1
|
Milden-Appel M, Paravicini M, Milden JP, Schüßler M, Jakoby R, Cardoso MC. Uptake of substances into living mammalian cells by microwave induced perturbation of the plasma membrane. Sci Rep 2024; 14:20885. [PMID: 39242794 PMCID: PMC11379910 DOI: 10.1038/s41598-024-71401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Delivering foreign molecules and genetic material into cells is a crucial process in life sciences and biotechnology, resulting in great interest in effective cell transfection methods. Importantly, physical transfection methods allow delivery of molecules of different chemical composition and are, thus, very flexible. Here, we investigated the influence of microwave radiation on the transfection and survival of mammalian cells. We made use of an optimized microwave-poration device and analyzed its performance (frequency and electric field strength) in comparison with simulations. We, then, tested the effect of microwave irradiation on cells and found that 18 GHz had the least impact on cell survival, viability, cell division and genotoxicity while 10 GHz drastically impacted cell physiology. Using live-cell fluorescence microscopy and image analysis, we tested the uptake of small chemical substances, which was most efficient at 18 GHz and correlated with electric field strength and frequency. Finally, we were able to obtain cellular uptake of molecules of very different chemical composition and sizes up to whole immunoglobulin antibodies. In conclusion, microwave-induced poration enables the uptake of widely different substances directly into mammalian cells growing as adherent cultures and with low physiological impact.
Collapse
Affiliation(s)
- Manuela Milden-Appel
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Markus Paravicini
- Institute of Microwave Engineering and Photonics, Technical University of Darmstadt, Darmstadt, Germany.
| | - Jannick P Milden
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Martin Schüßler
- Institute of Microwave Engineering and Photonics, Technical University of Darmstadt, Darmstadt, Germany
| | - Rolf Jakoby
- Institute of Microwave Engineering and Photonics, Technical University of Darmstadt, Darmstadt, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
2
|
Xiang C, Wang L. Effect of vibration of the vortex mixer on the red blood cells. Transfus Clin Biol 2024; 31:13-18. [PMID: 38007216 DOI: 10.1016/j.tracli.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
PURPOSES Red blood cells (RBCs) are often subject to vibration during processing, transfusion, and transport. Further research is necessary to understand the effects of vibration on human RBCs and to reduce experimental deviations caused by device vibration. METHODS Flow cytometry was used in this study to observe the cytokine expression of IgG and IgA and deformation of human red blood cells affected by the vibration of a vortex mixer with varying frequency (750 rpm and 1500 rpm), duration (5 min and 10 min), and container volume (96 well plate and 48 well plate). RESULTS The size of RBCs in duration of 10 min is obviously smaller than the duration of 5 min. The 10-minute duration led to visibly smaller RBC sizes compared to the 5-minute duration. There was little effect on the size of RBCs in the 10-minute groups from differences in frequency and container volume. However, decreased RBC size can be observed in the 5-minute groups, where frequency is increased or container volume is decreased. Echinocytes were present in photomicrographs of all 10-minute groups, but microstructure of the RBCs was not impacted by vortex mixer vibration. The elevated frequency or reduced container volume results in an increased cytokine expression of IgG within the 5-minute groupings. CONCLUSION It can be inferred that vibration must not be overlooked due to its potential impact on the shape and cytokine expression of RBCs. Hence, the inclusion of vibration must be taken into consideration in experiments and devices pertaining to RBCs.
Collapse
Affiliation(s)
- Chuang Xiang
- College of Mechanical Engineering, Hunan University of Arts and Science, Changde, PR China.
| | - Liang Wang
- College of Mechanical Engineering, Hunan University of Arts and Science, Changde, PR China
| |
Collapse
|
3
|
Arendash G, Cao C. Transcranial Electromagnetic Wave Treatment: A Fountain of Healthy Longevity? Int J Mol Sci 2023; 24:ijms24119652. [PMID: 37298603 DOI: 10.3390/ijms24119652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Most diseases of older age have as their common denominator a dysfunctional immune system, wherein a low, chronic level of inflammation is present due to an imbalance of pro-inflammatory cytokines over anti-inflammatory cytokines that develops during aging ("inflamm-aging"). A gerotherapeutic that can restore the immune balance to that shared by young/middle-aged adults and many centenarians could reduce the risk of those age-related diseases and increase healthy longevity. In this perspectives paper, we discuss potential longevity interventions that are being evaluated and compare them to a novel gerotherapeutic currently being evaluated in humans-Transcranial Electromagnetic Wave Treatment (TEMT). TEMT is provided non-invasively and safety through a novel bioengineered medical device-the MemorEM-that allows for near complete mobility during in-home treatments. Daily TEMT to mild/moderate Alzheimer's Disease (AD) patients over a 2-month period rebalanced 11 of 12 cytokines in blood back to that of normal aged adults. A very similar TEMT-induced rebalancing of cytokines occurred in the CSF/brain for essentially all seven measurable cytokines. Overall inflammation in both blood and brain was dramatically reduced by TEMT over a 14-27 month period, as measured by C-Reactive Protein. In these same AD patients, a reversal of cognitive impairment was observed at 2 months into treatment, while cognitive decline was stopped over a 2½ year period of TEMT. Since most age-related diseases have the commonality of immune imbalance, it is reasonable to postulate that TEMT could rebalance the immune system in many age-related diseases as it appears to do in AD. We propose that TEMT has the potential to reduce the risk/severity of age-related diseases by rejuvenating the immune system to a younger age, resulting in reduced brain/body inflammation and a substantial increase in healthy longevity.
Collapse
Affiliation(s)
- Gary Arendash
- NeuroEM Therapeutics, Inc., 501 E. Kennedy Blvd., Suite 650, Tampa, FL 33602, USA
| | - Chuanhai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- MegaNano Biotech, 3802 Spectrum Blvd., Suite 122, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Atanasov NT, Atanasova GL, Angelova B, Paunov M, Gurmanova M, Kouzmanova M. Wearable Antennas for Sensor Networks and IoT Applications: Evaluation of SAR and Biological Effects. SENSORS (BASEL, SWITZERLAND) 2022; 22:5139. [PMID: 35890818 PMCID: PMC9315969 DOI: 10.3390/s22145139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In recent years, there has been a rapid development in the wearable industry. The growing number of wearables has led to the demand for new lightweight, flexible wearable antennas. In order to be applicable in IoT wearable devices, the antennas must meet certain electrical, mechanical, manufacturing, and safety requirements (e.g., specific absorption rate (SAR) below worldwide limits). However, the assessment of SAR does not provide information on the mechanisms of interaction between low-intensity electromagnetic fields emitted by wearable antennas and the human body. In this paper, we presented a detailed investigation of the SAR induced in erythrocyte suspensions from a fully textile wearable antenna at realistic (net input power 6.3 mW) and conservative (net input power 450 mW) conditions at 2.41 GHz, as well as results from in vitro experiments on the stability of human erythrocyte membranes at both exposure conditions. The detailed investigation showed that the 1 g average SARs were 0.5758 W/kg and 41.13 W/kg, respectively. Results from the in vitro experiments demonstrated that the short-term (20 min) irradiation of erythrocyte membranes in the reactive near-field of the wearable antenna at 6.3 mW input power had a stabilizing effect. Long-term exposure (120 min) had a destabilizing effect on the erythrocyte membrane.
Collapse
Affiliation(s)
- Nikolay Todorov Atanasov
- Department of Communication and Computer Engineering, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria;
| | - Gabriela Lachezarova Atanasova
- Department of Communication and Computer Engineering, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria;
| | - Boyana Angelova
- Department of Biophysics and Radiobiology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (B.A.); (M.P.); (M.G.); (M.K.)
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (B.A.); (M.P.); (M.G.); (M.K.)
| | - Maria Gurmanova
- Department of Biophysics and Radiobiology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (B.A.); (M.P.); (M.G.); (M.K.)
| | - Margarita Kouzmanova
- Department of Biophysics and Radiobiology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (B.A.); (M.P.); (M.G.); (M.K.)
| |
Collapse
|
5
|
Horikoshi S, Iwabuchi M, Kawaguchi M, Yasumasu S, Serpone N. Uptake of nanoparticles from sunscreen physical filters into cells arising from increased environmental microwave radiation: increased potential risk of the use of sunscreens to human health. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1819-1831. [PMID: 35781788 DOI: 10.1007/s43630-022-00259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
This study examines the microwave chemical risks posed by photocatalysts present in sunscreens (physical filters) against the increasing use of microwaves (radio waves) in the environment, sometimes referred to as electronic smog. Specifically, the study assesses the damage caused by silica-coated physical filters (photocatalysts, TiO2⋅ and/or ZnO) contained in commercially available sunscreens and fresh silica-coated ZnO for sunscreens to mouse skin fibroblasts cells (NIH/3T3) evaluated in vitro by the life/death of cells using two types of electromagnetic waves: UV light and microwave radiation, and under simultaneous irradiation with both UV light and microwaves. Conditions of the electromagnetic waves were such as to be of lower light irradiance than that of UVA/UVB radiation from incident sunlight, and with microwaves near the threshold power levels that affect human health. The photocatalytic activity of the physical filters was investigated by examining the degradation of the rhodamine B (RhB) dye in aqueous media and by the damage caused to DNA plasmids from E. coli. Compared to the photocatalytic activity of ZnO and TiO2 when irradiated with UV light alone, a clear enhanced photocatalytic activity was confirmed upon irradiating these physical filters concurrently with UV and microwaves. Moreover, the uptake of these metal oxides into the NIH/3T3 cells led to the death of these cells as a result of the enhanced photocatalytic activity of the metal oxides on exposure to microwave radiation.
Collapse
Affiliation(s)
- Satoshi Horikoshi
- Department of Material and Life Science, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan.
| | - Miho Iwabuchi
- Department of Material and Life Science, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan
| | - Mari Kawaguchi
- Department of Material and Life Science, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan
| | - Shigeki Yasumasu
- Department of Material and Life Science, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan
| | - Nick Serpone
- PhotoGreen Laboratory, Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Tharushi Perera PG, Linklater DP, Kosyer E, Croft R, Ivanova EP. Localization of nanospheres in pheochromocytoma-like cells following exposure to high-frequency electromagnetic fields at 18 GHz. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220520. [PMID: 35774138 PMCID: PMC9240668 DOI: 10.1098/rsos.220520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 05/03/2023]
Abstract
Exposure to high-frequency (HF) electromagnetic fields (EMFs) at 18 GHz was previously found to induce reversible cell permeabilization in eukaryotic cells; however, the fate of internalized foreign objects inside the cell remains unclear. Here, silica core-shell gold nanospheres (Au NS) of 20 ± 5 nm diameter were used to study the localization of Au NS in pheochromocytoma (PC 12) cells after exposure to HF EMFs at 18 GHz. Internalization of Au NS was confirmed using fluorescence microscopy and transmission electron microscopy. Analysis based on corresponding scanning transmission electron microscopy energy-dispersive spectroscopy revealed the presence of the Au NS free within the PC 12 cell membrane, cytoplasm, enclosed within intracellular vesicles and sequestered in vacuoles. The results obtained in this work highlight that exposure to HF EMFs could be used as an efficient technique with potential for effective delivery of drugs, genetic material, and nanomaterials into cells for the purpose of cellular manipulation or therapy.
Collapse
Affiliation(s)
- Palalle G. Tharushi Perera
- School of Science, RMIT University, PO Box 2476, Melbourne, ViC 3001, Australia
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, ViC 3122, Australia
| | - Denver P. Linklater
- School of Science, RMIT University, PO Box 2476, Melbourne, ViC 3001, Australia
| | - Erim Kosyer
- School of Science, RMIT University, PO Box 2476, Melbourne, ViC 3001, Australia
| | - Rodney Croft
- School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elena P. Ivanova
- School of Science, RMIT University, PO Box 2476, Melbourne, ViC 3001, Australia
| |
Collapse
|
7
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
8
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
9
|
Lang M, Bunn S, Gopalakrishnan B, Li J. Use of weak DC electric fields to rapidly align mammalian cells. J Neural Eng 2021; 18. [PMID: 34544059 DOI: 10.1088/1741-2552/ac284b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022]
Abstract
Objective.The ability to modulate cell morphology has clinical relevance in regenerative biology. For example, cells of the skeletal muscle, peripheral nerve and vasculature have specific oriented architectures that emerge from unique structure-function relationships. Methods that can induce similar cell morphologiesin vitrocan be of use in the development of biomimetic constructs for the repair or replacement of damaged tissues. In this work, we demonstrate that direct current (DC) electric fields (EFs) can be used as a tool to globally align cell populationsin vitro. Approach.Using a 2D culture chamber system, we were able to quickly (within hours) align Schwann cells at different culture densities with an application of steady EFs at 200-500 mV mm-1.Main results.Cellular alignment was perpendicular to the field vector and varied proportionately as a function of field magnitude. In addition, the degree of cellular alignment was also dependent on cellular density. Even well-established Schwann cell monolayers were responsive to the applied DC fields with cells retracting parallel oriented processes (with respect to the imposed field) and re-extending them along the perpendicular axis. When the DC field was removed, monolayers retained the aligned morphology for many days afterwards, likely due to contact inhibition. We further show the method is applicable to other field-responsive cells, such as 3T3 fibroblasts.Significance.The patterned cells provided nanoscale haptotactic cues and can be subsequently used as a basal layer for co-culturing or manipulated for other applications. DC fields represent a rapid, simple, and efficient technique compared to other cell patterning methods such as substrate manipulation.
Collapse
Affiliation(s)
- Mary Lang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, United States of America.,Veterinary Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Spencer Bunn
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, United States of America.,Veterinary Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Bhavani Gopalakrishnan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, United States of America.,Veterinary Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Jianming Li
- Veterinary Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, United States of America.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, United States of America
| |
Collapse
|
10
|
Hao Y, Li W, Wang H, Zhang J, Yu C, Tan S, Wang H, Xu X, Dong J, Yao B, Zhou H, Zhao L, Peng R. Autophagy mediates the degradation of synaptic vesicles: A potential mechanism of synaptic plasticity injury induced by microwave exposure in rats. Physiol Behav 2018; 188:119-127. [PMID: 29408588 DOI: 10.1016/j.physbeh.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
Abstract
To explore how autophagy changes and whether autophagy is involved in the pathophysiological process of synaptic plasticity injury caused by microwave radiation, we established a 30 mW/cm2 microwave-exposure in vivo model, which caused reversible injuries in rat neurons. Microwave radiation induced cognitive impairment in rats and synaptic plasticity injury in rat hippocampal neurons. Autophagy in rat hippocampal neurons was activated following microwave exposure. Additionally, we observed that synaptic vesicles were encapsulated by autophagosomes, a phenomenon more evident in the microwave-exposed group. Colocation of autophagosomes and synaptic vesicles in rat hippocampal neurons increased following microwave exposure. CONCLUSION microwave exposure led to the activation of autophagy in rat hippocampal neurons, and excessive activation of autophagy might damage synaptic plasticity by mediating synaptic vesicle degradation.
Collapse
Affiliation(s)
- Yanhui Hao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Wenchao Li
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Hui Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Jing Zhang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Chao Yu
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Shengzhi Tan
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Haoyu Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Xinping Xu
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Ji Dong
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Binwei Yao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Hongmei Zhou
- Division of Radiation Protection and Health Physics, Institute of Radiation Medicine, Beijing, PR China
| | - Li Zhao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China.
| | - Ruiyun Peng
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China.
| |
Collapse
|