1
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
2
|
Preparation of TiO 2-modified Biochar and its Characteristics of Photo-catalysis Degradation for Enrofloxacin. Sci Rep 2020; 10:6588. [PMID: 32313014 PMCID: PMC7171174 DOI: 10.1038/s41598-020-62791-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/16/2020] [Indexed: 12/07/2022] Open
Abstract
In order to solve the problem that the traditional biochar(BC) has insufficient removal ability of enrofloxacin and TiO2 is difficult to recycle. In this study, TiO2-modified biochar composites were prepared by impregnation method. Through characterization analysis, The BET specific surface area results indicated that after loading TiO2, the specific surface area of TiO2-biochar(Ti-BC), TiO2-ironized biochar(Ti-FBC) and TiO2-alkaline biochar(Ti-KBC) increased by 4.34, 10.43 and 11.52 times, respectively. The analysis results of SEM, EDS, FT-IR, XRD and XPS showed that TiO2 was supported on biochar in the anatase state. The UV-vis DRS measurement showed that the band width of Ti-KBC was the smallest and the best catalytic activity. Under 15 W UV lamp (254 nm) irradiation, the photocatalytic degradation process of enrofloxacin by different biochar accords with the first-order kinetic equation. Ti-KBC showed best degradation effect under different initial concentrations of enrofloxacin. When the pH of the solution was 5.0 and the dosage of Ti-KBC was at 2.5 g·L−1, the enrofloxacin degradation rate of 100 mg·L−1 reached 85.25%. The quenching test confirmed that the active substance O2•— played a major role in the photocatalytic degradation process. After five cycles of the test, the degradation rate of Ti-KBC for enrofloxacin was 77.14%, which was still better than that of BC, Ti-BC and Ti-FBC.
Collapse
|
3
|
Yadav RS, Kuřitka I, Vilcakova J, Machovsky M, Skoda D, Urbánek P, Masař M, Jurča M, Urbánek M, Kalina L, Havlica J. NiFe 2O 4 Nanoparticles Synthesized by Dextrin from Corn-Mediated Sol-Gel Combustion Method and Its Polypropylene Nanocomposites Engineered with Reduced Graphene Oxide for the Reduction of Electromagnetic Pollution. ACS OMEGA 2019; 4:22069-22081. [PMID: 31891087 PMCID: PMC6933775 DOI: 10.1021/acsomega.9b03191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/18/2019] [Indexed: 05/14/2023]
Abstract
In this work, nickel ferrite (NiFe2O4) nanoparticles were synthesized by dextrin from corn-mediated sol-gel combustion method and were annealed at 600, 800, and 1000 °C. The structural and physical characteristics of prepared nanoparticles were studied in detail. The average crystallite size was 20.6, 34.5, and 68.6 nm for NiFe2O4 nanoparticles annealed at 600 °C (NFD@600), 800 °C (NFD@800), and 1000 °C (NFD@1000), respectively. The electromagnetic interference shielding performance of prepared nanocomposites of NiFe2O4 nanoparticles (NFD@600 or NFD@800 or NFD@1000) in polypropylene (PP) matrix engineered with reduced graphene oxide (rGO) have been investigated; the results indicated that the prepared nanocomposites consisted of smaller-sized nickel ferrite nanoparticles exhibited excellent electromagnetic interference (EMI) shielding characteristics. The total EMI shielding effectiveness (SET) for the prepared nanocomposites have been noticed to be 45.56, 36.43, and 35.71 dB for NFD@600-rGO-PP, NFD@800-rGO-PP, and NFD@1000-rGO-PP nanocomposites, respectively, at the thickness of 2 mm in microwave X-band range (8.2-12.4 GHz). The evaluated values of specific EMI shielding effectiveness (SSE) were 38.81, 32.79, and 31.73 dB·cm3/g, and the absolute EMI shielding effectiveness (SSE/t) values were 388.1, 327.9, and 317.3 dB·cm2/g for NFD@600-rGO-PP, NFD@800-rGO-PP, and NFD@1000-rGO-PP, respectively. The prepared lightweight and flexible sheets can be considered useful nanocomposites against electromagnetic radiation pollution.
Collapse
Affiliation(s)
- Raghvendra Singh Yadav
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Ivo Kuřitka
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Jarmila Vilcakova
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Michal Machovsky
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - David Skoda
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Pavel Urbánek
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Milan Masař
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Marek Jurča
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Michal Urbánek
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Lukáš Kalina
- Materials
Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech
Republic
| | - Jaromir Havlica
- Materials
Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech
Republic
| |
Collapse
|
4
|
Yadav RS, Kuřitka I, Vilčáková J, Machovský M, Škoda D, Urbánek P, Masař M, Gořalik M, Urbánek M, Kalina L, Havlica J. Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe 2O 4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E621. [PMID: 30995813 PMCID: PMC6523113 DOI: 10.3390/nano9040621] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 11/16/2022]
Abstract
Herein, we presented electromagnetic interference shielding characteristics of NiFe2O4 nanoparticles-in-situ thermally-reduced graphene oxide (RGO)-polypropylene nanocomposites with the variation of reduced graphene oxide content. The structural, morphological, magnetic, and electromagnetic parameters and mechanical characteristics of fabricated nanocomposites were investigated and studied in detail. The controllable composition of NiFe2O4-RGO-Polypropylene nanocomposites exhibited electromagnetic interference (EMI) shielding effectiveness (SE) with a value of 29.4 dB at a thickness of 2 mm. The enhanced EMI shielding properties of nanocomposites with the increase of RGO content could be assigned to enhanced attenuation ability, high conductivity, dipole and interfacial polarization, eddy current loss, and natural resonance. The fabricated lightweight NiFe2O4-RGO-Polypropylene nanocomposites have potential as a high performance electromagnetic interference shielding nanocomposite.
Collapse
Affiliation(s)
- Raghvendra Singh Yadav
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
| | - Ivo Kuřitka
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
| | - Jarmila Vilčáková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
| | - Michal Machovský
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
| | - David Škoda
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
| | - Pavel Urbánek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
| | - Milan Masař
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
| | - Marek Gořalik
- Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic.
| | - Michal Urbánek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
| | - Lukáš Kalina
- Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic.
| | - Jaromir Havlica
- Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic.
| |
Collapse
|