1
|
Xuan Y, Wang S, Li S, Yuan J, Zhou Q, He N. Chromosome constitution and genetic relationships of Morus spp. revealed by genomic in situ hybridization. BMC PLANT BIOLOGY 2023; 23:428. [PMID: 37710184 PMCID: PMC10503058 DOI: 10.1186/s12870-023-04448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Mulberry (Morus spp.) is an economically important woody plant, which has been used for sericulture (silk farming) for thousands of years. The genetic background of mulberry is complex due to polyploidy and frequent hybridization events. RESULTS Comparative genomic in situ hybridization (cGISH) and self-GISH were performed to illustrate the chromosome constitution and genetic relationships of 40 mulberry accessions belonging to 12 species and three varietas in the Morus genus and containing eight different ploidy levels. We identified six homozygous cGISH signal patterns and one heterozygous cGISH signal pattern using four genomic DNA probes. Using cGISH and self-GISH data, we defined five mulberry sections (Notabilis, Nigra, Wittiorum, and Cathayana, all contained only one species; and Alba, which contained seven closely related species and three varietas, was further divided into two subsections) and proposed the genetic relationships among them. Differential cGISH signal patterns detected in section Alba allowed us to refine the genetic relationships among the closely related members of this section. CONCLUSIONS We propose that GISH is an efficient tool to investigate the chromosome constitution and genetic relationships in mulberry. The results obtained here can be used to guide outbreeding of heterozygous perennial crops like mulberry.
Collapse
Affiliation(s)
- Yahui Xuan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Sheng Wang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Siwei Li
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Jianglian Yuan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Qiming Zhou
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
2
|
Xia Z, Dai X, Fan W, Liu C, Zhang M, Bian P, Zhou Y, Li L, Zhu B, Liu S, Li Z, Wang X, Yu M, Xiang Z, Jiang Y, Zhao A. Chromosome-level Genomes Reveal the Genetic Basis of Descending Dysploidy and Sex Determination in Morus Plants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1119-1137. [PMID: 36055564 DOI: 10.1016/j.gpb.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Multiple plant lineages have independently evolved sex chromosomes and variable karyotypes to maintain their sessile lifestyles through constant biological innovation. Morus notabilis, a dioecious mulberry species, has the fewest chromosomes among Morus spp., but the genetic basis of sex determination and karyotype evolution in this species has not been identified. In this study, three high-quality genome assemblies were generated for Morus spp. [including dioecious M. notabilis (male and female) and Morus yunnanensis (female)] with genome sizes of 301-329 Mb and were grouped into six pseudochromosomes. Using a combination of genomic approaches, we found that the putative ancestral karyotype of Morus species was close to 14 protochromosomes, and that several chromosome fusion events resulted in descending dysploidy (2n = 2x = 12). We also characterized a ∼ 6.2-Mb sex-determining region on chromosome 3. Four potential male-specific genes, a partially duplicatedDNA helicase gene (named MSDH) and three Ty3_Gypsy long terminal repeat retrotransposons (named MSTG1/2/3), were identified in the Y-linked area and considered to be strong candidate genes for sex determination or differentiation. Population genomic analysis showed that Guangdong accessions in China were genetically similar to Japanese accessions of mulberry. In addition, genomic areas containing selective sweeps that distinguish domesticated mulberry from wild populations in terms of flowering and disease resistance were identified. Our findings provide an important genetic resource for sex identification research and molecular breeding in mulberry.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Meirong Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuping Zhou
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Baozhong Zhu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Shuman Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Zhengang Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi 661100, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Maode Yu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Xuan Y, Ma B, Li D, Tian Y, Zeng Q, He N. Chromosome restructuring and number change during the evolution of Morus notabilis and Morus alba. HORTICULTURE RESEARCH 2022; 9:6510928. [PMID: 35043186 PMCID: PMC8769039 DOI: 10.1093/hr/uhab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 05/20/2023]
Abstract
Mulberry (Morus spp.) is an economically important plant as the main food plant used for rearing domesticated silkworm and it has multiple uses in traditional Chinese medicine. Two basic chromosome numbers (Morus notabilis, n = 7, and Morus alba, n = 14) have been reported in the genus Morus, but the evolutionary history and relationship between them remain unclear. In the present study, a 335-Mb high-quality chromosome-scale genome was assembled for the wild mulberry species M. notabilis. Comparative genomic analyses indicated high chromosomal synteny between the 14 chromosomes of cultivated M. alba and the six chromosomes of wild M. notabilis. These results were successfully verified by fluorescence in situ hybridization. Chromosomal fission/fusion events played crucial roles in the chromosome restructuring process between M. notabilis and M. alba. The activity of the centromere was another key factor that ensured the stable inheritance of chromosomes. Our results also revealed that long terminal repeat retrotransposons were a major driver of the genome divergence and evolution of the mulberry genomes after they diverged from each other. This study provides important insights and a solid foundation for studying the evolution of mulberry, allowing the accelerated genetic improvement of cultivated mulberry species.
Collapse
Affiliation(s)
- Yahui Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Tian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
- Corresponding author. E-mail:
| |
Collapse
|
4
|
Abstract
Hibiscus exhibits high variation in chromosome number both within and among species. The Hibiscus mutabilis L. karyotype was analyzed in detail using fluorescence in situ hybridization (FISH) with oligonucleotide probes for (AG3T3)3 and 5S rDNA, which were tested here for the first time. In total, 90 chromosomes were counted in prometaphase and metaphase, and all exhibited similarly intense (AG3T3)3 signals at both ends. (AG3T3)3 showed little variation and thus did not allow discrimination among H. mutabilis chromosomes, but its location at both ends confirmed the integrity of each chromosome, thus contributing to accurate counting of the numerous, small chromosomes. Oligo-5S rDNA marked the proximal/distal regions of six chromosomes: weak signals on chromosomes 7 and 8, slightly stronger signals on chromosomes 15 and 16, and very strong signals on chromosomes 17 and 18. Therefore, 5S rDNA could assist in chromosome identification in H. mutabilis. Metaphase chromosome lengths ranged from 3.00 to 1.18 μm, indicating small chromosomes. The ratios of longest to shortest chromosome length in prometaphase and metaphase were 2.58 and 2.54, respectively, indicating karyotype asymmetry in H. mutabilis. These results provide an exact chromosome number and a physical map, which will be useful for genome assembly and contribute to molecular cytogenetics in the genus Hibiscus.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Zhoujian He
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| |
Collapse
|
5
|
Xuan Y, Wu Y, Li P, Liu R, Luo Y, Yuan J, Xiang Z, He N. Molecular phylogeny of mulberries reconstructed from ITS and two cpDNA sequences. PeerJ 2019; 7:e8158. [PMID: 31844573 PMCID: PMC6911693 DOI: 10.7717/peerj.8158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background Species in the genus Morus (Moraceae) are deciduous woody plants of great economic importance. The classification and phylogenetic relationships of Morus, especially the abundant mulberry resources in China, is still undetermined. Internal transcribed spacer (ITS) regions are among the most widely used molecular markers in phylogenetic analyses of angiosperms. However, according to the previous phylogenetic analyses of ITS sequences, most of the mulberry accessions collected in China were grouped into the largest clade lacking for phylogenetic resolution. Compared with functional ITS sequences, ITS pseudogenes show higher sequence diversity, so they can provide useful phylogenetic information. Methods We sequenced the ITS regions and the chloroplast DNA regions TrnL-TrnF and TrnT-TrnL from 33 mulberry accessions, and performed phylogenetic analyses to explore the evolution of mulberry. Results We found ITS pseudogenes in 11 mulberry accessions. In the phylogenetic tree constructed from ITS sequences, clade B was separated into short-type sequence clades (clades 1 and 2), and a long-type sequence clade (clade 3). Pseudogene sequences were separately clustered into two pseudogroups, designated as pseudogroup 1 and pseudogroup 2. The phylogenetic tree generated from cpDNA sequences also separated clade B into two clades. Conclusions Two species were separated in clade B. The existence of three connection patterns and incongruent distribution patterns between the phylogenetic trees generated from cpDNA and ITS sequences suggested that the ITS pseudogene sequences connect with genetic information from the female progenitor. Hybridization has played important roles in the evolution of mulberry, resulting in low resolution of the phylogenetic analysis based on ITS sequences. An evolutionary pattern illustrating the evolution history of mulberry is proposed. These findings have significance for the conservation of local mulberry resources. Polyploidy, hybridization, and concerted evolution have all played the roles in the evolution of ITS sequences in mulberry. This study will expand our understanding of mulberry evolution.
Collapse
Affiliation(s)
- Yahui Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ruiling Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jianglian Yuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Luo X, Liu J. Fluorescence In Situ Hybridization (FISH) Analysis of the Locations of the Oligonucleotides 5S rDNA, (AGGGTTT) 3, and (TTG) 6 in Three Genera of Oleaceae and Their Phylogenetic Framework. Genes (Basel) 2019; 10:genes10050375. [PMID: 31108932 PMCID: PMC6562466 DOI: 10.3390/genes10050375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
We report the cytogenetic map for a collection of species in the Oleaceae, and test similarities among the karyotypes relative to their known species phylogeny. The oligonucleotides 5S ribosomal DNA (rDNA), (AGGGTTT)3, and (TTG)6 were used as fluorescence in situ hybridization (FISH) probes to locate the corresponding chromosomes in three Oleaceae genera: Fraxinus pennsylvanica, Syringa oblata, Ligustrum lucidum, and Ligustrum × vicaryi. Forty-six small chromosomes were identified in four species. (AGGGTTT)3 signals were observed on almost all chromosome ends of four species, but (AGGGTTT)3 played no role in distinguishing the chromosomes but displayed intact chromosomes and could thus be used as a guide for finding chromosome counts. (TTG)6 and 5S rDNA signals discerned several chromosomes located at subterminal or central regions. Based on the similarity of the signal pattern (mainly in number and location and less in intensity) of the four species, the variations in the 5S rDNA and (TTG)6 distribution can be ordered as L. lucidum < L. × vicaryi < F. pennsylvanica < S. oblata. Variations have observed in the three genera. The molecular cytogenetic data presented here might serve as a starting point for further larger-scale elucidation of the structure of the Oleaceae genome, and comparison with the known phylogeny of Oleaceae family.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Juncheng Liu
- College of Forestry, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|