1
|
Pang C, Xu H, Xu J, Zhang L, Wang J, Jing S. Qualifying P-glycoprotein in drug-resistant ovarian cancer cells: a dual-mode aptamer probe approach. Analyst 2024; 149:3928-3938. [PMID: 38916121 DOI: 10.1039/d4an00803k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Drug resistance presents a significant obstacle in treating human ovarian cancer. The development of effective methods for detecting drug-resistant cancer cells is pivotal for tailoring personalized therapies and prognostic assessments. In this investigation, we introduce a dual-mode detection technique employing a fluorogenic aptamer probe for the qualification of P-glycoprotein (P-gp) in drug-resistant ovarian cancer cells. The probe, initially in an "off" state due to the proximity of a quencher to the fluorophore, exhibits increased fluorescence intensity upon binding with the target. The fluorescence enhancement shows a linear correlation with both the concentration of P-gp and the presence of P-gp in drug-resistant ovarian cancer cells. This correlation is quantifiable, with detection limits of 1.56 nM and 110 cells per mL. In an alternate mode, the optimized fluorophores, attached to the aptamer, form larger complexes upon binding to the target protein, which diminishes the rotation speed, thereby augmenting fluorescence polarization. The alteration in fluorescence polarization enables the quantitative analysis of P-gp in the cells, ranging from 100 to 1500 cells per milliliter, with a detection limit of 40 cells per mL. Gene expression analyses, protein expression studies, and immunofluorescence imaging further validated the reliability of our aptamer-based probe for its specificity towards P-gp in drug-resistant cancer cells. Our findings underscore that the dual-mode detection approach promises to enhance the diagnosis and treatment of multidrug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Chaobin Pang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Heng Xu
- Jiangsu Provincial Institute of Materia Medica, Nanjing Tech University, Nanjing, 211816, China
- Nanjing Health Run Biotechnology Co., Ltd, Nanjing, 211316, China
| | - Jichao Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jinhua Wang
- Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), 42 Baiziting Road, Nanjing 210009, Jiangsu Province, China.
- Department of Gynaecology, NO.1 Hospital of Xining, 10 Huzhuxiang Road, Xining 810099, Qinghai Province, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Du J, He JS, Wang R, Wu J, Yu X. Ultrasensitive reporter DNA sensors built on nucleic acid amplification techniques: Application in the detection of trace amount of protein. Biosens Bioelectron 2024; 243:115761. [PMID: 37864901 DOI: 10.1016/j.bios.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The detection of protein is of great significance for the study of biological physiological function, early diagnosis of diseases and drug research. However, the sensitivity of traditional protein detection methods for detecting trace amount of proteins was relatively low. By integrating sensitive nucleic acid amplification techniques (NAAT) with protein detection methods, the detection limit of protein detection methods can be substantially improved. The DNA that can specifically bind to protein targets and convert protein signals into DNA signals is collectively referred to reporter DNA. Various NAATs have been used to establish NAAT-based reporter DNA sensors. And according to whether enzymes are involved in the amplification process, the NAAT-based reporter DNA sensors can be divided into two types: enzyme-assisted NAAT-based reporter DNA sensors and enzyme-free NAAT-based reporter DNA sensors. In this review, we will introduce the principles and applications of two types of NAAT-based reporter DNA sensors for detecting protein targets. Finally, the main challenges and application prospects of NAAT-based reporter DNA sensors are discussed.
Collapse
Affiliation(s)
- Jungang Du
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jin-Song He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Rui Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China.
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Zhou S, Liu D, Chen J, Xiang C, Xiang J, Yang M. Electrochemical Quantitation of the Glycosylation Level of Serum Neurofilament Light Chain for the Diagnosis of Neurodegeneration: An Interface-Solution Dual-Path Amplification Strategy. Anal Chem 2022; 94:11433-11440. [PMID: 35913270 DOI: 10.1021/acs.analchem.2c02753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serum neurofilament light chain (NFL), a potential general biomarker for neurodegenerative diseases, is not specific enough to differentiate neurodegenerative diseases from other brain diseases such as cerebral thrombosis (CT). According to the importance of glycosylation in neurodegenerative pathogenesis, the NFL glycosylation level (oNFL/tNFL), defined as the ratio of glycosylated NFL (oNFL) to total NFL (tNFL), may be a more effective index. The major challenge in serum oNFL/tNFL detection is the ultra-low abundance of both NFL forms. In this paper, we achieved a convenient one-step electrochemical quantitation of oNFL/tNFL based on an interface-solution dual-path amplification strategy. Two amplified electrochemical signals─the reduction of Cu2+ from adsorbed porous nanoparticles on the sensor interface and the reduction of O2 from horseradish peroxidase-catalyzed H2O2 disproportionation in solution─were adopted to quantify tNFL and oNFL, respectively. The electrochemical sensor displayed good sensitivity, selectivity, and reproducibility. The dynamic range is 1-25 pg mL-1 for tNFL and 0.25-25 pg mL-1 for oNFL, respectively. By analyzing the clinic serum samples, for the first time, our work provided the abundance of oNFL in human serum and revealed that the oNFL/tNFL is effective not only in differentiating three kinds of brain damage patients from healthy people but also in differentiating neurodegeneration from non-neurodegeneration CT patients. As a general biomarker, the oNFL/tNFL is more specific than NFL, which is hoped to be a new and valid indicator for the diagnosis, progression, prediction, and treatment evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Siqiuyue Zhou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha 410083, P. R. China
| | - Dan Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha 410083, P. R. China
| | - Jia Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chao Xiang
- Wuhan Red Cross Hospital, Wuhan 430015, P. R. China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha 410083, P. R. China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
4
|
Bi Y, Shu M, Zhong C, Li SY, Li YK, Yang HH, Wu GP. A Novel SDS Rinse and Immunomagnetic Beads Separation Combined with Real-Time Loop-Mediated Isothermal Amplification for Rapid and Sensitive Detection of Salmonella in Ready-to-Eat Duck Meat. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01735-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Peng Y, Chen L, Ye S, Kang Y, Liu J, Zeng S, Yu L. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020; 15:220-236. [PMID: 32373201 PMCID: PMC7193453 DOI: 10.1016/j.ajps.2020.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the continuous occurrence of multi-drug resistance in the clinic has made people pay more attention to the transporter. Changes in the expression and activity of transporters can cause corresponding changes in drug pharmacokinetics and pharmacodynamics. The drug-drug interactions (DDI) caused by transporters can seriously affect drug effectiveness and toxicity. In the development of pharmaceutical preparations, people have increasingly concerned about the effects and regulation of transporters in drug effects. To improve the targeting and physicochemical properties of drugs, the development of targeted agents is very rapid. Among them, novel nano-formulations are the best. With the continuous innovation and development of nano-formulation, its application has become more and more extensive. Nano-formulation has exerted certain advantages in the drug development based on transporters, and is also involved in the combination of targeted transporters. This review focuses on the application of novel nano-agents targeting transporters and the introduction of drug-transporter-based nano-formulations.
Collapse
Affiliation(s)
- Yi Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials 2020; 230:119633. [DOI: 10.1016/j.biomaterials.2019.119633] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
|
7
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. Recombinase polymerase amplification combined with a magnetic nanoparticle-based immunoassay for fluorometric determination of troponin T. Mikrochim Acta 2019; 186:549. [DOI: 10.1007/s00604-019-3686-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
|
8
|
Nurul Najian A, Foo PC, Ismail N, Kim-Fatt L, Yean CY. Probe-specific loop-mediated isothermal amplification magnetogenosensor assay for rapid and specific detection of pathogenic Leptospira. Mol Cell Probes 2019; 44:63-68. [DOI: 10.1016/j.mcp.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
|