1
|
Yu Y, Cao WM, Cheng F, Shi Z, Han L, Yi J, da Silva EM, Dopeso H, Chen H, Yang J, Wang X, Zhang C, Zhang H. FOXK2 amplification promotes breast cancer development and chemoresistance. Cancer Lett 2024; 597:217074. [PMID: 38901667 PMCID: PMC11290987 DOI: 10.1016/j.canlet.2024.217074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Oncogene activation through DNA amplification or overexpression is a crucial driver of cancer initiation and progression. The FOXK2 gene, located on chromosome 17q25, encodes a transcription factor with a forkhead DNA-binding domain. Analysis of genomic datasets reveals that FOXK2 is frequently amplified and overexpressed in breast cancer, correlating with poor patient survival. Knockdown of FOXK2 significantly inhibited breast cancer cell proliferation, migration, anchorage-independent growth, and delayed tumor growth in a xenograft mouse model. Additionally, inhibiting FOXK2 sensitized breast cancer cells to chemotherapy. Co-overexpression of FOXK2 and mutant PI3KCA transformed non-tumorigenic MCF-10A cells, suggesting a role for FOXK2 in PI3KCA-driven tumorigenesis. CCNE2, PDK1, and ESR1 were identified as transcriptional targets of FOXK2 in MCF-7 cells. Small-molecule inhibitors of CCNE2/CDK2 (dinaciclib) and PDK1 (dichloroacetate) exhibited synergistic anti-tumor effects with PI3KCA inhibitor (alpelisib) in vitro. Inhibition of FOXK2 by dinaciclib synergistically enhanced the anti-tumor effects of alpelisib in a xenograft mouse model. Collectively, these findings highlight the oncogenic function of FOXK2 and suggest that FOXK2 and its downstream genes represent potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Wen-Ming Cao
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lili Han
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jinling Yi
- Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hui Chen
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA
| | - Xiaosong Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Chunchao Zhang
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA.
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Yu Y, Cao WM, Cheng F, Shi Z, Han L, Yi JL, da Silva EM, Dopeso H, Chen H, Yang J, Wang X, Zhang C, Zhang H. FOXK2 amplification and overexpression promotes breast cancer development and chemoresistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542643. [PMID: 37398114 PMCID: PMC10312425 DOI: 10.1101/2023.05.28.542643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Activation of oncogenes through DNA amplification/overexpression plays an important role in cancer initiation and progression. Chromosome 17 has many cancer-associated genetic anomalies. This cytogenetic anomaly is strongly associated with poor prognosis of breast cancer. FOXK2 gene is located on 17q25 and encodes a transcriptional factor with a forkhead DNA binding domain. By integrative analysis of public genomic datasets of breast cancers, we found that FOXK2 is frequently amplified and overexpressed in breast cancers. FOXK2 overexpression in breast cancer patients is associated with poor overall survival. FOXK2 knockdown significantly inhibits cell proliferation, invasion and metastasis, and anchorage-independent growth, as well as causes G0/G1 cell cycle arrest in breast cancer cells. Moreover, inhibition of FOXK2 expression sensitizes breast cancer cells to frontline anti-tumor chemotherapies. More importantly, co-overexpression of FOXK2 and PI3KCA with oncogenic mutations (E545K or H1047R) induces cellular transformation in non-tumorigenic MCF10A cells, suggesting that FOXK2 is an oncogene in breast cancer and is involved in PI3KCA-driven tumorigenesis. Our study identified CCNE2, PDK1, and Estrogen receptor alpha (ESR1) as direct transcriptional targets of FOXK2 in MCF-7 cells. Blocking CCNE2- and PDK1-mediated signaling by using small molecule inhibitors has synergistic anti-tumor effects in breast cancer cells. Furthermore, FOXK2 inhibition by gene knockdown or inhibitors for its transcriptional targets (CCNE2 and PDK1) in combination with PI3KCA inhibitor, Alpelisib, showed synergistic anti-tumor effects on breast cancer cells with PI3KCA oncogenic mutations. In summary, we provide compelling evidence that FOXK2 plays an oncogenic role in breast tumorigenesis and targeting FOXK2-mediated pathways may be a potential therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Wen-Ming Cao
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, USA
| | - Lili Han
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jin-Ling Yi
- Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui Chen
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Xiaosong Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chunchao Zhang
- Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Chhichholiya Y, Ruthuparna M, Velagaleti H, Munshi A. Brain metastasis in breast cancer: focus on genes and signaling pathways involved, blood-brain barrier and treatment strategies. Clin Transl Oncol 2023; 25:1218-1241. [PMID: 36897508 DOI: 10.1007/s12094-022-03050-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 03/11/2023]
Abstract
Breast cancer (BC) is one of the most prevalent types of cancer in women. Despite advancement in early detection and efficient treatment, recurrence and metastasis continue to pose a significant risk to the life of BC patients. Brain metastasis (BM) reported in 17-20 percent of BC patients is considered as a major cause of mortality and morbidity in these patients. BM includes various steps from primary breast tumor to secondary tumor formation. Various steps involved are primary tumor formation, angiogenesis, invasion, extravasation, and brain colonization. Genes involved in different pathways have been reported to be associated with BC cells metastasizing to the brain. ADAM8 gene, EN1 transcription factor, WNT, and VEGF signaling pathway have been associated with primary breast tumor; MMP1, COX2, XCR4, PI3k/Akt, ERK and MAPK pathways in angiogenesis; Noth, CD44, Zo-1, CEMIP, S0X2 and OLIG2 are involved in invasion, extravasation and colonization, respectively. In addition, the blood-brain barrier is also a key factor in BM. Dysregulation of cell junctions, tumor microenvironment and loss of function of microglia leads to BBB disruption ultimately resulting in BM. Various therapeutic strategies are currently used to control the BM in BC. Oncolytic virus therapy, immune checkpoint inhibitors, mTOR-PI3k inhibitors and immunotherapy have been developed to target various genes involved in BM in BC. In addition, RNA interference (RNAi) and CRISPR/Cas9 are novel interventions in the field of BCBM where research to validate these and clinical trials are being carried out. Gaining a better knowledge of metastasis biology is critical for establishing better treatment methods and attaining long-term therapeutic efficacies against BC. The current review has been compiled with an aim to evaluate the role of various genes and signaling pathways involved in multiple steps of BM in BC. The therapeutic strategies being used currently and the novel ones being explored to control BM in BC have also been discussed at length.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Malayil Ruthuparna
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harini Velagaleti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
4
|
Aryanpour N, Farnam G, Behtaj R, H Shirazi F. The Complexity of Response to the Proliferation Agonist and Antagonist Agents, in the Breast Cancer Cell Lines with Various Receptors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123823. [PMID: 35765511 PMCID: PMC9191223 DOI: 10.5812/ijpr.123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022]
Abstract
Breast cancer is a heterogeneous disease in which many factors and receptors are effective in the disease process and response to treatment. Currently, estrogen, progesterone, and HER2 receptors are among the most important factors in choosing a treatment regimen. Other metabolic factors that may affect the treatment outcome include diabetes and hyperinsulinemia. In order to evaluate the role and complexity of cross-talk between different pathways initiating from various receptors, value the most common drugs in the treatment of breast cancer are investigated on different cell lines in this manuscript at the cell culture level. The result of different doses of Tamoxifen and estradiol on the cells with various levels of the estrogenic, progesterone, and HER2 receptors is examined alone, or in combinations, and the presence or absence of insulin. The effects of these variables on the cells' growth pattern and survival in various breast cancer cells are investigated using cell counting, colony counting, and MTT assays. Our results have further confirmed the complexity of deciding on the outcome of treatment for breast cancer with such a wide variability in the kind of receptors and biochemical agents present in the body of a cancer patient.
Collapse
Affiliation(s)
- Narges Aryanpour
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Behtaj
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Varga A, Márton É, Markovics A, Penyige A, Balogh I, Nagy B, Szilágyi M. Suppressing the PI3K/AKT Pathway by miR-30d-5p Mimic Sensitizes Ovarian Cancer Cells to Cell Death Induced by High-Dose Estrogen. Biomedicines 2022; 10:biomedicines10092060. [PMID: 36140161 PMCID: PMC9495868 DOI: 10.3390/biomedicines10092060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are short non-coding RNA molecules that are involved in tumor development and are considered to be promising candidates in cancer therapy. Here, we studied the role of miR-30s in the pathophysiology of ovarian cancer. According to our results miR-30a-5p, miR-30d-5p, and miR-30e-5p were overexpressed in the estrogen receptor α (ERα)-expressing PEO1 cell line compared to A2780 that lacks this receptor. Furthermore, the expression of miR-30a-5p, miR-30d-5p, and miR-30e-5p were induced in response to high-dose estrogen treatment in PEO1 where intensive cell death was observed according to the induction of apoptosis and autophagy. Lacking or blocking ERα function reduced tolerance to high-dose estrogen that suggests the importance of ERα-mediated estrogen response in the maintenance of proliferation. MiR-30d-5p mimic reduced cell proliferation in both A2780 and PEO1. Furthermore, it decreased the tolerance of PEO1 cells to high-dose estrogen by blocking the ERα-mediated estrogen response. This was accompanied by decreased SOX4 expression that is thought to be involved in the regulation of the PI3K/AKT pathway. Blocking this pathway by AZD8835 led to the same results. MiR-30d-5p or AZD8835 sensitized PEO1 cells to tamoxifen. We suggest that miR-30d-5p might be a promising candidate in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Arnold Markovics
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416-531
| |
Collapse
|
6
|
Andrographolide Exhibits Anticancer Activity against Breast Cancer Cells (MCF-7 and MDA-MB-231 Cells) through Suppressing Cell Proliferation and Inducing Cell Apoptosis via Inactivation of ER-α Receptor and PI3K/AKT/mTOR Signaling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113544. [PMID: 35684480 PMCID: PMC9182433 DOI: 10.3390/molecules27113544] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common cancer among women worldwide. Chemotherapy followed by endocrine therapy is the standard treatment strategy after surgery or radiotherapy. However, breast cancer is highly resistant to the treatments leading to the recurrence of breast cancer. As a result, the development of alternative medicines derived from natural plants with fewer side effects is being emphasized. Andrographolide isolated from Andrographis paniculata is one of the potential substances with anti-cancer properties in a variety of cell types, including breast cancer cells. This study aims to investigate the anti-cancer effects of andrographolide in breast cancer cells by evaluating cell viability and apoptosis as well as its underlying mechanisms through estrogen receptor (ER)-dependent and PI3K/AKT/mTOR signaling pathways. Cell viability, cell apoptosis, mRNA or miRNA, and protein expression were examined by MTT assay, Annexin V-FITC, qRT-PCR, and Western blot analysis, respectively. MCF-7 and MDA-MB-231 cell viability was reduced in a concentration- and time-dependent manner after andrographolide treatment. Moreover, andrographolide induced cell apoptosis in both MCF-7 and MDA-MB-231 cells by inhibiting Bcl-2 and enhancing Bax expression at both mRNA and protein levels. In MCF-7 cells, the ER-positive breast cancer, andrographolide showed an inhibitory effect on cell proliferation through downregulation of ERα, PI3K, and mTOR expression levels. Andrographolide also inhibited MDA-MB-231 breast cancer cell proliferation via induction of cell apoptosis. However, the inhibition of MCF-7 and MDA-MB-231 cell proliferation of andrographolide treatment did not disrupt miR-21. Our findings showed that andrographolide possesses an anti-estrogenic effect by suppressing cell proliferation in MCF-7 cells. The effects were comparable to those of the anticancer drug fulvestrant in MCF-7 cells. This study provides new insights into the anti-cancer effect of andrographolide on breast cancer and suggests andrographolide as a potential alternative from the natural plant for treating breast cancer types that are resistant to tamoxifen and fulvestrant.
Collapse
|
7
|
Ibadurrahman W, Hanif N, Hermawan A. Functional network analysis of p85 and PI3K as potential gene targets and mechanism of oleanolic acid in overcoming breast cancer resistance to tamoxifen. J Genet Eng Biotechnol 2022; 20:66. [PMID: 35482141 PMCID: PMC9050990 DOI: 10.1186/s43141-022-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022]
Abstract
Background Tamoxifen resistance in estrogen receptor positive (ER+) breast cancer therapy increases, which is the leading cause of cancer treatment failure, as it can impair patients’ prognoses, cause cancer recurrence, metastasis, and death. Combination therapy with compounds is needed to overcome tamoxifen resistance. Oleanolic acid (OA) was known to increase tamoxifen sensitivity in tamoxifen-resistant breast cancer; however, the molecular mechanism of OA and its involvement in overcoming tamoxifen resistance remain unknown and need further investigation. This study was conducted to identify the potential gene targets and molecular mechanisms of OA in overcoming tamoxifen resistance. Results A bioinformatic approach for functional network analysis was used in silico by utilizing secondary data in the Gene Expression Omnibus (GEO) database and analyzing them with GEO2R to obtain data on differentially expressed genes (DEGs). The DEG data were further examined with Database for Annotation, Visualization, and Integrated Discovery (DAVID), STRING, cBioPortal website, and Cytoscape with its plugin CytoHubba. Molecular docking was performed to predict the binding properties of OA on the protein encoded by the potential gene. CD44, FGFR2, PIK3R1, and MDM2 were designated as potential target genes (PTGs), and PIK3R1 was suspected as the potential gene for OA to overcome tamoxifen resistance. Molecular docking confirms that OA can inhibit p85 activation. PIK3R1 is suggested to be the potential gene for OA in overcoming tamoxifen resistance in breast cancer therapy. Conclusion The predicted molecular mechanism of OA in overcoming tamoxifen resistance involves inhibiting p85 activation, leading to the inhibition of the downstream activity of the PI3K signaling pathway, causing breast cancer to respond to tamoxifen therapy once again. Results of this study need to be validated by further studies, including in vitro and in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00341-4.
Collapse
Affiliation(s)
- Wilfan Ibadurrahman
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Naufa Hanif
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia. .,Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
8
|
Chu X, Bu Y, Yang X. Recent Research Progress of Chiral Small Molecular Antitumor-Targeted Drugs Approved by the FDA From 2011 to 2019. Front Oncol 2021; 11:785855. [PMID: 34976824 PMCID: PMC8718447 DOI: 10.3389/fonc.2021.785855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Chiral drugs usually contain chiral centers, which are present as single enantiomers or racemates. Compared with achiral drugs, they have significant advantages in safety and efficacy with high stereoselectivity. Of these drugs, chirality not only exerts influence on the solubility and pharmacokinetic characteristics but also has specific mechanistic characteristics on their targets. We noted that small molecules with unique chiral properties have emerged as novel components of antitumor drugs approved by the FDA in decade. Since approved, these drugs have been continuously explored for new indications, new mechanisms, and novel combinations. In this mini review, recent research progress of twenty-two FDA-approved chiral small molecular-targeted antitumor drugs from 2011 to 2019 is summarized with highlighting the potential and advantages of their applications. We believe that these updated achievements may provide theoretical foundation and stimulate research interests for optimizing drug efficacy, expanding clinical application, overcoming drug resistance, and advancing safety in future clinical administrations of these chiral targeted drugs.
Collapse
Affiliation(s)
| | | | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Kaboli PJ, Imani S, Jomhori M, Ling KH. Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am J Cancer Res 2021; 11:5155-5183. [PMID: 34765318 PMCID: PMC8569340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. Several types of drugs, targeting the specific proteins expressed on the breast cancer cell surface (such as receptor tyrosine kinases and immune checkpoint regulators) and proteins involved in cell cycle and motility (including cyclin-dependent kinases, DNA stabilisers, and cytoskeleton modulators) are approved for different subtypes of breast cancer. However, breast cancer also has a poor response to conventional chemotherapy due to intrinsic and acquired resistance, and an Akt fingerprint is detectable in most drug-resistant cases. Overactivation of Akt and its upstream and downstream regulators in resistant breast cancer cells is considered a major potential target for novel anti-cancer therapies, suggesting that Akt signalling acts as a cellular mechanism against chemotherapy. The present review has shown that sustained activation of Akt results in resistance to different types of chemotherapy. Akt signalling plays a cellular defence role against chemotherapy and (1) enhances multi-drug resistance, (2) increases reactive oxygen species at breast tumor microenvironment, (3) enhances anaerobic metabolism, (4) inhibits the tricarboxylic cycle, (5) promotes PD-L1 upregulation, (6) inhibits apoptosis, (7) increases glucose uptake, and more importantly (8) recruits and interconnects the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria to hijack breast cancer cells and rescue these cells from chemotherapy. Therefore, Akt signalling is considered a cellular defence mechanism employed against chemotherapeutic effects. In addition, interfering roles of PI3K/Akt signalling on the current cytotoxic and molecularly targeted therapy as well as immunotherapy of breast cancer are discussed with a clinical approach. Although, alpelisib, a PIK3CA inhibitor, is the only PI3K/Akt pathway inhibitor approved for breast cancer, we also highlight well-evaluated inhibitors of PI3K/Akt signalling based on different subtypes of breast cancer, which are under clinical trials whether as monotherapy or in combination with other types of chemotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan 646000, P. R. China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research InstituteMashhad, Iran
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
- Department of Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
10
|
Augusto TV, Amaral C, Wang Y, Chen S, Almeida CF, Teixeira N, Correia-da-Silva G. Effects of PI3K inhibition in AI-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Res Treat 2021; 190:227-240. [PMID: 34498152 DOI: 10.1007/s10549-021-06376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer death in women. The aromatase inhibitors (AIs), Anastrozole (Ana), Letrozole (Let), and Exemestane (Exe) are a first-line treatment option for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Nevertheless, the development of acquired resistance to this therapy is a major drawback. The involvement of PI3K in resistance, through activation of the PI3K/AKT/mTOR survival pathway or through a cytoprotective autophagic process, is widely described. MATERIALS AND METHODS The involvement of autophagy in response to Ana and Let treatments and the effects of the combination of BYL-719, a PI3K inhibitor, with AIs were explored in AI-resistant breast cancer cell lines (LTEDaro, AnaR, LetR, and ExeR). RESULTS We demonstrate that Ana and Let treatments do not promote autophagy in resistant breast cancer cells, contrary to Exe. Moreover, the combinations of BYL-719 with AIs decrease cell viability by different mechanisms by nonsteroidal vs. steroidal AIs. The combination of BYL-719 with Ana or Let induced cell cycle arrest while the combination with Exe promoted cell cycle arrest and apoptosis. In addition, BYL-719 decreased AnaR, LetR, and ExeR cell viability in a dose- and time-dependent manner, being more effective in the ExeR cell line. This decrease was further exacerbated by ICI 182,780. CONCLUSION These results corroborate the lack of cross-resistance between AIs verified in the clinic, excluding autophagy as a mechanism of resistance to Ana or Let and supporting the ongoing clinical trials combining BYL-719 with AIs.
Collapse
Affiliation(s)
- Tiago V Augusto
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Cristina F Almeida
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
11
|
Lee S, Nam M, Lee AR, Baek ST, Kim MJ, Kim JS, Kong AH, Lee M, Lee SJ, Kim SY, Kim DU, Hoe KL. Genetic alterations in Wnt family of genes and their putative association with head and neck squamous cell carcinoma. Genomics Inform 2021; 19:e39. [PMID: 35172472 PMCID: PMC8752990 DOI: 10.5808/gi.21049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
Tamoxifen (TAM) is an anticancer drug used to treat estrogen receptor (ER)‒positive breast cancer. However, its ER-independent cytotoxic and antifungal activities have prompted debates on its mechanism of action. To achieve a better understanding of the ER-independent antifungal action mechanisms of TAM, we systematically identified TAM-sensitive genes through microarray screening of the heterozygous gene deletion library in fission yeast (Schizosaccharomyces pombe). Secondary confirmation was followed by a spotting assay, finally yielding 13 TAM-sensitive genes under the drug-induced haploinsufficient condition. For these 13 TAM-sensitive genes, we conducted a comparative analysis of their Gene Ontology (GO) ‘biological process’ terms identified from other genome-wide screenings of the budding yeast deletion library and the MCF7 breast cancer cell line. Several TAM-sensitive genes overlapped between the yeast strains and MCF7 in GO terms including ‘cell cycle’ (cdc2, rik1, pas1, and leo1), ‘signaling’ (sck2, oga1, and cki3), and ‘vesicle-mediated transport’ (SPCC126.08c, vps54, sec72, and tvp15), suggesting their roles in the ER-independent cytotoxic effects of TAM. We recently reported that the cki3 gene with the ‘signaling’ GO term was related to the ER-independent antifungal action mechanisms of TAM in yeast. In this study, we report that haploinsufficiency of the essential vps54 gene, which encodes the GARP complex subunit, significantly aggravated TAM sensitivity and led to an enlarged vesicle structure in comparison with the SP286 control strain. These results strongly suggest that the vesicle-mediated transport process might be another action mechanism of the ER-independent antifungal or cytotoxic effects of TAM.
Collapse
Affiliation(s)
- Sol Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Miyoung Nam
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Ah-Reum Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Seung-Tae Baek
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Min Jung Kim
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Ju Seong Kim
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Andrew Hyunsoo Kong
- Morrissey College of Arts and Sciences, Boston College, Boston 02467, MA, USA
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea
| | - Sook-Jeong Lee
- Department of Bioactive Material Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Seon-Young Kim
- Personalized Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea.,Korea Research Institute of Chemistry & Technology, Daejeon 34141, Korea
| |
Collapse
|
12
|
Xing J, Yang J, Gu Y, Yi J. Research update on the anticancer effects of buparlisib. Oncol Lett 2021; 21:266. [PMID: 33717263 PMCID: PMC7885152 DOI: 10.3892/ol.2021.12527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
Buparlisib is a highly efficient and selective PI3K inhibitor and a member of the 2,6-dimorpholinopyrimidine-derived family of compounds. It selectively inhibits four isomers of PI3K, PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ, by competitively binding the lipid kinase domain on adenosine 5'-triphosphate (ATP), and serves an important role in inhibiting proliferation, promoting apoptosis and blocking angiogenesis, predominantly by antagonizing the PI3K/AKT pathway. Buparlisib has been confirmed to have a clinical effect in patients with solid tumors and hematological malignancies. A global, phase II clinical trial with buparlisib and paclitaxel in head and neck squamous cell carcinoma has now been completed, with a manageable safety profile. Buparlisib currently has fast-track status with the United States Food and Drug Administration. The present review examined the biochemical structure, pharmacokinetic characteristics, preclinical data and ongoing clinical studies of buparlisib. The various mechanisms of influence of buparlisib in tumors, particularly in preclinical research, were summarized, providing a theoretical basis and direction for basic research on and clinical treatment with buparlisib.
Collapse
Affiliation(s)
- Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jun Yang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
13
|
Watase C, Shiino S, Shimoi T, Noguchi E, Kaneda T, Yamamoto Y, Yonemori K, Takayama S, Suto A. Breast Cancer Brain Metastasis-Overview of Disease State, Treatment Options and Future Perspectives. Cancers (Basel) 2021; 13:cancers13051078. [PMID: 33802424 PMCID: PMC7959316 DOI: 10.3390/cancers13051078] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In this review, we present the latest information on the pathophysiology, diagnosis, and local and systemic treatment of brain metastases from breast cancer, with a focus on recent publications. Improving the local treatment and subtype-specific systemic therapies through advancements in basic and translational research will contribute to better clinical outcomes for patients with breast cancer brain metastasis. Abstract Breast cancer is the second most common origin of brain metastasis after lung cancer. Brain metastasis in breast cancer is commonly found in patients with advanced course disease and has a poor prognosis because the blood–brain barrier is thought to be a major obstacle to the delivery of many drugs in the central nervous system. Therefore, local treatments including surgery, stereotactic radiation therapy, and whole-brain radiation therapy are currently considered the gold standard treatments. Meanwhile, new targeted therapies based on subtype have recently been developed. Some drugs can exceed the blood–brain barrier and enter the central nervous system. New technology for early detection and personalized medicine for metastasis are warranted. In this review, we summarize the historical overview of treatment with a focus on local treatment, the latest drug treatment strategies, and future perspectives using novel therapeutic agents for breast cancer patients with brain metastasis, including ongoing clinical trials.
Collapse
Affiliation(s)
- Chikashi Watase
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Tatsunori Shimoi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Emi Noguchi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Tomoya Kaneda
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Shin Takayama
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
- Correspondence: ; Tel.: +81-3-3542-2511; Fax: +81-3-3545-3567
| |
Collapse
|
14
|
Krishnamurthy S, Yoda H, Hiraoka K, Inoue T, Lin J, Shinozaki Y, Watanabe T, Koshikawa N, Takatori A, Nagase H. Targeting the mutant PIK3CA gene by DNA-alkylating pyrrole-imidazole polyamide in cervical cancer. Cancer Sci 2021; 112:1141-1149. [PMID: 33377228 PMCID: PMC7935806 DOI: 10.1111/cas.14785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
PIK3CA is the most frequently mutated oncogene in cervical cancer, and somatic mutations in the PIK3CA gene result in increased activity of PI3K. In cervical cancer, the E545K mutation in PIK3CA leads to elevated cell proliferation and reduced apoptosis. In the present study, we designed and synthesized a novel pyrrole-imidazole polyamide-seco-CBI conjugate, P3AE5K, to target the PIK3CA gene bearing the E545K mutation, rendered possible by nuclear access and the unique sequence specificity of pyrrole-imidazole polyamides. P3AE5K interacted with double-stranded DNA of the coding region containing the E545K mutation. When compared with conventional PI3K inhibitors, P3AE5K demonstrated strong cytotoxicity in E545K-positive cervical cancer cells at lower concentrations. PIK3CA mutant cells exposed to P3AE5K exhibited reduced expression levels of PIK3CA mRNA and protein, and subsequent apoptotic cell death. Moreover, P3AE5K significantly decreased the tumor growth in mouse xenograft models derived from PIK3CA mutant cells. Overall, the present data strongly suggest that the alkylating pyrrole-imidazole polyamide P3AE5K should be a promising new drug candidate targeting a constitutively activating mutation of PIK3CA in cervical cancer.
Collapse
Affiliation(s)
- Sakthisri Krishnamurthy
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan.,Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan.,Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroyuki Yoda
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kiriko Hiraoka
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takahiro Inoue
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Jason Lin
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshinao Shinozaki
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takayoshi Watanabe
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Nobuko Koshikawa
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Atsushi Takatori
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Hiroki Nagase
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
15
|
Steelman LS, Chappell WH, Akula SM, Abrams SL, Cocco L, Manzoli L, Ratti S, Martelli AM, Montalto G, Cervello M, Libra M, Candido S, McCubrey JA. Therapeutic resistance in breast cancer cells can result from deregulated EGFR signaling. Adv Biol Regul 2020; 78:100758. [PMID: 33022466 DOI: 10.1016/j.jbior.2020.100758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The epidermal growth factor receptor (EGFR) interacts with various downstream molecules including phospholipase C (PLC)/protein kinase C (PKC), Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/GSK-3, Jak/STAT and others. Often these pathways are deregulated in human malignancies such as breast cancer. Various therapeutic approaches to inhibit the activity of EGFR family members including small molecule inhibitors and monoclonal antibodies (MoAb) have been developed. A common problem with cancer treatments is the development of drug-resistance. We examined the effects of a conditionally-activated EGFR (v-Erb-B:ER) on the resistance of breast cancer cells to commonly used chemotherapeutic drugs such as doxorubicin, daunorubicin, paclitaxel, cisplatin and 5-flurouracil as well as ionizing radiation (IR). v-Erb-B is similar to the EGFR-variant EGFRvIII, which is expressed in various cancers including breast, brain, prostate. Both v-Erb-B and EGFRvIII encode the EGFR kinase domain but lack key components present in the extracellular domain of EGFR which normally regulate its activity and ligand-dependence. The v-Erb-B oncogene was ligated to the hormone binding domain of the estrogen receptor (ER) which results in regulation of the activity of the v-Erb-ER construct by addition of either estrogen (E2) or 4-hydroxytamoxifen (4HT) to the culture media. Introduction of the v-Erb-B:ER construct into the MCF-7 breast cancer cell line increased the resistance to the cells to various chemotherapeutic drugs, hormonal-based therapeutics and IR. These results point to the important effects that aberrant expression of EGFR kinase domain can have on therapeutic resistance.
Collapse
Affiliation(s)
- Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - William H Chappell
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Massimo Libra
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
16
|
Chen Z, Chen C, Zhou T, Duan C, Wang Q, Zhou X, Zhang X, Wu F, Hua Y, Lin F. A high-throughput drug combination screen identifies an anti-glioma synergism between TH588 and PI3K inhibitors. Cancer Cell Int 2020; 20:337. [PMID: 32714096 PMCID: PMC7376673 DOI: 10.1186/s12935-020-01427-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor. More than half of GBMs contain mutation(s) of PTEN/PI3K/AKT, making inhibitors targeting the PI3K pathway very attractive for clinical investigation. However, so far, PI3K/AKT/mTOR inhibitors have not achieved satisfactory therapeutic effects in clinical trials of GBM. In this study, we aimed to develop a high-throughput screening method for high-throughput identification of potential targeted agents that synergize with PI3K inhibitors in GBM. Methods A Sensitivity Index (SI)-based drug combination screening method was established to evaluate the interactions between BKM120, a pan-PI3K inhibitor, and compounds from a library of 606 target-selective inhibitors. Proliferation, colony and 3D spheroid formation assays, western blotting, comet assay, γ-H2AX staining were used to evaluate the anti-glioma effects of the top-ranked candidates. The drug combination effects were analyzed by the Chou-Talalay method. Results Six compounds were successfully identified from the drug screen, including three previously reported compounds that cause synergistic antitumor effects with PI3K/mTOR inhibitors. TH588, an putative MTH1 inhibitor exhibited significant synergy with BKM120 in suppressing the proliferation, colony formation and 3D spheroid formation of GBM cells. Further investigation revealed that both DNA damage and apoptosis were markedly enhanced upon combination treatment with TH588 and BKM120. Finally, activation of PI3K or overexpression of AKT compromised the anti-glioma efficacy of TH588. Conclusions The screening method developed in this study demonstrated its usefulness in the rapid identification of synergistic drug combinations of PI3K inhibitors and targeted agents.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Chao Chen
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Tingting Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Chao Duan
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohui Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Xia Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Fangrong Wu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Yunfen Hua
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China.,Institute for Brain Tumors, Key Laboratory of Rare Metabolic Diseases, The Affiliated Cancer Hospital of Nanjing Medical University; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, China
| |
Collapse
|
17
|
Vernieri C, Corti F, Nichetti F, Ligorio F, Manglaviti S, Zattarin E, Rea CG, Capri G, Bianchi GV, de Braud F. Everolimus versus alpelisib in advanced hormone receptor-positive HER2-negative breast cancer: targeting different nodes of the PI3K/AKT/mTORC1 pathway with different clinical implications. Breast Cancer Res 2020; 22:33. [PMID: 32252811 PMCID: PMC7137211 DOI: 10.1186/s13058-020-01271-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background The PI3K/AKT/mTORC1 axis is implicated in hormone receptor-positive HER2-negative metastatic breast cancer (HR+ HER2− mBC) resistance to anti-estrogen treatments. Based on results of the BOLERO-2 trial, the mTORC1 inhibitor everolimus in combination with the steroidal aromatase inhibitor (AI) exemestane has become a standard treatment for patients with HR+ HER2− mBC resistant to prior non-steroidal AI therapy. In the recent SOLAR-1 trial, the inhibitor of the PI3K alpha subunit (p110α) alpelisib in combination with fulvestrant prolonged progression-free survival (PFS) when compared to fulvestrant alone in patients with PIK3CA-mutated HR+ HER2− mBC that progressed after/on previous AI treatment. Therefore, two different molecules targeting the PI3K/AKT/mTORC1 axis, namely everolimus and alpelisib, are available for patients progressing on/after previous AI treatment, but it is unclear how to optimize their use in the clinical practice. Main body of the abstract Here, we reviewed the available clinical evidence deriving from the BOLERO-2 and SOLAR-1 trials to compare efficacy and safety profiles of everolimus and alpelisib in advanced HR+ HER2− BC treatment. Adding either compound to standard endocrine therapy provided similar absolute and relative PFS advantage. In the SOLAR-1 trial, a 76% incidence of grade (G) 3 or 4 (G3/G4) adverse events was reported, while G3/G4 toxicities occurred in 42% of patients in the BOLERO-2 trial. While alpelisib was only effective in patients with PIK3CA-mutated neoplasms, retrospective analyses indicate that everolimus improves exemestane efficacy independently of PIK3CA mutational status. Conclusions Based on the available efficacy and safety data, the “new” alpelisib may be burdened by higher incidence of severe adverse events, higher costs, and anticancer efficacy that is limited to PIK3CA-mutated tumors when compared to the “old” everolimus. Therefore, the everolimus-exemestane combination remains an effective and reasonably well-tolerated therapeutic option for HR+ HER2− mBC patients progressing after/on previous AI treatment, independently of PIK3CA mutational status.
Collapse
Affiliation(s)
- Claudio Vernieri
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy. .,Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy.
| | - Francesca Corti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Sara Manglaviti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Emma Zattarin
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Carmen G Rea
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Giuseppe Capri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Giulia V Bianchi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy.,Oncology and Hemato-Oncology Department, University of Milan, 20122, Milan, Italy
| |
Collapse
|
18
|
Liu CL, Cheng SP, Chen MJ, Lin CH, Chen SN, Kuo YH, Chang YC. Quinolinate Phosphoribosyltransferase Promotes Invasiveness of Breast Cancer Through Myosin Light Chain Phosphorylation. Front Endocrinol (Lausanne) 2020; 11:621944. [PMID: 33613454 PMCID: PMC7890081 DOI: 10.3389/fendo.2020.621944] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Perturbed Nicotinamide adenine dinucleotide (NAD+) homeostasis is involved in cancer progression and metastasis. Quinolinate phosphoribosyltransferase (QPRT) is the rate-limiting enzyme in the kynurenine pathway participating in NAD+ generation. In this study, we demonstrated that QPRT expression was upregulated in invasive breast cancer and spontaneous mammary tumors from MMTV-PyVT transgenic mice. Knockdown of QPRT expression inhibited breast cancer cell migration and invasion. Consistently, ectopic expression of QPRT promoted cell migration and invasion in breast cancer cells. Treatment with QPRT inhibitor (phthalic acid) or P2Y11 antagonist (NF340) could reverse the QPRT-induced invasiveness and phosphorylation of myosin light chain. Similar reversibility could be observed following treatment with Rho inhibitor (Y16), ROCK inhibitor (Y27632), PLC inhibitor (U73122), or MLCK inhibitor (ML7). Altogether, these results indicate that QPRT enhanced breast cancer invasiveness probably through purinergic signaling and might be a potential prognostic indicator and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Shan-Na Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Hue Kuo
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- *Correspondence: Yuan-Ching Chang,
| |
Collapse
|
19
|
Zhou D, Ouyang Q, Liu L, Liu J, Tang Y, Xiao M, Wang Y, He Q, Hu ZY. Chemotherapy Modulates Endocrine Therapy-Related Resistance Mutations in Metastatic Breast Cancer. Transl Oncol 2019; 12:764-774. [PMID: 30893632 PMCID: PMC6423490 DOI: 10.1016/j.tranon.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 01/07/2023] Open
Abstract
PURPOSE: Accumulation of PIK3CA, ESR1, and GATA3 mutations results in resistance to endocrine therapy in breast cancer patients; however, the response of these genes to chemotherapy is unclear. Therefore, we sought to evaluate the genetic response of circulating tumor DNA (ctDNA) to chemotherapy in metastatic breast cancer patients. METHODS: The mutation frequency of 1021 genes was examined prior to chemotherapy in ctDNA of 44 estrogen receptor–positive metastatic breast cancer patients. These genes were evaluated again in a subset of patients (n=24) following chemotherapy. Mutation frequency was defined as the percentage of mutations found in ctDNA compared to total cell-free DNA. RESULTS: Prior to chemotherapy, PIK3CA was the most commonly mutated gene, with mutation found in 22 of the metastatic breast cancer patients. Following chemotherapy, 16 patients exhibited progressive disease (PD), and 8 patients experienced no progression (non-PD). PIK3CA mutation frequency increased in 56.25% (9/16) of the PD patients but decreased in 62.5% (5/8) of the non-PD patients. As a result, more PD patients exhibited increased PIK3CA mutation frequency than non-PD patients (56.25% vs 0%, P=.002). Further, ESR1 and GATA3 mutations correlated with PIK3CA mutation. Interestingly, patients receiving the mTOR inhibitor everolimus exhibited a lower progression rate (0% vs 62.5%, P=.001), and the combination of everolimus and chemotherapy effectively suppressed PIK3CA, ESR1, and GATA3 gene mutations. CONCLUSION: Together, these results suggest that mTOR inhibition may be a useful chemotherapy adjuvant to suppress chemotherapy-induced gene mutations that render tumors resistant to endocrine therapy in metastatic breast cancer patients with PD.
Collapse
Affiliation(s)
- Dabo Zhou
- The Affiliated Cancer Hospital of Xiangya Medical School, Central South University / Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Quchang Ouyang
- The Affiliated Cancer Hospital of Xiangya Medical School, Central South University / Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China.
| | - Liping Liu
- The Affiliated Cancer Hospital of Xiangya Medical School, Central South University / Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Jingyu Liu
- The Affiliated Cancer Hospital of Xiangya Medical School, Central South University / Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Yu Tang
- The Affiliated Cancer Hospital of Xiangya Medical School, Central South University / Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Mengjia Xiao
- The Affiliated Cancer Hospital of Xiangya Medical School, Central South University / Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Yikai Wang
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, 33022, USA
| | - Qiongzhi He
- Geneplus Beijing Institute, Beijing 102206, China
| | - Zhe-Yu Hu
- The Affiliated Cancer Hospital of Xiangya Medical School, Central South University / Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China; Department of Breast Cancer Medical Oncology, the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China.
| |
Collapse
|
20
|
Brosnan EM, Anders CK. Understanding patterns of brain metastasis in breast cancer and designing rational therapeutic strategies. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:163. [PMID: 29911111 PMCID: PMC5985267 DOI: 10.21037/atm.2018.04.35] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023]
Abstract
One of the most feared sequelae after a diagnosis of advanced breast cancer is development of metastases to the brain as this diagnosis can affect physical function, independence, relationships, quality of life, personality, and ultimately one's sense of self. The propensity to develop breast cancer brain metastases (BCBMs) varies by subtype, occurring in up to one half of those with triple negative breast cancer (TNBC), approximately a third of HER+ breast cancers and 14% in hormone positive disease. Median survival after BCBM diagnosis can be as short as 5 months in TNBC and 10-18 months in the other subtypes. Here, we review the biology of BCBMs and how it informs the rational design of new therapeutic approaches and agents. We discuss application of novel targeted and immunotherapies by breast cancer subtype. It is noteworthy that there are no U.S. Food and Drug Administration (FDA)-approved treatments specifically for BCBMs currently. Nevertheless, there are legitimate grounds for hope as patients with BCBMs are now being included in clinical trials of systemic therapies and a better understanding of the biology and genetic underpinning of BCBMs is driving an increased range of options for patients.
Collapse
Affiliation(s)
- Evelyn M Brosnan
- Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Carey K Anders
- Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Wang X, Zou F, Zhong J, Yue L, Wang F, Wei H, Yang G, Jin T, Dong X, Li J, Xiu P. Secretory Clusterin Mediates Oxaliplatin Resistance via the Gadd45a/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma. J Cancer 2018; 9:1403-1413. [PMID: 29721050 PMCID: PMC5929085 DOI: 10.7150/jca.23849] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose: Systemic therapy has often been used for patients with advanced hepatocellular carcinoma (HCC). However, due to drug resistance, the use of cytotoxic chemotherapy in the treatment of patients with advanced HCC has typically demonstrated low response rates. Secretory clusterin (sCLU) is expressed in aggressive late-stage tumors and associated with resistance to chemotherapy, including that in HCC cases. The present research aimed to investigate the biological role of sCLU in HCC. Methods: sCLU expression in HCC and normal tissues was examined using immunohistochemical staining, followed by analysis of the correlation between sCLU expression and clinical indicators. In addition, the role and internal mechanism of sCLU in cell proliferation and apoptosis were investigated in HCC cells. Results: sCLU expression was significantly upregulated in HCC tissues; and was associated with histological grade and poor overall survival. The levels of sCLU were significantly increased in Bel7402, SMMC7721 and resistant HCC cells (Bel7404-OR). Inhibiting the activity of sCLU enhanced the chemosensitivity of Bel7402 and SMMC7721 cells. Downregulation of sCLU could increase the expression of Gadd45a in HCC cells. Overexpression of sCLU contributed to drug resistance in Bel7402, SMMC7721 and Bel7404-OR cells; whereas, overexpression of Gadd45a alone overcame drug resistance in the cells above. No significant expression changes of sCLU and Gadd45a were observed in HCC cells after the interference of a selective inhibitor of the PI3K/Akt signaling pathway. However, regulation of the expression of Gadd45a could influence the phosphorylation level of Akt; and further regulate the expression of Bcl-2 and Bax proteins involved in the mitochondrial apoptosis pathways. Conclusions: The results demonstrate that sCLU/Gadd45a/PI3K/Akt signaling represents a novel pathway that could regulate drug resistance in a one-way manner in HCC cells.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Fang Zou
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.,Department of Emergency Surgery, The People's Hospital of Linyi City, Linyi 276000, China
| | - Jingtao Zhong
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academic of Medicine Science, Jinan 250117, Shandong, China
| | - Longtao Yue
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Fuhai Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Honglong Wei
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Guangsheng Yang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Tao Jin
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jie Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Peng Xiu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| |
Collapse
|
22
|
Montor WR, Salas AROSE, Melo FHMD. Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors. Mol Cancer 2018; 17:55. [PMID: 29455659 PMCID: PMC5817866 DOI: 10.1186/s12943-018-0792-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/23/2022] Open
Abstract
Searching for targets that allow pharmacological inhibition of cell proliferation in over-proliferative states, such as cancer, leads us to finely understand the complex mechanisms orchestrating the perfect control of mitosis number, frequency and pace as well as the molecular arrangements that induce cells to enter functional quiescence and brings them back to cycling in specific conditions. Although the mechanisms regulating cell proliferation have been described several years ago, never before has so much light been shed over this machinery as during the last decade when therapy targets have been explored and molecules, either synthetic or in the form of antibodies with the potential of becoming cancer drugs were produced and adjusted for specific binding and function. Proteins containing tyrosine kinase domains, either membrane receptors or cytoplasmic molecules, plus the ones activated by those in downstream pathways, having tyrosine kinase domains or not, such as RAS which is a GTPase and serine/threonine kinases such as RAF, play crucial role in conducting proliferation information from cell surroundings to the nucleus where gene expression takes place. Tyrosine kinases phosphorylate tyrosine residues in an activating mode and are found in important growth factor receptors, such as for ligands from families collectively known as VEGF, PDGF and EGF, to name a few and in intracellular downstream molecules. They all play important roles in normal physiology and are commonly found mutated or overexpressed in neoplastic states. Our objective here is to present such kinases as druggable targets for cancer therapy, highlighting the ones for which the pharmacological arsenal is available, discussing specificity, resistance mechanisms and treatment alternatives in cases of resistance, plus listing potential targets that have not been successfully worked yet.
Collapse
Affiliation(s)
- Wagner Ricardo Montor
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
23
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|