1
|
Sharma S, Mehta NU, Sauer T, Rollins LA, Dittmer DP, Rooney CM. Cotargeting EBV lytic as well as latent cycle antigens increases T-cell potency against lymphoma. Blood Adv 2024; 8:3360-3371. [PMID: 38640255 PMCID: PMC11255116 DOI: 10.1182/bloodadvances.2023012183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024] Open
Abstract
ABSTRACT The remarkable efficacy of Epstein-Barr virus (EBV)-specific T cells for the treatment of posttransplant lymphomas has not been reproduced for EBV-positive (EBV+) malignancies outside the transplant setting. This is because of, in part, the heterogeneous expression and poor immunogenicity of the viral antigens expressed, namely latent membrane proteins 1 and 2, EBV nuclear antigen 1, and BamHI A rightward reading frame 1 (type-2 [T2] latency). However, EBV lytic cycle proteins are also expressed in certain EBV+ malignancies and, because several EBV lytic cycle proteins are abundantly expressed, have oncogenic activity, and likely contribute to malignancy, we sought and identified viral lytic-cycle transcripts in EBV+ Hodgkin lymphoma biopsies. This provided the rationale for broadening the target antigen-specific repertoire of EBV-specific T cells (EBVSTs) for therapy. We stimulated, peripheral blood mononuclear cells from healthy donors and patients with EBV+ lymphoma with both lytic and latent cycle proteins to produce broad repertoire (BR) EBVSTs. Compared with T2 antigen-specific EBVSTs, BR-EBVSTs more rapidly cleared autologous EBV+ tumors in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice and produced higher levels of proinflammatory cytokines that should reactivate the immunosuppressive tumor microenvironment leading to epitope spreading. Our results confirm that lytic cycle antigens are clinically relevant targets for EBV+ lymphoma and underpin the rationale for integrating BR-EBVSTs as a therapeutic approach for relapsed/refractory EBV+ lymphoma (www.clinicaltrials.gov identifiers: #NCT01555892 and #NCT04664179), as well as for other EBV-associated malignancies.
Collapse
Affiliation(s)
- Sandhya Sharma
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Naren U. Mehta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Tim Sauer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Lisa A. Rollins
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Cliona M. Rooney
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Department of Pathology-Immunology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
2
|
Mangiaterra T, Alonso-Alonso R, Rabinovich A, De Dios Soler M, Galluzzo L, Soria M, Colli S, De Matteo E, Rodriguez Pinilla SM, Chabay P. Presence of Epstein-Barr virus (EBV) antigens detected by sensitive methods has no influence on local immune environment in diffuse large B cell lymphoma. Cancer Immunol Immunother 2024; 73:29. [PMID: 38280007 PMCID: PMC10821829 DOI: 10.1007/s00262-023-03617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/16/2023] [Indexed: 01/29/2024]
Abstract
EBV+ diffuse large B cell lymphoma (DLBCL) not otherwise specified (NOS) is a new entity confirmed by the World Health Organization (WHO) in 2017. In this new entity, the virus may contribute to a tolerogenic microenvironment. Traces of the virus have been described in DLBCL with more sensitive methods, in cases that were originally diagnosed as negative. The aim of this study was to analyze the expression of immune response genes in the tumor microenvironment to disclose the role of the virus and its traces in DLBCL. In 48 DLBCL cases, the expression of immune response genes and the presence of molecules that induce tolerance, such as TIM3, LAG3 and PDL1 by immunohistochemistry (IHC), were studied. To broaden the study of the microenvironment, tumor-associated macrophages (TMAs) were also explored. No significant differences were observed in the expression of immune response genes in the EBV+ DLBCL and those cases that were EBV- DLBCL but that exhibited viral traces, assessed by ViewRNA assay. Only the EBV+ DLBCL cases displayed a significantly higher increase in the expression of CD8 and cytotoxic T cells detected by gene expression analysis, and of PDL1 in tumor cells and in the expression of CD68 in the tumor microenvironment detected by IHC, not observed in those cases with viral traces. The increase in CD8 and cytotoxic T cells, PDL1 and CD68 markers only in EBV+ DLBCL may indicate that traces of viral infection might not have influence in immune response markers.
Collapse
Affiliation(s)
- T Mangiaterra
- Molecular Biology Laboratory, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutierrez Children's Hospital, Buenos Aires, Argentina
| | - R Alonso-Alonso
- Pathology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - A Rabinovich
- Molecular Biology Laboratory, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutierrez Children's Hospital, Buenos Aires, Argentina
| | - M De Dios Soler
- Pathology Division, Marie Curie Hospital, Buenos Aires, Argentina
| | - L Galluzzo
- Pathology Division, Prof. Dr. Juan P. Garrahan Hospital, Buenos Aires, Argentina
| | - M Soria
- Hematology Division, Ricardo Gutierrez Children's Hospital, Buenos Aires, Argentina
| | - S Colli
- Pathology Division, Ricardo Gutierrez Children's Hospital, Buenos Aires, Argentina
| | - E De Matteo
- Molecular Biology Laboratory, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutierrez Children's Hospital, Buenos Aires, Argentina
- Pathology Division, Ricardo Gutierrez Children's Hospital, Buenos Aires, Argentina
| | | | - P Chabay
- Molecular Biology Laboratory, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutierrez Children's Hospital, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Amarillo ME, Moyano A, Ferressini Gerpe N, De Matteo E, Preciado MV, Chabay P. Tonsillar cytotoxic CD4 T cells are involved in the control of EBV primary infection in children. Sci Rep 2024; 14:2135. [PMID: 38273012 PMCID: PMC10810912 DOI: 10.1038/s41598-024-52666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
CD4 T cells play a key role in Epstein Barr virus (EBV) infection, by modulating latent antigen expression, and exhibiting cytotoxic and regulatory properties. Our aim was to evaluate the presence of Granzyme B (GZMB) and Foxp3 CD4 T cells at different EBV infection status and latency profiles. We examined CD4, GZMB, Foxp3, IL10, TGF-β, CD4-GZMB and CD4-Foxp3 expression at the tonsils of pediatric patients with different infective status and EBV latency profiles. CD4+, GZMB+, Foxp3+, CD4-GZMB+ and CD4-Foxp3+ cell counts were higher at the interfollicular region. Higher expression of CD4-GZMB was found in primary infected patients compared to healthy carriers. In patients that expressed latency III antigens, we demonstrated lower CD4+, CD4-GZMB+, CD4-Foxp3+ expression; a negative correlation between the immunoregulatory cytokine IL-10+ and GZMB+ as well as a positive correlation of IL-10+ and CD4+. In patients expressing the lytic protein BMRF1, a positive correlation of TGF-β+ with CD4-GZMB+ and CD4-Foxp3+ was observed. Our findings indicate that CD4-GZMB+ cells are involved in the restriction of primary EBV infection in pediatric patients, which could partially explain the lack of symptoms, whereas both CD4-GZMB+ and CD4-Foxp3+ cells could be involved in the modulation of latency.
Collapse
Affiliation(s)
- María Eugenia Amarillo
- Molecular Biology Laboratory, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutierrez Children's Hospital, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Agustina Moyano
- Molecular Biology Laboratory, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutierrez Children's Hospital, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Ferressini Gerpe
- Molecular Biology Laboratory, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutierrez Children's Hospital, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Elena De Matteo
- Pathology Division, Ricardo Gutierrez Children's Hospital, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Victoria Preciado
- Molecular Biology Laboratory, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutierrez Children's Hospital, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paola Chabay
- Molecular Biology Laboratory, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutierrez Children's Hospital, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
4
|
Yu J, Jin S, Yin X, Du H. Expression of the immune checkpoint molecules PD‑L1 and PD‑1 in EBV‑associated lymphoproliferative disorders: A meta‑analysis. Exp Ther Med 2024; 27:7. [PMID: 38223325 PMCID: PMC10785044 DOI: 10.3892/etm.2023.12294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/31/2023] [Indexed: 01/16/2024] Open
Abstract
Epstein-Barr virus (EBV) has been implicated in the development of a wide range of lymphoproliferative disorders. In this process, the role of programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) has remained to be clarified. A meta-analysis of 20 studies was performed and risk ratios (RRs) with 95% confidence intervals (CIs) were used to evaluate the association between PD-L1/PD-1 expression and the status of EBV infection. The results showed that the expression level of PD-L1 in tumor cells was significantly higher in EBV+ cases with a pooled RR of 2.26 (95% CI, 1.63-3.14; P<0.01), particularly in subtypes of diffuse large B-cell lymphoma (DLBCL) and classical Hodgkin lymphoma. Similarly, EBV infection increased the expression of PD-L1 in immune cells with a pooled RR of 2.20 (95% CI, 1.55-3.12; P<0.01). In subtypes of DLBCL and post-transplant lymphoproliferative disorder, the expression of PD-L1 in immune cells is increased in EBV+ cases. Regarding the expression level of PD-1 in tumor-infiltrating lymphocytes (TILs), no significance was found between EBV infection and PD-1 expression, with a pooled RR of 1.10 (95% CI, 0.81-1.48; P>0.05). The present meta-analysis demonstrated that in EBV-associated lymphoproliferative disorders, EBV infection was associated with the expression level of PD-L1 in tumor cells and immune cells but was not associated with the expression of PD-1 in TILs.
Collapse
Affiliation(s)
- Junyao Yu
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Shenhe Jin
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiufeng Yin
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Huaping Du
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
5
|
Ross AM, Leahy CI, Neylon F, Steigerova J, Flodr P, Navratilova M, Urbankova H, Vrzalikova K, Mundo L, Lazzi S, Leoncini L, Pugh M, Murray PG. Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma. Life (Basel) 2023; 13:521. [PMID: 36836878 PMCID: PMC9967091 DOI: 10.3390/life13020521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.
Collapse
Affiliation(s)
- Aisling M. Ross
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ciara I. Leahy
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Fiona Neylon
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| | - Patrik Flodr
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Martina Navratilova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Helena Urbankova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky Univesity and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Katerina Vrzalikova
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucia Mundo
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul G. Murray
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| |
Collapse
|
6
|
Awasthi P, Dwivedi M, Kumar D, Hasan S. Insights into intricacies of the Latent Membrane Protein-1 (LMP-1) in EBV-associated cancers. Life Sci 2023; 313:121261. [PMID: 36493876 DOI: 10.1016/j.lfs.2022.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Numerous lymphomas, carcinomas, and other disorders have been associated with Epstein-Barr Virus (EBV) infection. EBV's carcinogenic potential can be correlated to latent membrane protein 1 (LMP1), which is essential for fibroblast and primary lymphocyte transformation. LMP1, a transmembrane protein with constitutive activity, belongs to the tumour necrosis factor receptor (TNFR) superfamily. LMP1 performs number of role in the life cycle of EBV and the pathogenesis by interfering with, reprogramming, and influencing a vast range of host cellular activities and functions that are getting well-known but still poorly understood. LMP1, pleiotropically perturbs, reprograms and balances a wide range of various processes of cell such as extracellular vesicles, epigenetics, ubiquitin machinery, metabolism, cell proliferation and survival, and also promotes oncogenic transformation, angiogenesis, anchorage-independent cell growth, metastasis and invasion, tumour microenvironment. By the help of various experiments, it is proven that EBV-encoded LMP1 activates multiple cell signalling pathways which affect antigen presentation, cell-cell interactions, chemokine and cytokine production. Therefore, it is assumed that LMP1 may perform majorly in EBV associated malignancies. For the development of novel techniques toward targeted therapeutic applications, it is essential to have a complete understanding of the LMP1 signalling landscape in order to identify potential targets. The focus of this review is on LMP1-interacting proteins and related signalling processes. We further discuss tactics for using the LMP1 protein as a potential therapeutic for cancers caused by the EBV.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Uttarakhand, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| |
Collapse
|
7
|
Yuti P, Wutti-in Y, Sawasdee N, Kongkhla K, Phanthaphol N, Choomee K, Chieochansin T, Panya A, Junking M, Yenchitsomanus PT, Sujjitjoon J. Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. Int Immunopharmacol 2022; 113:109442. [DOI: 10.1016/j.intimp.2022.109442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
|
8
|
He M, Liu B, Tang G, Jiao L, Liu X, Yin S, Wang T, Chen J, Gao L, Ni X, Wang L, Xu L, Yang J. B2M mutation paves the way for immune tolerance in pathogenesis of Epstein-Barr virus positive diffuse large B-cell lymphomas. J Cancer 2022; 13:3615-3622. [PMID: 36606194 PMCID: PMC9809314 DOI: 10.7150/jca.75813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
This study focused genetic pathogenesis and tumor microenvironment of Epstein-Barr virus (EBV) positive diffuse large B-cell lymphomas (DLBCL) in patients without immunodeficiency. DNA samples from these cases were sequenced by next generation sequencing (NGS) using a selected gene panel. Results revealed that most gene mutations were not specific for EBV positive DLBCL. However, B2M (β2-microglobulin) mutations were significantly increased and HLA-I or HLA-II expression was decreased in these cases, which was related to patient's poor outcome. B2M mutations and deregulation of B2M expression were further confirmed by Sanger sequencing and immunohistochemistry. Reducing the infiltration of CD8+ T lymphocytes, related to decreased expression of HLA-I or HLA-II was found in these patients. These results suggest that the mutations of B2M could cause the disruption of the expression and functions of this important subunit of HLA, leading to decreased expression of HLA-I or HLA-II and subsequently to reduce T lymphocyte infiltration in tumor tissues. The consequence of this event lessens the recognition and elimination of EBV+ tumor cells by host immunity and paves the way for the host immune tolerance to EBV+ tumor cells by evading immune recognition and escaping the T lymphocyte killing.
Collapse
Affiliation(s)
- Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433.,✉ Corresponding author: Miaoxia He, MD;PhD. Department of Hematology, Changhai Hospital, 168 Changhai Road, Building 17, Room 709, Shanghai, China 200433 . Phone number: 86-18317172656; Fax: 86-21-31162260. Jianmin Yang, MD; PhD. Department of Hematology, Changhai Hospital, 168 Changhai Road, Building 6, Room 709, Shanghai, China 200433. ,; Phone number: 86-21-31161285; Fax: 86-21-31161285
| | - Bin Liu
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Gusheng Tang
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Lijuan Jiao
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Xuefei Liu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Shuyi Yin
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Tao Wang
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Jie Chen
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Lei Gao
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Xiong Ni
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Libin Wang
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Lili Xu
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Jianmin Yang
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433.,✉ Corresponding author: Miaoxia He, MD;PhD. Department of Hematology, Changhai Hospital, 168 Changhai Road, Building 17, Room 709, Shanghai, China 200433 . Phone number: 86-18317172656; Fax: 86-21-31162260. Jianmin Yang, MD; PhD. Department of Hematology, Changhai Hospital, 168 Changhai Road, Building 6, Room 709, Shanghai, China 200433. ,; Phone number: 86-21-31161285; Fax: 86-21-31161285
| |
Collapse
|
9
|
Cai F, Gao H, Yu Z, Zhu K, Gu W, Guo X, Xu X, Shen H, Shu Q. High percentages of peripheral blood T-cell activation in childhood Hodgkin's lymphoma are associated with inferior outcome. Front Med (Lausanne) 2022; 9:955373. [PMID: 36035394 PMCID: PMC9399494 DOI: 10.3389/fmed.2022.955373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The aims of this study were to investigate the activation of T lymphocytes in peripheral blood from children with Hodgkin's lymphoma (HL) and explore their roles for prognosis in HL. A cohort of 52 newly diagnosed children with HL during the past 10 years was enrolled for analysis in this study. Peripheral blood samples of the patients were acquired before treatment in our hospital, and T-cell subsets were detected by a four-color flow cytometer. CD4+ T cells and CD4+/CD8+ T-cell ratio decreased significantly in patients with HL vs. healthy controls. CD8+ T cells, CD3+CD4+HLA-DR+ T cells, and CD3+CD8+HLA-DR+ T cells increased markedly in patients with HL vs. healthy controls. Receiver-operating characteristic (ROC) curve analysis showed that CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells each distinguished the high-risk group from the low- and intermediate-risk group. The area under the ROC curve for predicting high-risk patients was 0.795 for CD3+CD4+HLA-DR+ T cell and 0.784 for CD3+CD8+HLA-DR+ T cell. A comparison of peripheral blood T-cell subsets that responded differently to therapy showed significantly higher percentages of CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells in patients who achieved complete remission compared to those who did not achieve complete remission. In addition, high percentages of both CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells were associated with inferior event-free survival. Peripheral immune status may be related to disease severity in HL. CD3+CD4+HLA-DR+ T cells and CD3+CD8+HLA-DR+ T cells may be a novel indicator for risk stratification of HL and may be an independent risk factor for inferior outcome in childhood HL.
Collapse
Affiliation(s)
- Fengqing Cai
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Gao
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongsheng Yu
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Guo
- Department of Hematology-Oncology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Hematology-Oncology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongqiang Shen
| | - Qiang Shu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Qiang Shu
| |
Collapse
|
10
|
Immunosuppressive Tumor Microenvironment and Immunotherapy of Epstein–Barr Virus-Associated Malignancies. Viruses 2022; 14:v14051017. [PMID: 35632758 PMCID: PMC9146158 DOI: 10.3390/v14051017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
The Epstein–Barr virus (EBV) can cause different types of cancer in human beings when the virus infects different cell types with various latent patterns. EBV shapes a distinct and immunosuppressive tumor microenvironment (TME) to its benefit by influencing and interacting with different components in the TME. Different EBV-associated malignancies adopt similar but slightly specific immunosuppressive mechanisms by encoding different EBV products to escape both innate and adaptive immune responses. Strategies reversing the immunosuppressive TME of EBV-associated malignancies have been under evaluation in clinical practice. As the interactions among EBV, tumor cells, and TME are intricate, in this review, we mainly discuss the epidemiology of EBV, the life cycle of EBV, the cellular and molecular composition of TME, and a landscape of different EBV-associated malignancies and immunotherapy by targeting the TME.
Collapse
|
11
|
Mu J, Deng H, Lyu C, Yuan J, Li Q, Wang J, Jiang Y, Deng Q, Shen J. Efficacy of programmed cell death 1 inhibitor maintenance therapy after combined treatment with programmed cell death 1 inhibitors and anti-CD19-CAR T cells in patients with relapsed/refractory diffuse large B-cell lymphoma and high tumor burden. Hematol Oncol 2022; 41:275-284. [PMID: 35195933 DOI: 10.1002/hon.2981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/08/2022]
Abstract
We studied the efficacy and safety of the combined treatment with programmed cell death 1 (PD-1) inhibitors and anti-CD19 chimeric antigen receptor (CAR) T-cell therapy and subsequent PD-1 inhibitor maintenance treatment in patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and high tumor burden. Forty-four R/R DLBCL patients with high tumor burden were enrolled in this study. The experimental group of 26 patients received combined therapy with PD-1 inhibitors and anti-CD19-CAR T cells, while the control group of 18 patients received anti-CD19-CAR T-cell therapy alone. The objective response rate (ORR) was 65.39% and 61.11% in the combination and control groups, respectively. The PD-1 inhibitor maintenance therapy was selected for patients who achieved complete response (CR) or partial response (PR) in the combination therapy group. Progression-free survival (PFS) and overall survival (OS) rates in the combination group were higher than those in the control group 3 and 12 months after CAR T-cell infusion. There was no significant difference in the grade of cytokine release syndrome (CRS) or immune effector cell associated neurotoxic syndrome (ICANS) between the two groups. In the maintenance therapy group, only eight patients experienced grade 1 Common Terminology Criteria for Adverse Events (CTCAE) and three grade 2 CTCAE. Overall, we found that the ORR was not affected by the combination therapy with PD-1 inhibitors and anti-CD19-CAR T cells. However, patients who had achieved the ORR might benefit from PD-1 inhibitor maintenance therapy after combination therapy without increased side effects.Trial registration: The patients were enrolled in a clinical trial ofChiCTR-ONN-16009862 and ChiCTR1800019622. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Juan Mu
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Haobin Deng
- The first central clinical college of tianjin medical university, Tianjin, China
| | - Cuicui Lyu
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jijun Yuan
- Shanghai Genbase Biotechnology Co., Ltd. Shanghai, 201203, China
| | - Qing Li
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jia Wang
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yanyu Jiang
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Qi Deng
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jichun Shen
- Department of Hematology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
12
|
Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol 2022; 148:31-46. [PMID: 34705104 PMCID: PMC8752571 DOI: 10.1007/s00432-021-03824-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND More than 90% of the adult population globally is chronically infected by the Epstein-Barr virus (EBV). It is well established that EBV is associated with a number of malignancies, and advances in knowledge of EBV-related malignancies are being made every year. Several studies have analysed the global epidemiology and geographic distribution of EBV-related cancers. However, most have only described a single cancer type or subtype in isolation or limited their study to the three or four most common EBV-related cancers. This review will present an overview on the spectrum of cancers linked to EBV based on observations of associations and proportions in the published literature while also using these observations to estimate the incidence and mortality burden of some of these cancers. METHOD We have reviewed the literature on defining features, distribution and outcomes across six cancers with a relatively large EBV-related case burden: Nasopharyngeal carcinoma (NPC), Gastric carcinoma (GC), Hodgkin lymphoma (HL), Burkitt lymphoma (BL), Diffuse large B-cell lymphoma (DLBCL) and Extranodal NK/T-cell lymphoma, Nasal type (ENKTL-NT). We retrieved published region-specific EBV-related case proportions for NPC, GC, HL and BL and performed meta-analyses on pooled region-specific studies of EBV-related case proportions for DLBCL and ENKTL-NT. We match these pooled proportions with their respective regional incidence and mortality numbers retrieved from a publicly available cancer database. Additionally, we also reviewed the literature on several other less common EBV-related cancers to summarize their key characteristics herein. CONCLUSION We estimated that EBV-related cases from these six cancers accounted for 239,700-357,900 new cases and 137,900-208,700 deaths in 2020. This review highlights the significant global impact of EBV-related cancers and extends the spectrum of disease that could benefit from an EBV-specific therapeutic.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia.
| | - Michael T Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia
| | - John J Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
13
|
"M1 macrophage polarization prevails in EBV infected children in an immuneregulatory environment". J Virol 2021; 96:e0143421. [PMID: 34643432 DOI: 10.1128/jvi.01434-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages can be polarized toward a proinflammatory phenotype (M1) (CD68+) or to an anti-inflammatory one (M2) (CD163+). Polarization can be triggered by cytokines such as IFN-γ for M1, or IL-10 and TGF-β, for M2. In the context of pediatric EBV infection, little is known about macrophage polarization in EBV primary or persistent infection. When studying tonsils of patients undergoing primary infection (PI), healthy carrier (HC), reactivation (R) and not infected (NI), M1 profile prevailed in all infection status. However, an increase in M2 cells was observed in those patients with broader expression of latency antigens, in particular EBNA2. Tonsils from primary infected patients showed an increased IL-10 expression, whereas, unexpectedly, TGF-β expression correlated with M1 marker. Furthermore, an inverse correlation was demonstrated between CD68 and IFN-γ. Therefore, in the context of asymptomatic infection in children, M1 macrophage polarization prevails, even in the presence of IL-10 and TGF-ꞵ immunomodulatory cytokines, and it might be independent from lymphomagenesis process. Our finding indicates that macrophages may have a significant plasticity in response to different types of extrinsic stimuli, and further studies are required to investigate M1 polarization under anti-inflammatory stimuli. Importance Most studies on EBV primary infection have been performed in adolescents and young adult populations with Infectious Mononucleosis (IM) in developed countries. Furthermore, studies related to macrophage polarization were assessed in EBV-associated lymphomas, but little is known about macrophage polarization in the context of primary infection at the site of viral entry and replication, the tonsils. Therefore, the aim of this study was to characterize macrophage response in children undergoing EBV primary or persistent infection, in order to enlighten the role of macrophages in viral pathogenesis, in a population with a high incidence of EBV-associated lymphomas in children younger than 10 years old. This study may contribute to explain, at least in part, the asymptomatic viral infection in children from an underdeveloped region, since M1 polarization pattern prevails, but in a regulatory environment.
Collapse
|
14
|
Epstein-Barr virus recruits PDL1-positive cells at the microenvironment in pediatric Hodgkin lymphoma. Cancer Immunol Immunother 2021; 70:1519-1526. [PMID: 33184699 DOI: 10.1007/s00262-020-02787-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Classic Hodgkin lymphoma (cHL) is a lymphoid malignancy in which the microenvironment, where the neoplastic cells are immersed, contributes to the lymphomagenesis process. Epstein-Barr virus (EBV) presence also influences cHL microenvironment composition and contributes to pathogenesis. An increase in PDL1 expression in tumor cells and at the microenvironment was demonstrated in adult cHL. Therefore, our aim was to assess PD1/PDL1 pathway and EBV influence on this pathway in pediatric cHL, given that in Argentina, our group proved a higher incidence of EBV-associated pediatric lymphoma in children. METHODS For that purpose, EBV presence was assessed by in situ hybridization, whereas PD1 and PDL1 expressions were studied by immunohistochemistry. PDL1 genetic alterations were analyzed by FISH, and survival was evaluated for PD1 and PDL1 expressions. RESULTS EBV presence demonstrated no influence neither on PD1 expression at the microenvironment nor on PDL1 expression at HRS tumor cells. Unexpectedly, only 38% pediatric cHL displayed PDL1 genetic alterations by FISH, and no difference was observed regarding EBV presence. However, in EBV-related cHL cases, a higher number of PDL1 + cells were detected at the microenvironment. CONCLUSION Even though a high cytotoxic environment was previously described in EBV-related pediatric cHL, it might be counterbalanced by an immunoregulatory micro-environmental PDL1 + niche. This regulation may render a cytotoxic milieu that unsuccessfully try to eliminate EBV + Hodgkin Reed Sternberg tumor cells in pediatric patients.
Collapse
|
15
|
Chabay P. Advances in the Pathogenesis of EBV-Associated Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:2717. [PMID: 34072731 PMCID: PMC8199155 DOI: 10.3390/cancers13112717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin's lymphoma (NHL) in adults. Epstein-Barr virus (EBV) positive DLBCL of the elderly was defined by the World Health Organization (WHO) in 2008, it was restricted only to patients older than 50 years old, and it was attributed to immunesenescence associated with physiological aging. After the description of EBV-associated DLBCL in children and young adults, the WHO redefined the definition, leading to the substitution of the modifier "elderly" with "not otherwise specified" (EBV + DLBCL, NOS) in the updated classification, and it is no more considered provisional. The incidence of EBV + DLBCL, NOS varies around the world, in particular influenced by the percentage of EBV+ cells used as cut-off to define a case as EBV-associated. EBV has effect on the genetic composition of tumor cells, on survival, and at the recruitment of immune cells at the microenvironment. In this review, the role of EBV in the pathogenesis of DLBCL is discussed.
Collapse
Affiliation(s)
- Paola Chabay
- Laboratory of Molecular Biology, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP-CONICET-GCBA), Ricardo Gutiérrez Children's Hospital, Gallo 1330, Buenos Aires C1425EFD, Argentina
| |
Collapse
|
16
|
Tobin JWD, Bednarska K, Campbell A, Keane C. PD-1 and LAG-3 Checkpoint Blockade: Potential Avenues for Therapy in B-Cell Lymphoma. Cells 2021; 10:cells10051152. [PMID: 34068762 PMCID: PMC8151045 DOI: 10.3390/cells10051152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The dependence of cancer on an immunotolerant tumor microenvironment (TME) is well established. Immunotherapies that overcome tumor-induced immune suppression have been central to recent advancements in oncology. This is highlighted by the success of agents that interrupt PD-1 mediated immune suppression in a range of cancers. However, while PD-1 blockade has been paradigm-shifting in many malignancies, the majority of cancers show high rates of primary resistance to this approach. This has led to a rapid expansion in therapeutic targeting of other immune checkpoint molecules to provide combination immune checkpoint blockade (ICB), with one such promising approach is blockade of Lymphocyte Activation Gene 3 (LAG-3). Clinically, lymphoproliferative disorders show a wide spectrum of responses to ICB. Specific subtypes including classical Hodgkin lymphoma have demonstrated striking efficacy with anti-PD-1 therapy. Conversely, early trials of ICB have been relatively disappointing in common subtypes of Non-Hodgkin lymphoma. In this review, we describe the TME of common lymphoma subtypes with an emphasis on the role of prominent immune checkpoint molecules PD-1 and LAG3. We will also discuss current clinical evidence for ICB in lymphoma and highlight key areas for further investigation where synergistic dual checkpoint blockade of LAG-3 and PD-1 could be used to overcome ICB resistance.
Collapse
Affiliation(s)
- Joshua W. D. Tobin
- Mater Research Institute, University of Queensland, Brisbane, QLD 4102, Australia; (J.W.D.T.); (K.B.)
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
| | - Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, QLD 4102, Australia; (J.W.D.T.); (K.B.)
| | - Ashlea Campbell
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
| | - Colm Keane
- Mater Research Institute, University of Queensland, Brisbane, QLD 4102, Australia; (J.W.D.T.); (K.B.)
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
- Correspondence: ; Tel.: +617-3443-7912
| |
Collapse
|
17
|
The Incidence of Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13081785. [PMID: 33917961 PMCID: PMC8068359 DOI: 10.3390/cancers13081785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The worldwide prevalence of Epstein-Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL) is undetermined. There is no clearly defined cut-off for EBV-encoded RNA (EBER) positivity in tumor cells by in situ hybridization. A lack of common criteria for positive expression of EBER has been raised as a limitation for interpreting and understanding the geographic and ethnic disparity of prevalence of EBV+ DLBCL. We conducted a systematic literature review and meta-analysis to establish the proportions of EBV+ DLBCL patients. Results showed that the pooled proportion of EBER positivity was 7.9% in patients with de novo DLBCL. The prevalence of EBV+ DLBCL was significantly higher in Asia and South America compared with Western countries. A tendency for lower pooled proportions was observed in studies using a higher cut-off for EBER positivity. The patients’ age did not significantly affect the prevalence. These findings may improve our current knowledge of the EBV+ DLBCL. Abstract The worldwide prevalence of Epstein-Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL) is undetermined. There is no clearly defined cut-off for EBV-encoded RNA (EBER) positivity in tumor cells by in-situ hybridization. The purpose of this study was to establish the proportions of EBV+ DLBCL patients and influence of the different cut-offs for EBER positivity, geographical location, and age on the prevalence of EBV+ DLBCL. PubMed and EMBASE were searched for studies published up to May 28, 2020 that reported proportions of EBER positivity in immunocompetent and de novo DLBCL patients. The pooled proportions were computed by an inverse variance method for calculating the weights and the DerSimonian–Laird method. Multiple subgroup analyses were conducted to explore any heterogeneity. Thirty-one studies (8249 patients) were included. The pooled proportion of EBV+ DLBCL was 7.9% (95% CI, 6.2–10.0%) with significant heterogeneity among studies (p < 0.001). The prevalence of EBV+ DLBCL was significantly higher in Asia and South America compared with Western countries (p < 0.01). The cut-offs for EBER positivity (10%, 20%, 50%) and patients’ age (≥50 years vs. <50 years) did not significantly affect the prevalence (p ≥ 0.10). EBV+ DLBCL is rare with a pooled proportion of 7.9% in patients with DLBCL and the geographic heterogeneity was confirmed.
Collapse
|
18
|
Overkamp M, Granai M, Bonzheim I, Steinhilber J, Schittenhelm J, Bethge W, Quintanilla-Martinez L, Fend F, Federmann B. Comparative analysis of post-transplant lymphoproliferative disorders after solid organ and hematopoietic stem cell transplantation reveals differences in the tumor microenvironment. Virchows Arch 2020; 478:1135-1148. [PMID: 33324999 PMCID: PMC8203555 DOI: 10.1007/s00428-020-02985-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 02/02/2023]
Abstract
Post-transplant lymphoproliferative disorders (PTLD) occur after solid organ transplantation (SOT) or hematopoietic stem cell transplantation (HCT) and are frequently associated with Epstein-Barr virus (EBV). Because of the complex immune setup in PTLD patients, the tumor microenvironment (TME) is of particular interest to understand PTLD pathogenesis and elucidate predictive factors and possible treatment options. We present a comparative study of clinicopathological features of 48 PTLD after HCT (n = 26) or SOT (n = 22), including non-destructive (n = 6), polymorphic (n = 23), and monomorphic (n = 18) PTLD and classic Hodgkin lymphoma (n = 1). EBV was positive in 35 cases (73%). A detailed examination of the TME with image analysis-based quantification in 22 cases revealed an inflammatory TME despite underlying immunosuppression and significant differences in its density and composition depending on type of transplant, PTLD subtypes, and EBV status. Tumor-associated macrophages (TAMs) expressing CD163 (p = 0.0022) and Mannose (p = 0.0016) were enriched in PTLD after HCT. Double stains also showed differences in macrophage polarization, with more frequent M1 polarization after HCT (p = 0.0321). Higher counts for TAMs (CD163 (p = 0.0008) and cMaf (p = 0.0035)) as well as in the T cell compartment (Granzyme B (p = 0.0028), CD8 (p = 0.01), and for PD-L1 (p = 0.0305)) were observed depending on EBV status. In conclusion, despite the presence of immunosuppression, PTLD predominantly contains an inflammatory TME characterized by mostly M1-polarized macrophages and cytotoxic T cells. Status post HCT, EBV positivity, and polymorphic subtype are associated with an actively inflamed TME, indicating a specific response of the immune system. Further studies need to elucidate prognostic significance and potential therapeutic implications of the TME in PTLD.
Collapse
Affiliation(s)
- Mathis Overkamp
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Liebermeisterstraße 8, 72076, Tuebingen, Germany
| | - Massimo Granai
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Liebermeisterstraße 8, 72076, Tuebingen, Germany
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Liebermeisterstraße 8, 72076, Tuebingen, Germany
| | - Julia Steinhilber
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Liebermeisterstraße 8, 72076, Tuebingen, Germany
| | - Jens Schittenhelm
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Liebermeisterstraße 8, 72076, Tuebingen, Germany
| | - Wolfgang Bethge
- Department of Internal Medicine Hematology and Oncology, Comprehensive Cancer Center and University Hospital Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Liebermeisterstraße 8, 72076, Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Liebermeisterstraße 8, 72076, Tuebingen, Germany
| | - Birgit Federmann
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Liebermeisterstraße 8, 72076, Tuebingen, Germany.
| |
Collapse
|
19
|
Activating the Antitumor Immune Response in Non-Hodgkin Lymphoma Using Immune Checkpoint Inhibitors. J Immunol Res 2020; 2020:8820377. [PMID: 33294467 PMCID: PMC7690999 DOI: 10.1155/2020/8820377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
Non-Hodgkin lymphomas comprise a heterogenous group of disorders which differ in biology. Although response rates are high in some groups, relapsed disease can be difficult to treat, and newer approaches are needed for this patient population. It is increasingly apparent that the immune system plays a significant role in the propagation and survival of malignant cells. Immune checkpoint blocking agents augment cytotoxic activity of the adaptive and innate immune systems and enhance tumor cell killing. Anti-PD-1 and anti-CTLA-4 antibodies have been tested as both single agents and combination therapy. Although success rates with anti-PD-1 antibodies are high in patients with Hodgkin lymphoma, the results are yet to be replicated in those with non-Hodgkin lymphomas. Some lymphoma histologies, such as primary mediastinal B cell lymphoma (PMBL), central nervous system, and testicular lymphomas and gray zone lymphoma, respond favorably to PD-1 blockade, but the response rates in most lymphoma subtypes are low. Other agents including those targeting the adaptive immune system such as TIM-3, TIGIT, and BTLA and innate immune system such as CD47 and KIR are therefore in trials to test alternative ways to activate the immune system. Patient selection based on tumor biology is likely to be a determining factor in treatment response in patients, and further research exploring optimal patient populations, newer targets, and combination therapy as well as identifying biomarkers is needed.
Collapse
|
20
|
Nagpal P, Descalzi-Montoya DB, Lodhi N. The circuitry of the tumor microenvironment in adult and pediatric Hodgkin lymphoma: cellular composition, cytokine profile, EBV, and exosomes. Cancer Rep (Hoboken) 2020; 4:e1311. [PMID: 33103852 PMCID: PMC8451374 DOI: 10.1002/cnr2.1311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Classical Hodgkin lymphoma (cHL) is a unique lymphoid malignancy with a tumor microenvironment (TME) consisting of a small number of neoplastic-Hodgkin and Reed-Sternberg (H-RS) cells (<1%), surrounded by a large number of nonneoplastic infiltrating immune cells (>90%). The TME of cHL critically depends on immune cells to support tumor growth as H-RS cells cannot survive and proliferate in isolation. RECENT FINDINGS Programmed cell death protein 1 (PD-1) ligand expressed on H-RS cells inhibits the clearance of tumor by causing T-cell exhaustion. Nivolumab and pembrolizumab, PD-1 inhibitors, have been proven to be effective in treating adult and pediatric patients with R/R cHL. Tumor-associated macrophages (TAMs) are a central component of TME and are known to cause poor prognosis in adult HL. However, the prognostic impact of CD68+ TAMs in pediatric HL remains ambiguous. EBV modulates the tumor milieu of HL and plays a strategic role in immune escape by enrichment of the TME with Treg cells and associated immunosuppressive cytokines in adult HL. In contrast, EBV+ pediatric patients have increased infiltration of CD8+ T-cells and show a better therapeutic response suggesting viral-related TME is distinct in childhood HL. The role of CASP3 in apoptosis of H-RS cells and its correlation with response prediction in adult and pediatric HL suggest it may serve as a potential biomarker. In cHL, CD30, EBV, and NF-κB signaling employ exosomes for cell-cell communication that triggers the migration capacity of fibroblasts, stimulate to produce proinflammatory cytokines, and help to create a tumor-supportive microenvironment. CONCLUSION The cHL microenvironment is distinct in adult and pediatric HL. Future studies are required to understand the role of interplay between H-RS cells and EBV-associated microenvironment and their clinical outcome. They may present novel therapeutic targets for the development of antilymphoma therapy.
Collapse
Affiliation(s)
- Poonam Nagpal
- College of Natural, Applied, and Health Sciences, Kean University, Union, New Jersey, USA
| | - Dante B Descalzi-Montoya
- Center for Discovery and Innovation, The John Theurer Cancer Center, Hackensack-Meridian Health, Nutley, New Jersey, USA
| | - Niraj Lodhi
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Science Center, Abilene, Texas, USA
| |
Collapse
|
21
|
Zhang R, Lyu C, Lu W, Pu Y, Jiang Y, Deng Q. Synergistic effect of programmed death-1 inhibitor and programmed death-1 ligand-1 inhibitor combined with chemotherapeutic drugs on DLBCL cell lines in vitro and in vivo. Am J Cancer Res 2020; 10:2800-2812. [PMID: 33042618 PMCID: PMC7539778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Chemotherapy is one of the main treatments for cancer, but the antitumor effect of chemotherapeutic drugs is affected by the patient's immune status. The programmed cell death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis is an important central checkpoint in tumor progression. The present study demonstrated a significant synergistic effect of PD-1 inhibitor and oxaliplatin, cisplatin, etoposide, cytarabine, ifosfamide and carboplatin. There was no difference in cytotoxicity between the groups with or without PD-L1 inhibitor. It was also observed that cytotoxicity of T cells combined with PD-1 inhibitor against DLBCL cells was inhibited by dexamethasone addition to the culture system at 24, 48 and 72 h. There was no difference in cytotoxicity between the group of dexamethasone added at 96 h and the group without dexamethasone at 96 h. Then, we selected a PD-1 inhibitor combined with a chemotherapeutic regimen in a Pfeiffer cell mouse xenograft model. At 21 days, the reduction in tumor size was more obvious in the DHAP combined with PD-1 inhibitor group (dexamethasone after 96 h of PD-1) compared with that in the DHAP (P=0.007), the PD-1 inhibitor (P=0.001) and the DHAP combined with PD-1 inhibitor (dexamethasone after 24 h of PD-1) (P=0.005) groups. However, the reduction in tumor size was more obvious in the GemOx combined with PD-1 inhibitor group compared with that in the GemOx group (P=0.037). Therefore, the present study demonstrated the synergistic effects of PD-1 inhibitor combined with chemotherapeutic regimens in DLBCL.
Collapse
Affiliation(s)
- Rui Zhang
- The First Central Clinical College of Tianjin Medical University Tianjin, China
| | - Cuicui Lyu
- The First Central Clinical College of Tianjin Medical University Tianjin, China
| | - Wenyi Lu
- The First Central Clinical College of Tianjin Medical University Tianjin, China
| | - Yedi Pu
- The First Central Clinical College of Tianjin Medical University Tianjin, China
| | - Yanyu Jiang
- The First Central Clinical College of Tianjin Medical University Tianjin, China
| | - Qi Deng
- The First Central Clinical College of Tianjin Medical University Tianjin, China
| |
Collapse
|
22
|
Slabik C, Kalbarczyk M, Danisch S, Zeidler R, Klawonn F, Volk V, Krönke N, Feuerhake F, Ferreira de Figueiredo C, Blasczyk R, Olbrich H, Theobald SJ, Schneider A, Ganser A, von Kaisenberg C, Lienenklaus S, Bleich A, Hammerschmidt W, Stripecke R. CAR-T Cells Targeting Epstein-Barr Virus gp350 Validated in a Humanized Mouse Model of EBV Infection and Lymphoproliferative Disease. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:504-524. [PMID: 32953984 PMCID: PMC7479496 DOI: 10.1016/j.omto.2020.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV) is a latent and oncogenic human herpesvirus. Lytic viral protein expression plays an important role in EBV-associated malignancies. The EBV envelope glycoprotein 350 (gp350) is expressed abundantly during EBV lytic reactivation and sporadically on the surface of latently infected cells. Here we tested T cells expressing gp350-specific chimeric antigen receptors (CARs) containing scFvs derived from two novel gp350-binding, highly neutralizing monoclonal antibodies. The scFvs were fused to CD28/CD3ζ signaling domains in a retroviral vector. The produced gp350CAR-T cells specifically recognized and killed gp350+ 293T cells in vitro. The best-performing 7A1-gp350CAR-T cells were cytotoxic against the EBV+ B95-8 cell line, showing selectivity against gp350+ cells. Fully humanized Nod.Rag.Gamma mice transplanted with cord blood CD34+ cells and infected with the EBV/M81/fLuc lytic strain were monitored dynamically for viral spread. Infected mice recapitulated EBV-induced lymphoproliferation, tumor development, and systemic inflammation. We tested adoptive transfer of autologous CD8+gp350CAR-T cells administered protectively or therapeutically. After gp350CAR-T cell therapy, 75% of mice controlled or reduced EBV spread and showed lower frequencies of EBER+ B cell malignant lymphoproliferation, lack of tumor development, and reduced inflammation. In summary, CD8+gp350CAR-T cells showed proof-of-concept preclinical efficacy against impending EBV+ lymphoproliferation and lymphomagenesis.
Collapse
Affiliation(s)
- Constanze Slabik
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Maja Kalbarczyk
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Simon Danisch
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Reinhard Zeidler
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany.,Department of Otorhinolaryngology, Klinikum der Universität München, Marchioninistr. 15, 81377 Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute for Information Engineering, Ostfalia University, 38302 Wolfenbuettel, Germany
| | - Valery Volk
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany.,Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Krönke
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Friedrich Feuerhake
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.,Institute for Neuropathology, University Clinic Freiburg, 79106 Freiburg, Germany
| | | | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Henning Olbrich
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Sebastian J Theobald
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Andreas Schneider
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, Hannover Medical School, 30625 Hannover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| |
Collapse
|
23
|
Chabay P, Lens D, Hassan R, Rodríguez Pinilla SM, Valvert Gamboa F, Rivera I, Huamán Garaicoa F, Ranuncolo SM, Barrionuevo C, Morales Sánchez A, Scholl V, De Matteo E, Preciado MV, Fuentes-Pananá EM. Lymphotropic Viruses EBV, KSHV and HTLV in Latin America: Epidemiology and Associated Malignancies. A Literature-Based Study by the RIAL-CYTED. Cancers (Basel) 2020; 12:E2166. [PMID: 32759793 PMCID: PMC7464376 DOI: 10.3390/cancers12082166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV), Kaposi sarcoma herpesvirus (KSHV) and human T-lymphotropic virus (HTLV-1) are lymphomagenic viruses with region-specific induced morbidity. The RIAL-CYTED aims to increase the knowledge of lymphoma in Latin America (LA), and, as such, we systematically analyzed the literature to better understand our risk for virus-induced lymphoma. We observed that high endemicity regions for certain lymphomas, e.g., Mexico and Peru, have a high incidence of EBV-positive lymphomas of T/NK cell origin. Peru also carries the highest frequency of EBV-positive classical Hodgkin lymphoma (HL) and EBV-positive diffuse large B cell lymphoma, not otherwise specified (NOS), than any other LA country. Adult T cell lymphoma is endemic to the North of Brazil and Chile. While only few cases of KSHV-positive lymphomas were found, in spite of the close correlation of Kaposi sarcoma and the prevalence of pathogenic types of KSHV. Both EBV-associated HL and Burkitt lymphoma mainly affect young children, unlike in developed countries, in which adolescents and young adults are the most affected, correlating with an early EBV seroconversion for LA population despite of lack of infectious mononucleosis symptoms. High endemicity of KSHV and HTLV infection was observed among Amerindian populations, with differences between Amazonian and Andean populations.
Collapse
Affiliation(s)
- Paola Chabay
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, C1425EFD Buenos Aires, Argentina; (P.C.); (E.D.M.); (M.V.P.)
| | - Daniela Lens
- Flow Cytometry and Molecular Biology Laboratory, Departamento Básico de Medicina, Hospital de Clínicas/Facultad de Medicina, Universidad de la República, CP 11600 Montevideo, Uruguay;
| | - Rocio Hassan
- Oncovirology Laboratory, Bone Marrow Transplantation Center, National Cancer Institute “José Alencar Gomes da Silva” (INCA), Ministry of Health, 20230-130 Rio de Janeiro, Brazil;
| | | | - Fabiola Valvert Gamboa
- Department of Medical Oncology, Cancer Institute and National League against Cancer, 01011 Guatemala City, Guatemala;
| | - Iris Rivera
- Department of Hematology, Salvadoran Institute of Social Security, Medical Surgical and Oncological Hospital (ISSS), 1101 San Salvador, El Salvador;
| | - Fuad Huamán Garaicoa
- Department of Pathology, National Cancer Institute—Society to Fight Cancer (ION-SOLCA), Santiago de Guayaquil Catholic University, Guayaquil 090615, Ecuador;
| | - Stella Maris Ranuncolo
- Cell Biology Department, Institute of Oncology “Angel H. Roffo” School of Medicine, University of Buenos Aires, C1417DTB Buenos Aires, Argentina;
| | - Carlos Barrionuevo
- Department of Pathology, National Institute of Neoplastic Diseases, National University of San Marcos, 15038 Lima, Peru;
| | - Abigail Morales Sánchez
- Research Unit in Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico;
| | - Vanesa Scholl
- Department of Integrated Genomic Medicine, Conciencia-Oncohematologic Institute of Patagonia, 8300 Neuquén, Argentina;
| | - Elena De Matteo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, C1425EFD Buenos Aires, Argentina; (P.C.); (E.D.M.); (M.V.P.)
| | - Ma. Victoria Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, C1425EFD Buenos Aires, Argentina; (P.C.); (E.D.M.); (M.V.P.)
| | - Ezequiel M. Fuentes-Pananá
- Research Unit in Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico;
| |
Collapse
|
24
|
Wang Y, Wang C, Cai X, Mou C, Cui X, Zhang Y, Ge F, Dong H, Hao Y, Cai L, Wu S, Feng C, Chen J, Li J, Xu W, Fan L, Xie W, Tong Y, Gu HF, Wu L. IL-21 Stimulates the expression and activation of cell cycle regulators and promotes cell proliferation in EBV-positive diffuse large B cell lymphoma. Sci Rep 2020; 10:12326. [PMID: 32704112 PMCID: PMC7378064 DOI: 10.1038/s41598-020-69227-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
The clinical features of EBV-positive diffuse large B cell lymphoma (DLBCL) indicate a poorer prognosis than EBV-negative DLBCL. Currently, there is no efficacious drug for EBV-positive DLBCL. The cytokine interleukin-21 (IL-21) has been reported to be pro-apoptotic in DLBCL cell lines and is being explored as a new therapeutic strategy for this type of lymphomas. However, our previous studies showed that IL-21 stimulation of EBV-positive DLBCL cell lines leads to increased proliferation. Here, analysis of a rare clinical sample of EBV-positive DLBCL, in combination with a NOD/SCID mouse xenograft model, confirmed the effect of IL-21 on the proliferation of EBV-positive DLBCL cells. Using RNA-sequencing, we identified the pattern of differentially-expressed genes following IL-21 treatment and verified the expression of key genes at the protein level using western blotting. We found that IL-21 upregulates expression of the host MYC and AP-1 (composed of related Jun and Fos family proteins) and STAT3 phosphorylation, as well as expression of the viral LMP-1 protein. These proteins are known to promote the G1/S phase transition to accelerate cell cycle progression. Furthermore, in NOD/SCID mouse xenograft model experiments, we found that IL-21 treatment increases glucose uptake and angiogenesis in EBV-positive DLBCL tumours. Although more samples are needed to validate these observations, our study reconfirms the adverse effects of IL-21 on EBV-positive DLBCL, which has implications for the drug development of DLBCL.
Collapse
Affiliation(s)
- Yuxuan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chengcheng Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiyunyi Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chang Mou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xueting Cui
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Ge
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Dong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Hao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuting Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenjie Feng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamin Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Weijia Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yue Tong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Harvest Feng Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Ellwanger JH, Kulmann-Leal B, Kaminski VDL, Rodrigues AG, Bragatte MADS, Chies JAB. Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Virus Res 2020; 286:198040. [PMID: 32479976 PMCID: PMC7260533 DOI: 10.1016/j.virusres.2020.198040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CCR5 regulates multiple cell types (e.g., T regulatory and Natural Killer cells) and immune responses. The effects of CCR5, CCR5Δ32 (variant associated with reduced CCR5 expression) and CCR5 antagonists vary between infections. CCR5 affects the pathogenesis of flaviviruses, especially in the brain. The genetic variant CCR5Δ32 increases the risk of symptomatic West Nile virus infection. The triad “CCR5, extracellular vesicles and infections” is an emerging topic.
The interactions between chemokine receptors and their ligands may affect susceptibility to infectious diseases as well as their clinical manifestations. These interactions mediate both the traffic of inflammatory cells and virus-associated immune responses. In the context of viral infections, the human C-C chemokine receptor type 5 (CCR5) receives great attention from the scientific community due to its role as an HIV-1 co-receptor. The genetic variant CCR5Δ32 (32 base-pair deletion in CCR5 gene) impairs CCR5 expression on the cell surface and is associated with protection against HIV infection in homozygous individuals. Also, the genetic variant CCR5Δ32 modifies the CCR5-mediated inflammatory responses in various conditions, such as inflammatory and infectious diseases. CCR5 antagonists mimic, at least in part, the natural effects of the CCR5Δ32 in humans, which explains the growing interest in the potential benefits of using CCR5 modulators for the treatment of different diseases. Nevertheless, beyond HIV infection, understanding the effects of the CCR5Δ32 variant in multiple viral infections is essential to shed light on the potential effects of the CCR5 modulators from a broader perspective. In this context, this review discusses the involvement of CCR5 and the effects of the CCR5Δ32 in human infections caused by the following pathogens: West Nile virus, Influenza virus, Human papillomavirus, Hepatitis B virus, Hepatitis C virus, Poliovirus, Dengue virus, Human cytomegalovirus, Crimean-Congo hemorrhagic fever virus, Enterovirus, Japanese encephalitis virus, and Hantavirus. Subsequently, this review addresses the impacts of CCR5 gene editing and CCR5 modulation on health and viral diseases. Also, this article connects recent findings regarding extracellular vesicles (e.g., exosomes), viruses, and CCR5. Neglected and emerging topics in “CCR5 research” are briefly described, with focus on Rocio virus, Zika virus, Epstein-Barr virus, and Rhinovirus. Finally, the potential influence of CCR5 on the immune responses to coronaviruses is discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marcelo Alves de Souza Bragatte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Núcleo de Bioinformática do Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
26
|
Hajifathali A, Parkhideh S, Kazemi MH, Chegeni R, Roshandel E, Gholizadeh M. Immune checkpoints in hematologic malignancies: What made the immune cells and clinicians exhausted! J Cell Physiol 2020; 235:9080-9097. [DOI: 10.1002/jcp.29769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Abbas Hajifathali
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad H. Kazemi
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Rouzbeh Chegeni
- The Michener Institute of Education at University Health Network Toronto Canada
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Majid Gholizadeh
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
27
|
Zhang R, Li X, Li Z, Jiang YY, Ma L, Zhao MF, Deng Q. [Study on enhancing the killing activity of chemotherapy drugs by PD-1 inhibitor on Raji cell line]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:76-79. [PMID: 32023760 PMCID: PMC7357903 DOI: 10.3760/cma.j.issn.0253-2727.2020.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Indexed: 11/25/2022]
Affiliation(s)
- R Zhang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - X Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Z Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Y Y Jiang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - L Ma
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - M F Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Q Deng
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
28
|
Chen T, Chen Y, Bao W, Lu W. T-lymphocyte subsets and Th1/Th2 cytokines in convalescent patients with Epstein-Barr virus-associated aplastic anemia. ACTA ACUST UNITED AC 2019; 25:11-16. [PMID: 31842718 DOI: 10.1080/16078454.2019.1702304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: The aim of this study was to analyze T-lymphocyte subsets and Th1/Th2 cytokines in convalescent patients with Epstein-Barr virus (EBV)-associated aplastic anemia (AA).Methods: Sixty AA patients were enrolled, who were in remission following immunosuppressive therapy, including 34 EBV-negative cases and 26 EBV-positive cases. Their complete blood count (CBC), T-lymphocyte subsets, Th1/Th2 cytokines were analyzed. The correlation between EBV-DNA and T-lymphocyte subsets was evaluated, as well as the relationship between EBV-DNA and Th1/Th2 cytokines. The presence of EBV-DNA in peripheral blood mononuclear cells (PBMCs) was also assessed in 60 normal controls.Results: EBV-DNA was detected in 26/60 (43.33%) patients and 21/60 (35.00%) controls. EBV-DNA copy number in AA patients was higher than in controls (Z = -2.138, P = 0.033). The percentage of CD3+CD4+ T-lymphocytes and the ratio of CD4+/CD8+ T-lymphocytes in the EBV-negative group were higher than in the EBV-positive group (P = 0.001 and 0.001, respectively). EBV was positively correlated with CD3+CD8+ T-lymphocyte percentages (Pearson R: 0.496, P = 0.009). Moreover, EBV was positively correlated with IL-10 and IFN-γ levels (Pearson R: 0.559, P = 0.002 and Pearson R: 0.621, P = 0.001, respectively).Conclusions: EBV-DNA copy number in AA patients was higher than in normal controls. Both AA and EBV infection may cause changes in the levels of T-lymphocyte subsets. We recommend monitoring the changes in the immune function and EBV infection simultaneously in AA patients, especially following immunosuppressive therapy.
Collapse
Affiliation(s)
- Tingting Chen
- Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, People's Republic of China
| | - Yimin Chen
- Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, People's Republic of China
| | - Wenting Bao
- Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, People's Republic of China
| | - Wei Lu
- Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
29
|
PD-1/PD-L1 expression and interaction by automated quantitative immunofluorescent analysis show adverse prognostic impact in patients with diffuse large B-cell lymphoma having T-cell infiltration: a study from the International DLBCL Consortium Program. Mod Pathol 2019; 32:741-754. [PMID: 30666052 DOI: 10.1038/s41379-018-0193-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
Programmed cell death protein 1/programmed cell death protein ligand1 (PD-1/PD-L1) interaction is an important immune checkpoint targeted by anti-PD-1/PD-L1 immunotherapies. However, the observed prognostic significance of PD-1/PD-L1 expression in diffuse large B-cell lymphoma treated with the standard of care has been inconsistent and even contradictory. To clarify the prognostic role of PD-1/PD-L1 expression and interaction in diffuse large B-cell lymphoma, in this study we used 3-marker fluorescent multiplex immunohistochemistry and Automated Quantitative Analysis Technology to assess the CD3+, PD-L1+, and PD-1+CD3+ expression in diagnostic samples and PD-1/PD-L1 interaction as indicated by presence of PD-1+CD3+ cells in the vicinity of PD-L1+ cells, analyzed their prognostic effects in 414 patients with de novo diffuse large B-cell lymphoma, and examined whether PD-1/PD-L1 interaction is required for the prognostic role of PD-1+/PD-L1+ expression. We found that low T-cell tissue cellularity, tissue PD-L1+ expression (irrespective of cell types), PD-1+CD3+ expression, and PD-1/PD-L1 interaction showed hierarchical adverse prognostic effects in the study cohort. PD-1/PD-L1 interaction showed higher sensitivity and specificity than PD-1+ and PD-L1+ expression in predicting inferior prognosis in patients with high CD3+ tissue cellularity ("hot"/inflammatory tumors). However, both PD-1+ and PD-L1+ expression showed adverse prognostic effects independent of PD-1/PD-L1 interaction, and PD-1/PD-L1 interaction showed favorable prognostic effect in PD-L1+ patients without high CD3+ tissue cellularity. Macrophage function and tumor-cell MYC expression may contribute to the PD-1-independent adverse prognostic effect of PD-L1+ expression. In summary, low T-cell tissue cellularity has unfavorable prognostic impact in diffuse large B-cell lymphoma, and tissue PD-L1+ expression and T-cell-derived PD-1+ expression have significant adverse impact only in patients with high T-cell infiltration. PD-1/PD-L1 interaction in tissue is essential but not always responsible for the inhibitory effect of PD-L1+/PD-1+ expression. These results suggest the benefit of PD-1/PD-L1 blockade therapies only in patients with sufficient T-cell infiltration, and the potential of immunofluorescent assays and Automated Quantitative Analysis in the clinical assessment of PD-1/PD-L1 expression and interaction.
Collapse
|
30
|
Marcelis L, Tousseyn T. The Tumor Microenvironment in Post-Transplant Lymphoproliferative Disorders. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:3-16. [PMID: 30680693 PMCID: PMC6529504 DOI: 10.1007/s12307-018-00219-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) cover a broad spectrum of lymphoproliferative lesions arising after solid organ or allogeneic hematopoietic stem cell transplantation. The composition and function of the tumor microenvironment (TME), consisting of all non-malignant constituents of a tumor, is greatly impacted in PTLD through a complex interplay between 4 factors: 1) the graft organ causes immune stimulation through chronic antigen presentation; 2) the therapy to prevent organ rejection interferes with the immune system; 3) the oncogenic Epstein-Barr virus (EBV), present in 80% of PTLDs, has a causative role in the oncogenic transformation of lymphocytes and influences immune responses; 4) interaction with the donor-derived immune cells accompanying the graft. These factors make PTLDs an interesting model to look at cancer-microenvironment interactions and current findings can be of interest for other malignancies including solid tumors. Here we will review the current knowledge of the TME composition in PTLD with a focus on the different factors involved in PTLD development.
Collapse
Affiliation(s)
- Lukas Marcelis
- Department of Imaging and Pathology, Translational Cell and Tissue Research Lab, KU Leuven, Herestraat 49 - O&N IV, 3000, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research Lab, KU Leuven, Herestraat 49 - O&N IV, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals UZ Leuven, 7003 24, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
31
|
Huang Q, Liu F, Shen J. The significance of chemokines in diffuse large B-cell lymphoma: a systematic review and future insights. Future Oncol 2019; 15:1385-1395. [PMID: 30880459 DOI: 10.2217/fon-2018-0514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the progress made in molecular and clinical research, patients with diffuse large B-cell lymphoma (DLBCL) still have a bad prognosis. Recently, chemokines/chemokine receptors have become the subject of interest in relation to DLBCL. Studies have demonstrated the important role of chemokines/chemokine receptors in the communication between DLBCL cells and tumor microenvironment. Studies have also reported the ability of chemokines/chemokine receptors in promoting the proliferation and invasion of DLBCL cells. Here, we summarize the data on mechanisms of DLBCL supporting the involvement of chemokine/chemokine receptor changes. We focus on the available evidence regarding chemokines/chemokine receptors as biomarkers and therapeutic targets for DLBCL.
Collapse
Affiliation(s)
- Qian Huang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Feifei Liu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jianzhen Shen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
32
|
Song MK, Park BB, Uhm J. Understanding Immune Evasion and Therapeutic Targeting Associated with PD-1/PD-L1 Pathway in Diffuse Large B-cell Lymphoma. Int J Mol Sci 2019; 20:ijms20061326. [PMID: 30884772 PMCID: PMC6470519 DOI: 10.3390/ijms20061326] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 02/08/2023] Open
Abstract
In tumor microenvironment, the programmed death 1 (PD-1) immune checkpoint has a crucial role of mechanism of T cell exhaustion leading to tumor evasion. Ligands of PD-1, programmed death ligand 1/2 (PD-L1/L2) are over-expressed in tumor cells and participate in prolonged tumor progression and survivals. Recently, clinical trials for patients who failed to obtain an optimal response prior to standardized chemotherapy in several solid cancers have been focused on targeting therapy against PD-1 to reduce disease progression rates and prolonged survivals. Since various inhibitors targeting the immune checkpoint in PD-1/PD-L1 pathway in solid cancers have been introduced, promising approach using anti-PD-1 antibodies were attempted in several types of hematologic malignances. In diffuse large B cell lymphoma (DLBCL) as the most common and aggressive B cell type of non-Hodgkin’s lymphoma, anti-PD-1 and anti-PD-L1 antibodies were studies in various clinical trials. In this review, we summarized the results of several studies associated with PD-1/PD-L1 pathway as an immune evasion mechanism and described clinical trials about targeting therapy against PD-1/PD-L1 pathway in DLBCL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/analysis
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Humans
- Immunotherapy/methods
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Molecular Targeted Therapy/methods
- Programmed Cell Death 1 Receptor/analysis
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tumor Escape/drug effects
Collapse
Affiliation(s)
- Moo-Kon Song
- Department of Hematology-Oncology, Hanyang University Hanmaeum Changwon Hospital, 51497 Changwon, Korea.
| | - Byeong-Bae Park
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, 04763 Seoul, Korea.
| | - Jieun Uhm
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, 04763 Seoul, Korea.
| |
Collapse
|
33
|
Vistarop AG, Cohen M, Huaman F, Irazu L, Rodriguez M, De Matteo E, Preciado MV, Chabay PA. The interplay between local immune response and Epstein-Barr virus-infected tonsillar cells could lead to viral infection control. Med Microbiol Immunol 2018; 207:319-327. [PMID: 30046954 DOI: 10.1007/s00430-018-0553-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Epstein Barr virus (EBV) gains access to the host through tonsillar crypts. Our aim was to characterize microenvironment composition around EBV+ cells in tonsils from pediatric carriers, to disclose its role on viral pathogenesis. LMP1 expression, assessed by immunohistochemistry (IHC), was used to discriminate EBV + and - zones in 41 tonsil biopsies. Three regions were defined: Subepithelial (SE), interfollicular (IF) and germinal center (GC). CD8, GrB, CD68, IL10, Foxp3, PD1, CD56 and CD4 markers were evaluated by IHC; positive cells/100 total cells were counted. CD8+, GrB+, CD68+ and IL10+ cells were prevalent in EBV+ zones at the SE region (p < 0.0001, p = 0.03, p = 0.002 and p = 0.002 respectively, Wilcoxon test). CD4+ and CD68+ cell count were higher in EBV + GC (p = 0.01 and p = 0.0002 respectively, Wilcoxon test). Increment of CD8, GrB and CD68 at the SE region could indicate a specific response that may be due to local homing at viral entry, which could be counterbalanced by IL10, an immunosuppressive cytokine. Additionally, it could be hypothesized that CD4 augment at the GC may be involved in the EBV-induced B-cell growth control at this region, in which macrophages could also participate.
Collapse
Affiliation(s)
- Aldana G Vistarop
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina. .,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina.
| | - Melina Cohen
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Fuad Huaman
- Histopathological Laboratory, National Academy of Medicine, Buenos Aires, Argentina
| | - Lucia Irazu
- National Institute of Infectious Diseases, National Laboratories and Health Institutes Administration "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Marcelo Rodriguez
- National Institute of Infectious Diseases, National Laboratories and Health Institutes Administration "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Elena De Matteo
- Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - María Victoria Preciado
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Paola A Chabay
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| |
Collapse
|
34
|
Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood 2018; 131:68-83. [PMID: 29118007 PMCID: PMC5755041 DOI: 10.1182/blood-2017-07-740993] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2017] [Indexed: 12/29/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) blockade targeting the PD-1 immune checkpoint has demonstrated unprecedented clinical efficacy in the treatment of advanced cancers including hematologic malignancies. This article reviews the landscape of PD-1/programmed death-ligand 1 (PD-L1) expression and current PD-1 blockade immunotherapy trials in B-cell lymphomas. Most notably, in relapsed/refractory classical Hodgkin lymphoma, which frequently has increased PD-1+ tumor-infiltrating T cells, 9p24.1 genetic alteration, and high PD-L1 expression, anti-PD-1 monotherapy has demonstrated remarkable objective response rates (ORRs) of 65% to 87% and durable disease control in phase 1/2 clinical trials. The median duration of response was 16 months in a phase 2 trial. PD-1 blockade has also shown promise in a phase 1 trial of nivolumab in relapsed/refractory B-cell non-Hodgkin lymphomas, including follicular lymphoma, which often displays abundant PD-1 expression on intratumoral T cells, and diffuse large B-cell lymphoma, which variably expresses PD-1 and PD-L1. In primary mediastinal large B-cell lymphoma, which frequently has 9p24.1 alterations, the ORR was 35% in a phase 2 trial of pembrolizumab. In contrast, the ORR with pembrolizumab was 0% in relapsed chronic lymphocytic leukemia (CLL) and 44% in CLL with Richter transformation in a phase 2 trial. T cells from CLL patients have elevated PD-1 expression; CLL PD-1+ T cells can exhibit a pseudo-exhaustion or a replicative senescence phenotype. PD-1 expression was also found in marginal zone lymphoma but not in mantle cell lymphoma, although currently anti-PD-1 clinical trial data are not available. Mechanisms and predictive biomarkers for PD-1 blockade immunotherapy, treatment-related adverse events, hyperprogression, and combination therapies are discussed in the context of B-cell lymphomas.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jianfeng Zhou
- Department of Hematology and Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; and
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Graduate School of Biomedical Science, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
35
|
van Krieken JH. New developments in the pathology of malignant lymphoma. A review of the literature published from September-August 2017. J Hematop 2017; 10:117-127. [PMID: 29225711 PMCID: PMC5712325 DOI: 10.1007/s12308-017-0310-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- J H van Krieken
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| |
Collapse
|