 cases (19.4%). The incidence of bacteremia was significantly higher in cases with bandemia (52.3% vs. 13.3%; odds ratio (OR) = 7.15; 95% confidence interval (CI) 4.91–10.5). The sensitivity and specificity of bandemia for predicting bacteremia were 0.42 and 0.91, respectively. The bandemia was retained as an independent predictive factor for the multivariable logistic regression model (OR, 6.13; 95% CI, 4.02–9.40). Bandemia is useful for establishing the risk of bacteremia, regardless of the care setting (inpatient or outpatient), with a demonstrable relationship between increased risk and bacteremia. A bandemia-based electronic alert for blood-culture collection may contribute to the improved diagnosis of bacteremia.
Collapse
|
7
|
Jia Z, Müller M, Le Gall T, Riool M, Müller M, Zaat SA, Montier T, Schönherr H. Multiplexed detection and differentiation of bacterial enzymes and bacteria by color-encoded sensor hydrogels. Bioact Mater 2021; 6:4286-4300. [PMID: 33997506 PMCID: PMC8105640 DOI: 10.1016/j.bioactmat.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
We report on the fabrication and characterization of color-encoded chitosan hydrogels for the rapid, sensitive and specific detection of bacterial enzymes as well as the selective detection of a set of tested bacteria through characteristic enzyme reactions. These patterned sensor hydrogels are functionalized with three different colorimetric enzyme substrates affording the multiplexed detection and differentiation of α-glucosidase, β-galactosidase and β-glucuronidase. The limits of detection of the hydrogels for an observation time of 60 min using a conventional microplate reader correspond to concentrations of 0.2, 3.4 and 4.5 nM of these enzymes, respectively. Based on their different enzyme expression patterns, Staphylococcus aureus strain RN4220, methicillin-resistant S. aureus (MRSA) strain N315, both producing α-glucosidase, but not β-glucuronidase and β-galactosidase, Escherichia coli strain DH5α, producing β-glucuronidase and α-glucosidase, but not β-galactosidase, and the enterohemorrhagic E. coli (EHEC) strain E32511, producing β-galactosidase, but none of the other two enzymes, can be reliably and rapidly distinguished from each other. These results confirm the applicability of enzyme sensing hydrogels for the detection and discrimination of specific enzymes to facilitate differentiation of bacterial strains. Patterned hydrogels thus possess the potential to be further refined as detection units of a multiplexed format to identify certain bacteria for future application in point-of-care microbiological diagnostics in food safety and medical settings.
Collapse
Affiliation(s)
- Zhiyuan Jia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078 GGFB, F-29200, Brest, France
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Max Müller
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078 GGFB, F-29200, Brest, France
- CHRU de Brest, Service de génétique médicale et de biologie de la reproduction, Centre de Référence des Maladies Rares « Maladies neuromusculaires », F-29200, Brest, France
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076, Siegen, Germany
| |
Collapse
|
8
|
DNA Microarray-based Detection of Bacteria in Samples Containing Antibiotics: Effect of Antibiotics on the Performance of Pathogen Detection Assays. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Park B, Wang B, Chen J. Label-Free Immunoassay for Multiplex Detections of Foodborne Bacteria in Chicken Carcass Rinse with Surface Plasmon Resonance Imaging. Foodborne Pathog Dis 2020; 18:202-209. [PMID: 33216648 DOI: 10.1089/fpd.2020.2850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The frequent outbreaks of foodborne pathogens have stimulated the demand of biosensors capable of rapid and multiplex detection of contaminated food. In this study, surface plasmon resonance imaging (SPRi) was used in simultaneous label-free detection of multiple foodborne pathogens, mainly Salmonella spp. and Shiga-toxin producing Escherichia coli (STEC), in commercial chicken carcass rinse. The antibodies were immobilized on the same SPRi sensor chip as a label-free immunoassay. Their immobilization concentrations were optimized to be ranging from 0.25 to 1.0 mg/mL, and independent of pH values. This label-free immunoassay achieved 106 colony-forming unit (CFU)/mL limit of detection for Salmonella, which was further improved to 1.0 CFU/mL with overnight bacteria enrichment. The injected samples with different bacteria, Salmonella Enteritidis, STEC, and Listeria monocytogenes, have been identified by the same biochip. Moreover, the SPRi signals revealed complex interference effects among coexisting bacteria species in heterogeneous bacteria solutions. This SPRi-based immunoassay demonstrates the great potential in high-throughput screening of multiple pathogenic bacteria coexisting in chicken carcass rinse. The reliability of antibody immobilization and cross-reactions of different antibodies on the same biochip are the major challenges of practical application of SPRi.
Collapse
Affiliation(s)
- Bosoon Park
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, Georgia, USA
| | - Bin Wang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, Georgia, USA
| | - Jing Chen
- Food Science Center, Merieux NutriSciences (China), Shanghai, China
| |
Collapse
|
10
|
Andrei CC, Moraillon A, Lau S, Felidj N, Yamakawa N, Bouckaert J, Larquet E, Boukherroub R, Ozanam F, Szunerits S, Chantal Gouget-Laemmel A. Rapid and sensitive identification of uropathogenic Escherichia coli using a surface-enhanced-Raman-scattering-based biochip. Talanta 2020; 219:121174. [PMID: 32887096 DOI: 10.1016/j.talanta.2020.121174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/01/2023]
Abstract
Rapid, selective and sensitive sensing of bacteria remains challenging. We report on a highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS)-based sensing approach for the detection of uropathogenic Escherichia coli (E. coli) bacteria in urine. The assay is based on the specific capture of the bacteria followed by interaction with cetyltrimethylammonium bromide (CTAB)-stabilised gold nanorods (Au NRS) as SERS markers. High sensitivity up to 10 CFU mL-1 is achieved by optimizing the capture interface based on hydrogenated amorphous silicon a-Si:H thin films. The integration of CH3O-PEG750 onto a-Si:H gives the sensing interface an efficient anti-fouling character, while covalent linkage of antibodies directed against the major type-1 fimbrial pilin FimA of the human pathogen E. coli results in the specific trapping of fimbriated E. coli onto the SERS substrate and their spectral fingerprint identification.
Collapse
Affiliation(s)
- Cristina-Cassiana Andrei
- Laboratoire de Physique de La Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Palaiseau, France
| | - Anne Moraillon
- Laboratoire de Physique de La Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Palaiseau, France
| | - Stephanie Lau
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France
| | - Nordin Felidj
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France
| | - Nao Yamakawa
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 of the CNRS and the Univ. Lille, 50 Avenue de Halley, 59658, Villeneuve d'Ascq, France
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 of the CNRS and the Univ. Lille, 50 Avenue de Halley, 59658, Villeneuve d'Ascq, France
| | - Eric Larquet
- Laboratoire de Physique de La Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Palaiseau, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000, Lille, France
| | - François Ozanam
- Laboratoire de Physique de La Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Palaiseau, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000, Lille, France.
| | - Anne Chantal Gouget-Laemmel
- Laboratoire de Physique de La Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Palaiseau, France.
| |
Collapse
|
11
|
Development of a Prototype Lateral Flow Immunoassay for Rapid Detection of Staphylococcal Protein A in Positive Blood Culture Samples. Diagnostics (Basel) 2020; 10:diagnostics10100794. [PMID: 33036348 PMCID: PMC7601020 DOI: 10.3390/diagnostics10100794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bloodstream infection (BSI) is a major cause of mortality in hospitalized patients worldwide. Staphylococcus aureus is one of the most common pathogens found in BSI. The conventional workflow is time consuming. Therefore, we developed a lateral flow immunoassay (LFIA) for rapid detection of S. aureus-protein A in positive blood culture samples. A total of 90 clinical isolates including 58 S. aureus and 32 non-S. aureus were spiked in simulated blood samples. The antigens were extracted by a simple boiling method and diluted before being tested using the developed LFIA strips. The results were readable by naked eye within 15 min. The sensitivity of the developed LFIA was 87.9% (51/58) and the specificity was 93.8% (30/32). When bacterial colonies were used in the test, the LFIA provided higher sensitivity and specificity (94.8% and 100%, respectively). The detection limit of the LFIA was 107 CFU/mL. Initial evaluation of the LFIA in 20 positive blood culture bottles from hospitals showed 95% agreement with the routine methods. The LFIA is a rapid, simple and highly sensitive method. No sophisticated equipment is required. It has potential for routine detection particularly in low resource settings, contributing an early diagnosis that facilitates effective treatment and reduces disease progression.
Collapse
|
12
|
Panhwar S, Ilhan H, Hassan SS, Zengin A, Boyacı IH, Tamer U. Dual Responsive Disposable Electrode for the Enumeration of
Escherichia coli
in Whole Blood. ELECTROANAL 2020. [DOI: 10.1002/elan.202060185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry Faculty of Pharmacy Gazi University, Etiler 06330 Ankara Turkey
- U.S.-Pakistan Center for Advanced Studies in Water (US-PCAS-W) Mehran University of Engineering and Technology, Jamshoro 76062 Sindh Pakistan
| | - Hasan Ilhan
- Department of Chemistry Faculty of Science Ordu University, Altinordu 52200 Ordu Turkey
| | - Syeda Sara Hassan
- U.S.-Pakistan Center for Advanced Studies in Water (US-PCAS-W) Mehran University of Engineering and Technology, Jamshoro 76062 Sindh Pakistan
| | - Adem Zengin
- Van Yüzüncü Yil University Department of Chemical Engineering 65090 Tuşba/Van Turkey
| | - Ismail Hakkı Boyacı
- Department of Food Engineering Faculty of Engineering Hacettepe University, Beytepe 06800 Ankara Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry Faculty of Pharmacy Gazi University, Etiler 06330 Ankara Turkey
| |
Collapse
|
13
|
Chen SH, Tzeng IS, Lan CC, Chen JY, Ng CY, Wang YC, Su WL, Yiang GT, Chen TY, Wu CW, Hsieh PC, Kuo CY, Wu MY. Age, Period and Cohort Analysis of Rates of Emergency Department Visits Due to Pneumonia in Taiwan, 1998-2012. Risk Manag Healthc Policy 2020; 13:1459-1466. [PMID: 32943963 PMCID: PMC7481296 DOI: 10.2147/rmhp.s255031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/25/2020] [Indexed: 11/23/2022] Open
Abstract
Background Emergency room (ER) physicians need to face clinically suspected pneumonia patients in the front line of medical care and must do to give major medical interventions if patients show severity in pneumonia. Methods The data of pneumonia-related ER visit rates were categorized based on the International Classification of Disease (ICD) Codes (480–486) between 1998 and 2012. We use an age-period-cohort (APC) model to separate the pneumonia-related ER visit rates to identify the effects of age, time period, and cohort for a total of 1,813,588 patients. Results The age effect showed high risk for pediatric and elder populations. There is a significant increasing period effect, which increased from 1998 to 2012. The cohort effect tended to show an oscillation from 1913 to 1988 and the reverse in a recent cohort. Furthermore, the visit rate of pneumonia showed an increase from 1998 to 2012 for both genders. Conclusion Age is a risk factor for pneumonia-related ER visits, especially for children and adolescents and older patients. Period and cohort effects were also found to increase the pneumonia visit rates. An APC model used to provide an advance clue for trend of pneumonia-related ER visit rates diversified.
Collapse
Affiliation(s)
- Shin-Hong Chen
- Department of Education and Research, Taiwan Adventist Hospital, Taipei 10556, Taiwan
| | - I-Shiang Tzeng
- Department of Statistics, National Taipei University, Taipei 10478, Taiwan.,Department of Applied Mathematics; Department of Exercise and Health Promotion, Chinese Culture University, Taipei 11114, Taiwan.,Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.,School of Medicine, Tzu-Chi University, Hualien 97004, Taiwan
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang-Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chau Yee Ng
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung 10507, Taiwan
| | - Yao-Chin Wang
- Department of Emergency Medicine, Min-Sheng General Hospital, Taoyuan 33044, Taiwan
| | - Wen-Lin Su
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Tsu-Yi Chen
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Chih-Wei Wu
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| |
Collapse
|
14
|
Pectobacterium atrosepticum Biosensor for Monitoring Blackleg and Soft Rot Disease of Potato. BIOSENSORS-BASEL 2020; 10:bios10060064. [PMID: 32549369 PMCID: PMC7344410 DOI: 10.3390/bios10060064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022]
Abstract
Pectobacterium atrosepticum (Pba) is a quarantine and threatening phytopathogen known as the causal agent of blackleg and soft rot disease of potatoes in many areas. Its early detection is then important to have healthy potato tubers and reduce economic losses. Today, conventional methods such as enzyme-linked immunosorbent-assay (ELISA) and polymerase chain reaction (PCR) are typically used for Pba detection, but they are expensive and time-consuming. Here we report on the optimization of an alternative approach based on an electrochemical impedance immunosensor combining a microfluidic module and a microelectrodes array, and having advantages in terms of low cost, ease of use and portability. For validation and for assessing its performance, the lab-on-chip platform has been compared with two standard methods (ELISA and PCR).
Collapse
|
15
|
Pardoux É, Boturyn D, Roupioz Y. Antimicrobial Peptides as Probes in Biosensors Detecting Whole Bacteria: A Review. Molecules 2020; 25:E1998. [PMID: 32344585 PMCID: PMC7221689 DOI: 10.3390/molecules25081998] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial resistance is becoming a global issue due to its rapid growth. Potential new drugs as antimicrobial peptides (AMPs) are considered for several decades as promising candidates to circumvent this threat. Nonetheless, AMPs have also been used more recently in other settings such as molecular probes grafted on biosensors able to detect whole bacteria. Rapid, reliable and cost-efficient diagnostic tools for bacterial infection could prevent the spread of the pathogen from the earliest stages. Biosensors based on AMPs would enable easy monitoring of potentially infected samples, thanks to their powerful versatility and integrability in pre-existent settings. AMPs, which show a broad spectrum of interactions with bacterial membranes, can be tailored in order to design ubiquitous biosensors easily adaptable to clinical settings. This review aims to focus on the state of the art of AMPs used as the recognition elements of whole bacteria in label-free biosensors with a particular focus on the characteristics obtained in terms of threshold, volume of sample analysable and medium, in order to assess their workability in real-world applications.
Collapse
Affiliation(s)
- Éric Pardoux
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France;
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France;
| | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France;
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France;
| |
Collapse
|
16
|
Campanero-Rhodes MA, Palma AS, Menéndez M, Solís D. Microarray Strategies for Exploring Bacterial Surface Glycans and Their Interactions With Glycan-Binding Proteins. Front Microbiol 2020; 10:2909. [PMID: 32010066 PMCID: PMC6972965 DOI: 10.3389/fmicb.2019.02909] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Bacterial surfaces are decorated with distinct carbohydrate structures that may substantially differ among species and strains. These structures can be recognized by a variety of glycan-binding proteins, playing an important role in the bacteria cross-talk with the host and invading bacteriophages, and also in the formation of bacterial microcolonies and biofilms. In recent years, different microarray approaches for exploring bacterial surface glycans and their recognition by proteins have been developed. A main advantage of the microarray format is the inherent miniaturization of the method, which allows sensitive and high-throughput analyses with very small amounts of sample. Antibody and lectin microarrays have been used for examining bacterial glycosignatures, enabling bacteria identification and differentiation among strains. In addition, microarrays incorporating bacterial carbohydrate structures have served to evaluate their recognition by diverse host/phage/bacterial glycan-binding proteins, such as lectins, effectors of the immune system, or bacterial and phagic cell wall lysins, and to identify antigenic determinants for vaccine development. The list of samples printed in the arrays includes polysaccharides, lipopoly/lipooligosaccharides, (lipo)teichoic acids, and peptidoglycans, as well as sequence-defined oligosaccharide fragments. Moreover, microarrays of cell wall fragments and entire bacterial cells have been developed, which also allow to study bacterial glycosylation patterns. In this review, examples of the different microarray platforms and applications are presented with a view to give the current state-of-the-art and future prospects in this field.
Collapse
Affiliation(s)
- María Asunción Campanero-Rhodes
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Angelina Sa Palma
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Margarita Menéndez
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Solís
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Chen Y, Liu J, Yang Z, Wilkinson JS, Zhou X. Optical biosensors based on refractometric sensing schemes: A review. Biosens Bioelectron 2019; 144:111693. [DOI: 10.1016/j.bios.2019.111693] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
|
18
|
Antimicrobial peptide arrays for wide spectrum sensing of pathogenic bacteria. Talanta 2019; 203:322-327. [DOI: 10.1016/j.talanta.2019.05.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
|
19
|
Label-Free Electrochemical Detection of S. mutans Exploiting Commercially Fabricated Printed Circuit Board Sensing Electrodes. MICROMACHINES 2019; 10:mi10090575. [PMID: 31480295 PMCID: PMC6780749 DOI: 10.3390/mi10090575] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
This paper reports for the first time printed-circuit-board (PCB)-based label-free electrochemical detection of bacteria. The demonstrated immunosensor was implemented on a PCB sensing platform which was designed and fabricated in a standard PCB manufacturing facility. Bacteria were directly captured on the PCB sensing surface using a specific, pre-immobilized antibody. Electrochemical impedance spectra (EIS) were recorded and used to extract the charge transfer resistance (Rct) value for the different bacteria concentrations under investigation. As a proof-of-concept, Streptococcus mutans (S. mutans) bacteria were quantified in a phosphate buffered saline (PBS) buffer, achieving a limit of detection of 103 CFU/mL. Therefore, the proposed biosensor is an attractive candidate for the development of a simple and robust point-of-care diagnostic platform for bacteria identification, exhibiting good sensitivity, high selectivity, and excellent reproducibility.
Collapse
|
20
|
Ou F, McGoverin C, Swift S, Vanholsbeeck F. Near real-time enumeration of live and dead bacteria using a fibre-based spectroscopic device. Sci Rep 2019; 9:4807. [PMID: 30886183 PMCID: PMC6423134 DOI: 10.1038/s41598-019-41221-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/28/2019] [Indexed: 01/05/2023] Open
Abstract
A rapid, cost-effective and easy method that allows on-site determination of the concentration of live and dead bacterial cells using a fibre-based spectroscopic device (the optrode system) is proposed and demonstrated. Identification of live and dead bacteria was achieved by using the commercially available dyes SYTO 9 and propidium iodide, and fluorescence spectra were measured by the optrode. Three spectral processing methods were evaluated for their effectiveness in predicting the original bacterial concentration in the samples: principal components regression (PCR), partial least squares regression (PLSR) and support vector regression (SVR). Without any sample pre-concentration, PCR achieved the most reliable results. It was able to quantify live bacteria from 108 down to 106.2 bacteria/mL and showed the potential to detect as low as 105.7 bacteria/mL. Meanwhile, enumeration of dead bacteria using PCR was achieved between 108 and 107 bacteria/mL. The general procedures described in this article can be applied or modified for the enumeration of bacteria within populations stained with fluorescent dyes. The optrode is a promising device for the enumeration of live and dead bacterial populations particularly where rapid, on-site measurement and analysis is required.
Collapse
Affiliation(s)
- Fang Ou
- Department of Physics, The University of Auckland, Auckland, New Zealand.
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand.
| | - Cushla McGoverin
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| | - Simon Swift
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Frédérique Vanholsbeeck
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| |
Collapse
|
21
|
Scuderi G, Catara AF, Licciardello G. Genotyping Citrus tristeza virus Isolates by Sequential Multiplex RT-PCR and Microarray Hybridization in a Lab-on-Chip Device. Methods Mol Biol 2019; 2015:127-142. [PMID: 31222700 DOI: 10.1007/978-1-4939-9558-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus tristeza virus (CTV) is the largest known plant RNA virus (ca. 20 Kb), with a plethora of isolates conventionally categorized into six main genotypic groups (T36, VT, T3, RB, T68, T30). Each group includes many isolates with different phenotype profiles. Several techniques and protocols, mostly based on RT-PCR analysis of different regions of specific genes, have been developed for managing the diseases caused by CTV. However, more accurate genomic information would help to plan a correct strategy. This chapter describes a pilot protocol based on a sequential multiplex RT-PCR reaction and microarray hybridization in a miniaturized silicon lab-on-chip (LoC) device. The system comprises a set of 12 primers and 44 probes (× 2 replicates), designed on variable genomic regions of 6 genes: 5'UTR, ORF1a, ORF1b (RdRp), p33, p20, and p23. The system can rapidly analyze any genotype diversity associated with field isolates and distinguish the endemic from the non-endemic isolates. The identification of CTV strains is based on a number of probe hybridizations, which varies according to the genotypes present in the isolates and the differences among the genotypes.
Collapse
Affiliation(s)
| | - Antonino F Catara
- Formerly, Department of Phytosanitary Sciences, University of Catania, Catania, Italy
- Science and Technology Park of Sicily, Catania, Italy
| | - Grazia Licciardello
- Consiglio per la Ricerca in agricoltura e l'analisi dell'Economia Agraria (CREA), Centro di Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Acireale (Catania), Italy
| |
Collapse
|
22
|
Giovannini G, Gubala V, Hall AJ. ‘Off–on’ switchable fluorescent probe for prompt and cost-efficient detection of bacteria. NEW J CHEM 2019. [DOI: 10.1039/c9nj03110c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rapid and straightforward detection of bacteria in food and human samples is becoming important, particularly in view of the development of point-of-care devices and lab-on-a-chip tools for prevention and treatment of bacterial infections.
Collapse
Affiliation(s)
- Giorgia Giovannini
- Medway School of Pharmacy
- University of Kent
- Central Avenue
- Chatham Maritime
- Kent
| | - Vladimir Gubala
- Medway School of Pharmacy
- University of Kent
- Central Avenue
- Chatham Maritime
- Kent
| | - Andrew J. Hall
- Medway School of Pharmacy
- University of Kent
- Central Avenue
- Chatham Maritime
- Kent
| |
Collapse
|
23
|
Galvan DD, Parekh V, Liu E, Liu EL, Yu Q. Sensitive Bacterial Detection via Dielectrophoretic-Enhanced Mass Transport Using Surface-Plasmon-Resonance Biosensors. Anal Chem 2018; 90:14635-14642. [DOI: 10.1021/acs.analchem.8b05137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel David Galvan
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vidit Parekh
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Erik Liu
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - E-Lin Liu
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Qiuming Yu
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
24
|
Brenet S, John-Herpin A, Gallat FX, Musnier B, Buhot A, Herrier C, Rousselle T, Livache T, Hou Y. Highly-Selective Optoelectronic Nose Based on Surface Plasmon Resonance Imaging for Sensing Volatile Organic Compounds. Anal Chem 2018; 90:9879-9887. [PMID: 30024743 DOI: 10.1021/acs.analchem.8b02036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Monitoring volatile organic compounds (VOCs) is an important issue, but difficult to achieve on a large scale and on the field using conventional analytical methods. Electronic noses (eNs), as promising alternatives, are still compromised by their performances due to the fact that most of them rely on a very limited number of sensors and use databases devoid of kinetic information. To narrow the performance gap between human and electronic noses, we developed a novel optoelectronic nose, which features a large sensor microarray that enables multiplexed monitoring of binding events in real-time with a temporal response. For the first time, surface plasmon resonance imaging is demonstrated as a promising novel analytical tool for VOC detection in the gas phase. By combining it with cross-reactive sensor microarrays, the obtained optoelectronic nose shows a remarkably high selectivity, capable of discriminating between homologous VOCs differing by only a single carbon atom. In addition, the optoelectronic nose has good repeatability and stability. Finally, the preliminary assays using VOC binary and ternary mixtures show that it is also very efficient for the analysis of more complex samples, opening up the exciting perspective of applying it to "real-world" samples in diverse domains.
Collapse
Affiliation(s)
- Sophie Brenet
- Uni. Grenoble Alpes, CEA , CNRS, INAC-SyMMES, 38000 Grenoble , France
| | | | | | - Benjamin Musnier
- Uni. Grenoble Alpes, CEA , CNRS, INAC-SyMMES, 38000 Grenoble , France
| | - Arnaud Buhot
- Uni. Grenoble Alpes, CEA , CNRS, INAC-SyMMES, 38000 Grenoble , France
| | | | | | | | - Yanxia Hou
- Uni. Grenoble Alpes, CEA , CNRS, INAC-SyMMES, 38000 Grenoble , France
| |
Collapse
|
25
|
Poole S, Kidd SP, Saeed K. A review of novel technologies and techniques associated with identification of bloodstream infection etiologies and rapid antimicrobial genotypic and quantitative phenotypic determination. Expert Rev Mol Diagn 2018; 18:543-555. [PMID: 29790810 DOI: 10.1080/14737159.2018.1480369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The antimicrobial aspect of management of patients with blood stream infections (BSI) and sepsis is time critical. In an era of increasing antimicrobial resistance, rapid detection and identification of bacteria with antimicrobial susceptibility is crucial to direct therapy early in the course of illness. Molecular techniques offer a potential solution to this. Areas covered: In the present review the authors have discussed a number of novel solutions utilizing a variety of molecular techniques for pathogen detection, identification and antimicrobial susceptibility. The review is not designed to be an exhaustive literature review covering all diagnostic solutions ever developed, instead the authors have focused on what they have had experience using, evaluating or currently view as new and exciting with potential to revolutionize BSI diagnosis. The authors searched PubMed (Medline) and Google Scholar with terms: BSI, Bacteraemia, Candidaemia, Diagnostics, AST, Rapid, AMR, Novel and Blood Culture. The authors attended recent clinical microbiology technology congresses. Expert commentary: There are multiple exciting novel technologies at differing stages of development with potential to revolutionize diagnosis of BSI. More work is needed as well as a standardized assessment of different platforms in order to better understand the clinical and financial impacts these will have in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Stephen Poole
- a Hampshire Hospitals NHS Foundation Trust , Department of Microbiology , Basingstoke and Winchester , UK
| | - Stephen P Kidd
- a Hampshire Hospitals NHS Foundation Trust , Department of Microbiology , Basingstoke and Winchester , UK
| | - Kordo Saeed
- a Hampshire Hospitals NHS Foundation Trust , Department of Microbiology , Basingstoke and Winchester , UK.,b University of Southampton , School of medicine , Southampton , UK
| |
Collapse
|
26
|
Development of a lab-on-a-chip method for rapid assay of Xylella fastidiosa subsp. pauca strain CoDiRO. Sci Rep 2018; 8:7376. [PMID: 29743607 PMCID: PMC5943246 DOI: 10.1038/s41598-018-25747-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Xylella fastidiosa subsp. pauca strain CoDiRO, a pathogen responsible for Olive Quick Decline Syndrome (OQDS), is strongly threatening the agricultural-based economy of South Italy and making its typical landscape collapse. The bacteria can also infect more than other twenty woody or shrub species and quarantine programs are carried out in Italy. Since symptoms of OQDS like leaf scorching and wilting of canopy may appear several months after infection and some hosts are asymptomatic, a tool for the rapid and early screening of plants is desirable, in order to plan a sudden control strategy and apply programs for pest management. X. fastidiosa detection is usually performed by ELISA and PCR methods. In this work, the two standard methods are compared with an innovative on-chip detection strategy for X. fastidiosa assay from leaves samples, based on an electrochemical transduction method. The realized lab-on-chip includes also a microfluidic module and its performances are competitive with conventional diagnostic methods in terms of reliability, but with further advantages of portability, low-costs and ease of use. Thus, the proposed technology has the potential to provide a useful assay method for large-scale monitoring programs.
Collapse
|
27
|
Florio W, Morici P, Ghelardi E, Barnini S, Lupetti A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit Rev Microbiol 2017; 44:351-370. [PMID: 29185372 DOI: 10.1080/1040841x.2017.1407745] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rapid identification (ID) and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections (BSIs) are essential for the prompt administration of an effective antimicrobial therapy, which can result in clinical and financial benefits. Immediately after blood sampling, empirical antimicrobial therapy, chosen on clinical and epidemiological data, is administered. When ID and AST results are available, the clinician decides whether to continue or streamline the antimicrobial therapy, based on the results of the in vitro antimicrobial susceptibility profile of the pathogen. The aim of the present study is to review and discuss the experimental data, advantages, and drawbacks of recently developed technological advances of culture-based and molecular methods for the diagnosis of BSI (including mass spectrometry, magnetic resonance, PCR-based methods, direct inoculation methods, and peptide nucleic acid fluorescence in situ hybridization), the understanding of which could provide new perspectives to improve and fasten the diagnosis and treatment of septic patients. Although blood culture remains the gold standard to diagnose BSIs, newly developed methods can significantly shorten the turnaround time of reliable microbial ID and AST, thus substantially improving the diagnostic yield.
Collapse
Affiliation(s)
- Walter Florio
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Paola Morici
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Emilia Ghelardi
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Simona Barnini
- b U.O. Microbiologia Universitaria Azienda Ospedaliero-Universitaria Pisana , Pisa , Italy
| | - Antonella Lupetti
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| |
Collapse
|