Fujiki M, Koe JR, Mori T, Kimura Y. Questions of Mirror Symmetry at the Photoexcited and Ground States of Non-Rigid Luminophores Raised by Circularly Polarized Luminescence and Circular Dichroism Spectroscopy: Part 1. Oligofluorenes, Oligophenylenes, Binaphthyls and Fused Aromatics.
Molecules 2018;
23:E2606. [PMID:
30314330 PMCID:
PMC6222818 DOI:
10.3390/molecules23102606]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 11/17/2022] Open
Abstract
We report experimental tests of whether non-rigid, π-conjugated luminophores in the photoexcited (S₁) and ground (S₀) states dissolved in achiral liquids are mirror symmetrical by means of circularly polarized luminescence (CPL) and circular dichroism (CD) spectroscopy. Herein, we chose ten oligofluorenes, eleven linear/cyclic oligo-p-arylenes, three binaphthyls and five fused aromatics, substituted with alkyl, alkoxy, phenyl and phenylethynyl groups and also with no substituents. Without exception, all these non-rigid luminophores showed negative-sign CPL signals in the UV-visible region, suggesting temporal generation of energetically non-equivalent non-mirror image structures as far-from equilibrium open-flow systems at the S₁ state. For comparison, unsubstituted naphthalene, anthracene, tetracene and pyrene, which are achiral, rigid, planar luminophores, did not obviously show CPL/CD signals. However, camphor, which is a rigid chiral luminophore, showed mirror-image CPL/CD signals. The dissymmetry ratio of CPL (glum) for the oligofluorenes increased discontinuously, ranging from ≈ -(0.2 to 2.0) × 10-3, when the viscosity of the liquids increased. When the fluorene ring number increased, the glum value extrapolated at [η] = 0 reached -0.8 × 10-3 at 420 nm, leading to (⁻)-CPL signals predicted in the vacuum state. Our comprehensive CPL and CD study should provide a possible answer to the molecular parity violation hypothesis arising due to the weak neutral current mediated by the Z⁰-boson.
Collapse