1
|
Hieronimus K, Donauer T, Klein J, Hinkel B, Spänle JV, Probst A, Niemeyer J, Kibrom S, Kiefer AM, Schneider L, Husemann B, Bischoff E, Möhring S, Bayer N, Klein D, Engels A, Ziehmer BG, Stieβ J, Moroka P, Schroda M, Deponte M. A Modular Cloning Toolkit for the production of recombinant proteins in Leishmania tarentolae. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:128-142. [PMID: 38799406 PMCID: PMC11121976 DOI: 10.15698/mic2024.04.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
Modular Cloning (MoClo) is based on libraries of standardized genetic parts that can be directionally assembled via Golden Gate cloning in one-pot reactions into transcription units and multigene constructs. Here, a team of bachelor students established a MoClo toolkit for the protist Leishmania tarentolae in the frame of the international Genetically Engineered Machine (iGEM) competition. Our modular toolkit is based on a domesticated version of a commercial LEXSY expression vector and comprises 34 genetic parts encoding various affinity tags, targeting signals as well as fluorescent and luminescent proteins. We demonstrated the utility of our kit by the successful production of 16 different tagged versions of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in L. tarentolae liquid cultures. While highest yields of secreted recombinant RBD were obtained for GST-tagged fusion proteins 48 h post induction, C-terminal peptide tags were often degraded and resulted in lower yields of secreted RBD. Fusing secreted RBD to a synthetic O-glycosylation SP20 module resulted in an apparent molecular mass shift around 10 kDa. No disadvantage regarding the production of RBD was detected when the three antibiotics of the LEXSY system were omitted during the 48-h induction phase. Furthermore, the successful purification of secreted RBD from the supernatant of L. tarentolae liquid cultures was demonstrated in pilot experiments. In summary, we established a MoClo toolkit and exemplified its application for the production of recombinant proteins in L. tarentolae.
Collapse
Affiliation(s)
- Katrin Hieronimus
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Tabea Donauer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Jonas Klein
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Bastian Hinkel
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julia Vanessa Spänle
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Anna Probst
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Justus Niemeyer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Salina Kibrom
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Anna Maria Kiefer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Luzia Schneider
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Eileen Bischoff
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Sophie Möhring
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Nicolas Bayer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Dorothée Klein
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Adrian Engels
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Benjamin Gustav Ziehmer
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julian Stieβ
- Faculty of Computer Science, RPTU Kaiserslautern, D-67663
Kaiserslautern, Germany
| | - Pavlo Moroka
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
2
|
Zhu Y, Wang J, Ni Y, Rao Q, Zhu X, Yu J, Wang S, Zhou H. A multifunctionally reversible detector: Photoacoustic and dual-channel fluorescence sensing for SO 2/H 2O 2. Anal Chim Acta 2023; 1263:341181. [PMID: 37225328 DOI: 10.1016/j.aca.2023.341181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/26/2023]
Abstract
In this work, the phenothiazine fragment with powerful electron-donating ability was specifically selected to construct a multifunctional detector (noted as T1) in double-organelle with near-infrared region I (NIR-I) absorption. The changes of SO2/H2O2 content in mitochondria and lipid droplets were observed through red/green channels respectively, which was due to the reaction between benzopyrylium fragment of T1 and SO2/H2O2 to achieve red/green fluorescence conversion. Additionally, T1 was endowed with photoacoustic properties deriving from NIR-I absorption to reversibly monitor SO2/H2O2in vivo. This work was significant for more accurately deciphering the physiological and pathological processes in living organisms.
Collapse
Affiliation(s)
- Yicai Zhu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Yingyong Ni
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Qingpeng Rao
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Jianhua Yu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China.
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China.
| |
Collapse
|
3
|
Markus MB. Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria. Trop Med Infect Dis 2023; 8:278. [PMID: 37235326 PMCID: PMC10223033 DOI: 10.3390/tropicalmed8050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enhanced therapeutic efficacy achieved in treating Plasmodium vivax malaria with an 8-aminoquinoline (8-AQ) drug such as primaquine (PQ) together with a partner drug such as chloroquine (CQ) is usually explained as CQ inhibiting asexual parasites in the bloodstream and PQ acting against liver stages. However, PQ's contribution, if any, to inactivating non-circulating, extra-hepatic asexual forms, which make up the bulk of the parasite biomass in chronic P. vivax infections, remains unclear. In this opinion article, I suggest that, considering its newly described mode of action, PQ might be doing something of which we are currently unaware.
Collapse
Affiliation(s)
- Miles B. Markus
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
- School of Animal, Plant and Environmental Sciences, Faculty of Science, University of Witwatersrand, Johannesburg 2001, South Africa
| |
Collapse
|
4
|
Zong P, Chen Y, Bi J, Han K, Luo J, Wang X, Kong F, Liu K. Development of a novel chitosan-based two-photon fluorescent nanoprobe with enhanced stability for the specific detection of endogenous H 2O 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122797. [PMID: 37150072 DOI: 10.1016/j.saa.2023.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Hydrogen peroxide (H2O2) acts as an important reactive oxygen species (ROS) and maintains the redox equilibrium in organisms. Imbalance of H2O2 concentration is associated with the development of many diseases. Traditional small molecular based fluorescent probes often show drawbacks of cytotoxicity and easily metabolic clearance. Herein, a chitosan-based two-photon fluorescent nanoprobe (DC-BI) was constructed and applied for H2O2 detection in live organisms. DC-BI was composed by chitosan nanoparticles and a two-photon fluorophore of naphthalimide analogues (BI) with H2O2-responsive property. The structure of DC-BI was characterized by NMR, FTIR, XPS, XRD, DLS and MLS analyses. As study shown, the nanoprobe DC-BI exhibited improved distribution stability and smaller cytotoxicity. In the presence of H2O2, both the absorption and emission spectra show dramatic changes, the fluorescence intensity at 580 nm obviously enhanced. Furthermore, fluorescence imaging results indicate that DC-BI is capable of imaging endogenous H2O2 in cells and zebrafish. The design and development of chitosan-based nanoprobe DC-BI has provided a general example of nanoprobe construction with excellent distribution stability, two-photon property, and biocompatibility.
Collapse
Affiliation(s)
- Peipei Zong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yunling Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, Shandong 250022, China
| | - Jianling Bi
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250109, China
| | - Kejia Han
- Zibo Product Quality Testing Research Institute, Zibo 255022, China
| | - Jinlan Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaohui Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
5
|
Haag M, Kehrer J, Sanchez CP, Deponte M, Lanzer M. Physiological jump in erythrocyte redox potential during Plasmodium falciparum development occurs independent of the sickle cell trait. Redox Biol 2022; 58:102536. [DOI: 10.1016/j.redox.2022.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
6
|
Kanatani S, Elahi R, Kanchanabhogin S, Vartak N, Tripathi AK, Prigge ST, Sinnis P. Screening the Pathogen Box for Inhibition of Plasmodium falciparum Sporozoite Motility Reveals a Critical Role for Kinases in Transmission Stages. Antimicrob Agents Chemother 2022; 66:e0041822. [PMID: 35943271 PMCID: PMC9487509 DOI: 10.1128/aac.00418-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022] Open
Abstract
As the malaria parasite becomes resistant to every drug that we develop, the identification and development of novel drug candidates are essential. Many studies have screened compounds designed to target the clinically important blood stages. However, if we are to shrink the malaria map, new drugs that block the transmission of the parasite are needed. Sporozoites are the infective stage of the malaria parasite, transmitted to the mammalian host as mosquitoes probe for blood. Sporozoite motility is critical to their ability to exit the inoculation site and establish infection, and drug-like compounds targeting motility are effective at blocking infection in the rodent malaria model. In this study, we established a moderate-throughput motility assay for sporozoites of the human malaria parasite Plasmodium falciparum, enabling us to screen the 400 drug-like compounds from the pathogen box provided by the Medicines for Malaria Venture for their activity. Compounds exhibiting inhibitory effects on P. falciparum sporozoite motility were further assessed for transmission-blocking activity and asexual-stage growth. Five compounds had a significant inhibitory effect on P. falciparum sporozoite motility in the nanomolar range. Using membrane feeding assays, we demonstrate that four of these compounds had inhibitory activity against the transmission of P. falciparum to the mosquito. Interestingly, of the four compounds with inhibitory activity against both transmission stages, three are known kinase inhibitors. Together with a previous study that found that several of these compounds could inhibit asexual blood-stage parasite growth, our findings provide new antimalarial drug candidates that have multistage activity.
Collapse
Affiliation(s)
- Sachie Kanatani
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rubayet Elahi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sukanat Kanchanabhogin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Natasha Vartak
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Abhai K. Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sean T. Prigge
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Photini Sinnis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Dillenberger M, Rahlfs S, Becker K, Fritz-Wolf K. Prominent role of cysteine residues C49 and C343 in regulating Plasmodiumfalciparum pyruvate kinase activity. Structure 2022; 30:1452-1461.e3. [PMID: 35998635 DOI: 10.1016/j.str.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
The protozoan parasite Plasmodium falciparum causes the most severe form of malaria and is highly dependent on glycolysis. Glycolytic enzymes were shown to be massively redox regulated, inter alia via oxidative post-translational modifications (oxPTMs) of their cysteine residues. In this study, we identified P. falciparum pyruvate kinase (PfPK) C49 and C343 as amino acid residues essentially involved in maintaining structural and functional integrity of the enzyme. The mutation of these cysteines resulted in an altered substrate affinity, lower enzymatic activities, and, as studied by X-ray crystallography, conformational changes within the A-domain where the substrate binding site is located. Although the loss of a cysteine evoked an impaired catalysis in both mutants, the effects observed for mutant C49A were more severe: multiple conformational changes, caused by the loss of two hydrogen bonds, impeded proper substrate binding and thus the transfer of phosphate upon catalysis.
Collapse
Affiliation(s)
- Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany; Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Lai JW, Maah MJ, Sarip R, Lim YAL, Tim KL, Ng CH. Potency of copper(II) complexes towards drug-sensitive and -resistant Plasmodium falciparum: structure-activity relationship, ROS-generation and proteasome inhibition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Berneburg I, Peddibhotla S, Heimsch KC, Haeussler K, Maloney P, Gosalia P, Preuss J, Rahbari M, Skorokhod O, Valente E, Ulliers D, Simula LF, Buchholz K, Hedrick MP, Hershberger P, Chung TDY, Jackson MR, Schwarzer E, Rahlfs S, Bode L, Becker K, Pinkerton AB. An Optimized Dihydrodibenzothiazepine Lead Compound (SBI-0797750) as a Potent and Selective Inhibitor of Plasmodium falciparum and P. vivax Glucose 6-Phosphate Dehydrogenase 6-Phosphogluconolactonase. Antimicrob Agents Chemother 2022; 66:e0210921. [PMID: 35266827 PMCID: PMC9017341 DOI: 10.1128/aac.02109-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
In Plasmodium, the first two and rate-limiting enzymes of the pentose phosphate pathway, glucose 6-phosphate dehydrogenase (G6PD) and the 6-phosphogluconolactonase, are bifunctionally fused to a unique enzyme named GluPho, differing structurally and mechanistically from the respective human orthologs. Consistent with the enzyme's essentiality for malaria parasite proliferation and propagation, human G6PD deficiency has immense impact on protection against severe malaria, making PfGluPho an attractive antimalarial drug target. Herein we report on the optimized lead compound N-(((2R,4S)-1-cyclobutyl-4-hydroxypyrrolidin-2-yl)methyl)-6-fluoro-4-methyl-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SBI-0797750), a potent and fully selective PfGluPho inhibitor with robust nanomolar activity against recombinant PfGluPho, PvG6PD, and P. falciparum blood-stage parasites. Mode-of-action studies have confirmed that SBI-0797750 disturbs the cytosolic glutathione-dependent redox potential, as well as the cytosolic and mitochondrial H2O2 homeostasis of P. falciparum blood stages, at low nanomolar concentrations. Moreover, SBI-0797750 does not harm red blood cell (RBC) integrity and phagocytosis and thus does not promote anemia. SBI-0797750 is therefore a very promising antimalarial lead compound.
Collapse
Affiliation(s)
- Isabell Berneburg
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kim C. Heimsch
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Kristina Haeussler
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
- University of California, San Diego, La Jolla, California, USA
| | - Patrick Maloney
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Palak Gosalia
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Janina Preuss
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
- University of California, San Diego, La Jolla, California, USA
| | - Mahsa Rahbari
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Elena Valente
- Department of Oncology, University of Torino, Turin, Italy
| | | | | | - Kathrin Buchholz
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Michael P. Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Thomas D. Y. Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Michael R. Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | - Stefan Rahlfs
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Lars Bode
- University of California, San Diego, La Jolla, California, USA
| | - Katja Becker
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Anthony B. Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
10
|
Xu L, Zhang Y, Zhao L, Han H, Zhang S, Huang Y, Wang X, Song D, Ma P, Ren P, Sun Y. A neoteric dual-signal colorimetric fluorescent probe for detecting endogenous/exogenous hydrogen peroxide in cells and monitoring drug-induced hepatotoxicity. Talanta 2021; 233:122578. [PMID: 34215070 DOI: 10.1016/j.talanta.2021.122578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Hydrogen peroxide (H2O2), one of the most important reactive oxygen species (ROS), can be generated endogenously in the liver and has been deemed as a biomarker for evaluating drug-induced liver injury (DILI). Therefore, it is highly crucial to construct an effective method for detecting H2O2 in the liver in order to evaluate DILI. Herein, a neoteric dual-signal colorimetric fluorescent probe XH-2 for sensing hydrogen peroxide was engineered and synthesized. Borate was grafted as a specific recognition group onto the fluorophore XH-1 (ΦF = 0.34) to establish a structurally unprecedented probe. The experimental results manifested that probe XH-2 (ΦF = 0.15) was able to detect hydrogen peroxide using a fluorescence method with an excellent linear range of 0-140 μM (R2 = 0.9974) and an especially low detection limit of 91 nM (λex/em = 570 nm/638 nm). In addition, the probe was capable of monitoring hydrogen peroxide in a colorimetric manner with the linear range of 0-110 μM (R2 = 0.9965). Furthermore, the specificity, applicability in serum (98.6-109.1%) and indirect detection of glucose make the probe XH-2 a superior probe. Based on its low cytotoxicity, the probe was successfully applied to monitor endogenous/exogenous hydrogen peroxide and quantitatively determine the concentration level of hydrogen peroxide at a range of 0-120 μM (R2 = 0.9859) in HepG2 cells. Ultimately, the probe could effectively monitor the level of hydrogen peroxide during DILI in HepG2 cells.
Collapse
Affiliation(s)
- Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yu Zhang
- College of Life Sciences, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Lihe Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Hao Han
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Siqi Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yibing Huang
- College of Life Sciences, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Xinmin Street 71, Changchun, 130021, China.
| | - Ying Sun
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
11
|
Burda PC, Crosskey T, Lauk K, Zurborg A, Söhnchen C, Liffner B, Wilcke L, Pietsch E, Strauss J, Jeffries CM, Svergun DI, Wilson DW, Wilmanns M, Gilberger TW. Structure-Based Identification and Functional Characterization of a Lipocalin in the Malaria Parasite Plasmodium falciparum. Cell Rep 2021; 31:107817. [PMID: 32579913 DOI: 10.1016/j.celrep.2020.107817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/19/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Proteins of the lipocalin family are known to bind small hydrophobic ligands and are involved in various physiological processes ranging from lipid transport to oxidative stress responses. The genome of the malaria parasite Plasmodium falciparum contains a single protein PF3D7_0925900 with a lipocalin signature. Using crystallography and small-angle X-ray scattering, we show that the protein has a tetrameric structure of typical lipocalin monomers; hence we name it P. falciparum lipocalin (PfLCN). We show that PfLCN is expressed in the intraerythrocytic stages of the parasite and localizes to the parasitophorous and food vacuoles. Conditional knockdown of PfLCN impairs parasite development, which can be rescued by treatment with the radical scavenger Trolox or by temporal inhibition of hemoglobin digestion. This suggests a key function of PfLCN in counteracting oxidative stress-induced cell damage during multiplication of parasites within erythrocytes.
Collapse
Affiliation(s)
- Paul-Christian Burda
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany.
| | - Thomas Crosskey
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany
| | - Katharina Lauk
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Aimo Zurborg
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Christoph Söhnchen
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Louisa Wilcke
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany.
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; University of Hamburg, 20146 Hamburg, Germany.
| |
Collapse
|
12
|
Barbarino F, Wäschenbach L, Cavalho-Lemos V, Dillenberger M, Becker K, Gohlke H, Cortese-Krott MM. Targeting spectrin redox switches to regulate the mechanoproperties of red blood cells. Biol Chem 2020; 402:317-331. [PMID: 33544503 DOI: 10.1515/hsz-2020-0293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The mechanical properties of red blood cells (RBCs) are fundamental for their physiological role as gas transporters. RBC flexibility and elasticity allow them to survive the hemodynamic changes in the different regions of the vascular tree, to dynamically contribute to the flow thereby decreasing vascular resistance, and to deform during the passage through narrower vessels. RBC mechanoproperties are conferred mainly by the structural characteristics of their cytoskeleton, which consists predominantly of a spectrin scaffold connected to the membrane via nodes of actin, ankyrin and adducin. Changes in redox state and treatment with thiol-targeting molecules decrease the deformability of RBCs and affect the structure and stability of the spectrin cytoskeleton, indicating that the spectrin cytoskeleton may contain redox switches. In this perspective review, we revise current knowledge about the structural and functional characterization of spectrin cysteine redox switches and discuss the current lines of research aiming to understand the role of redox regulation on RBC mechanical properties. These studies may provide novel functional targets to modulate RBC function, blood viscosity and flow, and tissue perfusion in disease conditions.
Collapse
Affiliation(s)
- Frederik Barbarino
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Lucas Wäschenbach
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Virginia Cavalho-Lemos
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392, Giessen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
13
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
14
|
Gnädig NF, Stokes BH, Edwards RL, Kalantarov GF, Heimsch KC, Kuderjavy M, Crane A, Lee MCS, Straimer J, Becker K, Trakht IN, Odom John AR, Mok S, Fidock DA. Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13. PLoS Pathog 2020; 16:e1008482. [PMID: 32310999 PMCID: PMC7192513 DOI: 10.1371/journal.ppat.1008482] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/30/2020] [Accepted: 03/17/2020] [Indexed: 12/23/2022] Open
Abstract
The emergence of artemisinin (ART) resistance in Plasmodium falciparum intra-erythrocytic parasites has led to increasing treatment failure rates with first-line ART-based combination therapies in Southeast Asia. Decreased parasite susceptibility is caused by K13 mutations, which are associated clinically with delayed parasite clearance in patients and in vitro with an enhanced ability of ring-stage parasites to survive brief exposure to the active ART metabolite dihydroartemisinin. Herein, we describe a panel of K13-specific monoclonal antibodies and gene-edited parasite lines co-expressing epitope-tagged versions of K13 in trans. By applying an analytical quantitative imaging pipeline, we localize K13 to the parasite endoplasmic reticulum, Rab-positive vesicles, and sites adjacent to cytostomes. These latter structures form at the parasite plasma membrane and traffic hemoglobin to the digestive vacuole wherein artemisinin-activating heme moieties are released. We also provide evidence of K13 partially localizing near the parasite mitochondria upon treatment with dihydroartemisinin. Immunoprecipitation data generated with K13-specific monoclonal antibodies identify multiple putative K13-associated proteins, including endoplasmic reticulum-resident molecules, mitochondrial proteins, and Rab GTPases, in both K13 mutant and wild-type isogenic lines. We also find that mutant K13-mediated resistance is reversed upon co-expression of wild-type or mutant K13. These data help define the biological properties of K13 and its role in mediating P. falciparum resistance to ART treatment.
Collapse
Affiliation(s)
- Nina F. Gnädig
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Barbara H. Stokes
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Rachel L. Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Gavreel F. Kalantarov
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | - Audrey Crane
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Judith Straimer
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Ilya N. Trakht
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States of America
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - David A. Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| |
Collapse
|
15
|
Linzke M, Yan SLR, Tárnok A, Ulrich H, Groves MR, Wrenger C. Live and Let Dye: Visualizing the Cellular Compartments of the Malaria Parasite Plasmodium falciparum. Cytometry A 2019; 97:694-705. [PMID: 31738009 DOI: 10.1002/cyto.a.23927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Malaria remains one of the deadliest diseases worldwide and it is caused by the protozoan parasite Plasmodium spp. Parasite visualization is an important tool for the correct detection of malarial cases but also to understand its biology. Advances in visualization techniques promote new insights into the complex life cycle and biology of Plasmodium parasites. Live cell imaging by fluorescence microscopy or flow cytometry are the foundation of the visualization technique for malaria research. In this review, we present an overview of possibilities in live cell imaging of the malaria parasite. We discuss some of the state-of-the-art techniques to visualize organelles and processes of the parasite and discuss limitation and advantages of each technique. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University Leipzig, D-04107, Härtelstraße 16-18, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, São Paulo, São Paulo, 05508-900, Brazil
| | - Matthew R Groves
- Structural Biology Unit, Department of Pharmacy, Faculty of Science and Engineering, University of Groningen, 9713AV, Antonius Deusinglaan 1, AV Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
16
|
Guo Z, Zhao Q, Zhang Y, Li B, Li L, Feng L, Wang M, Meng X, Zuo G. A novel “turn‐on” fluorescent sensor for hydrogen peroxide based on oxidized porous g‐C
3
N
4
nanosheets. J Biomed Mater Res B Appl Biomater 2019; 108:1077-1084. [DOI: 10.1002/jbm.b.34459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Zhaoliang Guo
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Qiannan Zhao
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Yuqian Zhang
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Bingdong Li
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Lijuan Li
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Liwei Feng
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Manman Wang
- School of Public HealthNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Xianguang Meng
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Guifu Zuo
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| |
Collapse
|
17
|
Haeussler K, Berneburg I, Jortzik E, Hahn J, Rahbari M, Schulz N, Preuss J, Zapol'skii VA, Bode L, Pinkerton AB, Kaufmann DE, Rahlfs S, Becker K. Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies. Malar J 2019; 18:22. [PMID: 30683097 PMCID: PMC6346587 DOI: 10.1186/s12936-019-2651-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites. METHODS Plasmodium vivax glucose 6-phosphate dehydrogenase (PvG6PD) was cloned, recombinantly produced in Escherichia coli, purified, and characterized via enzyme kinetics and inhibitor studies. The effects of post-translational cysteine modifications were assessed via western blotting and enzyme activity assays. Genetically encoded probes were employed to study the effects of G6PD inhibitors on the cytosolic redox potential of Plasmodium. RESULTS Here the recombinant production and characterization of PvG6PD, the C-terminal and NADPH-producing part of PvGluPho, is described. A comparison with PfG6PD (the NADPH-producing part of PfGluPho) indicates that the P. vivax enzyme has higher KM values for the substrate and cofactor. Like the P. falciparum enzyme, PvG6PD is hardly affected by S-glutathionylation and moderately by S-nitrosation. Since there are several naturally occurring variants of PfGluPho, the impact of these mutations on the kinetic properties of the enzyme was analysed. Notably, in contrast to many human G6PD variants, the mutations resulted in only minor changes in enzyme activity. Moreover, nanomolar IC50 values of several compounds were determined on P. vivax G6PD (including ellagic acid, flavellagic acid, and coruleoellagic acid), inhibitors that had been previously characterized on PfGluPho. ML304, a recently developed PfGluPho inhibitor, was verified to also be active on PvG6PD. Using genetically encoded probes, ML304 was confirmed to disturb the cytosolic glutathione-dependent redox potential of P. falciparum blood stage parasites. Finally, a new series of novel small molecules with the potential to inhibit the falciparum and vivax enzymes were synthesized, resulting in two compounds with nanomolar activity. CONCLUSION The characterization of PvG6PD makes this enzyme accessible to further drug discovery activities. In contrast to naturally occurring G6PD variants in the human host that can alter the kinetic properties of the enzyme and thus the redox homeostasis of the cells, the naturally occurring PfGluPho variants studied here are unlikely to have a major impact on the parasites' redox homeostasis. Several classes of inhibitors have been successfully tested and are presently being followed up.
Collapse
Affiliation(s)
- Kristina Haeussler
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Isabell Berneburg
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Julia Hahn
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Norma Schulz
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Janina Preuss
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.,Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Viktor A Zapol'skii
- Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Lars Bode
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Dieter E Kaufmann
- Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
18
|
Schuh AK, Rahbari M, Heimsch KC, Mohring F, Gabryszewski SJ, Weder S, Buchholz K, Rahlfs S, Fidock DA, Becker K. Stable Integration and Comparison of hGrx1-roGFP2 and sfroGFP2 Redox Probes in the Malaria Parasite Plasmodium falciparum. ACS Infect Dis 2018; 4:1601-1612. [PMID: 30129748 DOI: 10.1021/acsinfecdis.8b00140] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Studying redox metabolism in malaria parasites is of great interest for understanding parasite biology, parasite-host interactions, and mechanisms of drug action. Genetically encoded fluorescent redox sensors have recently been described as powerful tools for determining the glutathione-dependent redox potential in living parasites. In the present study, we genomically integrated and expressed the ratiometric redox sensors hGrx1-roGFP2 (human glutaredoxin 1 fused to reduction-oxidation sensitive green fluorescent protein) and sfroGFP2 (superfolder roGFP2) in the cytosol of NF54- attB blood-stage Plasmodium falciparum parasites. Both sensors were evaluated in vitro and in cell culture with regard to their fluorescence properties and reactivity. As genomic integration allows for the stable expression of redox sensors in parasites, we systematically compared single live-cell imaging with plate reader detection. For these comparisons, short-term effects of redox-active compounds were analyzed along with mid- and long-term effects of selected antimalarial agents. Of note, the single components of the redox probes themselves did not influence the redox balance of the parasites. Our analyses revealed comparable results for both the hGrx1-roGFP2 and sfroGFP2 probes, with sfroGFP2 exhibiting a more pronounced fluorescence intensity in cellulo. Accordingly, the sfroGFP2 probe was employed to monitor the fluorescence signals throughout the parasites' asexual life cycle. Through the use of stable genomic integration, we demonstrate a means of overcoming the limitations of transient transfection, allowing more detailed in-cell studies as well as high-throughput analyses using plate reader-based approaches.
Collapse
Affiliation(s)
- Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Stine Weder
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kathrin Buchholz
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
19
|
Xu L, Shao Y, Chang C, Zhu Y. Efficient Active Oxygen Free Radical Generated in Tumor Cell by Loading-(HCONH₂)·H₂O₂ Delivery Nanosystem with Soft-X-ray Radiotherapy. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E596. [PMID: 29649155 PMCID: PMC5951480 DOI: 10.3390/ma11040596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023]
Abstract
Tumor hypoxia is known to result in radiotherapy resistance and traditional radiotherapy using super-hard X-ray irradiation can cause considerable damage to normal tissue. Therefore, formamide peroxide (FPO) with high reactive oxygen content was employed to enhance the oxygen concentration in tumor cells and increase the radio-sensitivity of low-energy soft-X-ray. To improve stability of FPO, FPO is encapsulated into polyacrylic acid (PAA)-coated hollow mesoporous silica nanoparticles (FPO@HMSNs-PAA). On account of the pH-responsiveness of PAA, FPO@HMSNs-PAA will release more FPO in simulated acidic tumor microenvironment (pH 6.50) and subcellular endosomes (pH 5.0) than in simulated normal tissue media (pH 7.40). When exposed to soft-X-ray irradiation, the released FPO decomposes into oxygen and the generated oxygen further formed many reactive oxygen species (ROS), leading to significant tumor cell death. The ROS-mediated cytotoxicity of FPO@HMSNs-PAA was confirmed by ROS-induced green fluorescence in tumor cells. The presented FPO delivery system with soft-X-ray irradiation paves a way for developing the next opportunities of radiotherapy toward efficient tumor prognosis.
Collapse
Affiliation(s)
- Lei Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201499, China.
| | - Yiran Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Chengkang Chang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201499, China.
- Shanghai Innovation Institute for Materials, Shanghai University, Shanghai 200444, China.
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|