1
|
Sharma V, Kumar A. MCL-1 as a potent target for cancer: Recent advancements, structural insights and SAR studies. Bioorg Chem 2025; 156:108211. [PMID: 39889551 DOI: 10.1016/j.bioorg.2025.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
The myeloid cell leukemia-1 (Mcl-1) differentiation protein belongs to the B-cell lymphoma 2 (Bcl-2) family of proteins which regulates the apoptosis or cell death. Mcl-1 is known for its pro-survival in response to various stressors. Therefore, it acts as a prominent target in cancer treatment. Mcl-1 has emerged as one of the validated drug targets for anticancer drug discovery as their expression has been implicated in the pathogenesis of cancers. In this review, we have included the various inhibitors based on many heterocyclic rings such as pyrrole, pyrazole, coumarin, quinoline and indole. This manuscript incorporates the anticancer activity, structure activity relationship (SAR) and molecular modelling of recently synthesized Mcl-1 inhibitors. The clinical trial status of Mcl-1 inhibitors is also described. But till now, no Mcl-1 inhibitor has been approved by any drug authority. This review is based on extensive research in the field of designing Mcl-1 inhibitors from 2020 to till now. It will provide extensive information to researchers and scientists for designing of novel Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University Punjab, Mohali, India
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
2
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
3
|
Ngoh Misse Mouelle E, Foundikou Nsangou M, Fofack HMT, Mboutchak D, Koliye PR, Amana Ateba B, Ntie-Kang F, Akone SH, Ngeufa Happi E. In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite. Chem Biodivers 2025; 22:e202401270. [PMID: 39236275 DOI: 10.1002/cbdv.202401270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α -amyrin acetate and β -amyrin acetate (1 and 2), lupeol (3), 3β-acetoxy-olean-12-en-11-one (4), lupenyl acetate (5), taraxastan-3,20-diol (6), 3'- (3-methylbut-2-enyl) biochanin A (7), derrone (8), quercetin (9), stigmasterol (10), and stigmasterol glycoside (11) were isolated from stem barks of Ficus sur Forssk. Their structures were obtained through analysis of spectroscopic data 1D and 2D NMR), mass spectrometry, and by comparison of these data with the literature. Nine isolated compounds (1-7, 10, 11) were tested as the active wighteone metabolite previously isolated from the roots of this plant against the human HepG2 hepatocellular carcinoma cells and a small panel of sensitive microbial strains for structure- activity relationship purpose. The compounds didn't show any activity. With the aim of understanding the impact of the structural difference between wighteone metabolite and its analogs, the former were cross-docked to evaluate their anticancer properties via the apoptosis pathway. Wighteone metabolite proved to be the best ligand confirming its previous bioassay result. Thus, the current study lays the framework for the further optimization of wighteone metabolite regarding its anticancer activity.
Collapse
Affiliation(s)
- Eitel Ngoh Misse Mouelle
- Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | | | | | - Dieunedort Mboutchak
- Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Pierre Roger Koliye
- Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Baruch Amana Ateba
- Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
- Centre for Drug Discovery, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sergi Herve Akone
- Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
- Department of Microbial Natural Products (MINS), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), University of Saarland, D- 66123, Saarbrücken, Germany
| | - Emmanuel Ngeufa Happi
- Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| |
Collapse
|
4
|
Abdelaal N, Ragheb MA, Hassaneen HM, Elzayat EM, Abdelhamid IA. Design, in silico studies and biological evaluation of novel chalcones tethered triazolo[3,4-a]isoquinoline as EGFR inhibitors targeting resistance in non-small cell lung cancer. Sci Rep 2024; 14:26647. [PMID: 39496648 PMCID: PMC11535068 DOI: 10.1038/s41598-024-76459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
A novel series of six [1,2,4]triazolo[3,4-a]isoquinolin-3-yl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)prop-2-en-1-ones (3a-3f) was designed and synthesized. They were characterized based on spectral and elemental analyses. In silico studies were also committed to provide insights and a better understanding of their structural features. The six compounds were screened for their antiproliferative activity using the MTT assay against five human cancer cell lines, namely, A549, HCT116, PC3, HT29, and MCF-7 in parallel with the non-cancerous human lung cell line WI-38. The results showed that 3e and 3f have potential cytotoxic activities, especially on A549 cells with IC50 = 2.3 µM and 1.15 µM, respectively. Meanwhile, they recorded a minimal cytotoxic effect on WI-38 cells. Concerning the molecular mechanism of action, the present study showed the inhibitory effect of the six compounds against total EGFR. The most potent EGFR inhibitors were 3e and 3f with IC50 = 0.031 µM and 0.023 µM, respectively. The selectivity index of 3f for EGFRT790M was 1.81 times more selective than that of lapatinib. In addition, 3e and 3f initiated cell cycle arrest at the G2/M and pre-G1 phases along with the downregulation of anti-apoptotic protein Bcl2 and the upregulation of pro-apoptotic proteins: p53, Bax, and caspases 3, 8, and 9. Further studies are recommended to evaluate animal models' promising anticancer activity and molecular mechanism of triazolo[3,4-a]isoquinoline derivatives 3e and 3f.
Collapse
Affiliation(s)
- Nesma Abdelaal
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hamdi M Hassaneen
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Emad M Elzayat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt.
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
5
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
6
|
Das AP, Agarwal SM. Recent advances in the area of plant-based anti-cancer drug discovery using computational approaches. Mol Divers 2024; 28:901-925. [PMID: 36670282 PMCID: PMC9859751 DOI: 10.1007/s11030-022-10590-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023]
Abstract
Phytocompounds are a well-established source of drug discovery due to their unique chemical and functional diversities. In the area of cancer therapeutics, several phytocompounds have been used till date to design and develop new drugs. One of the desired interests of pharmaceutical companies and researchers globally is that new anti-cancer leads are discovered, for which phytocompounds can be considered a valuable source. Simultaneously, in recent years, the growth of computational approaches like virtual screening (VS), molecular dynamics (MD), pharmacophore modelling, Quantitative structure-activity relationship (QSAR), Absorption Distribution Metabolism Excretion and Toxicity (ADMET), network biology, and machine learning (ML) has gained importance due to their efficiency, reduced time-consuming nature, and cost-effectiveness. Therefore, the present review amalgamates the information on plant-based molecules identified for cancer lead discovery from in silico approaches. The mandate of this review is to discuss studies published in the last 5-6 years that aim to identify the phytomolecules as leads against cancer with the help of traditional computational approaches as well as newer techniques like network pharmacology and ML. This review also lists the databases and webservers available in the public domain for phytocompounds related information that can be harnessed for drug discovery. It is expected that the present review would be useful to pharmacologists, medicinal chemists, molecular biologists, and other researchers involved in the development of natural products (NPs) into clinically effective lead molecules.
Collapse
Affiliation(s)
- Agneesh Pratim Das
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India
| | - Subhash Mohan Agarwal
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
7
|
Bułakowska A, Sławiński J, Hering A, Gucwa M, Ochocka JR, Hałasa R, Balewski Ł, Stefanowicz-Hajduk J. New Chalcone Derivatives Containing 2,4-Dichlorobenzenesulfonamide Moiety with Anticancer and Antioxidant Properties. Int J Mol Sci 2023; 25:274. [PMID: 38203445 PMCID: PMC10778824 DOI: 10.3390/ijms25010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Chalcones and their derivatives, both natural and synthetic, exhibit diverse biological activities. In this study, we focused on designing and synthesizing (E)-2,4-dichloro-N-(4-cinnamoylphenyl)-5-methylbenzenesulfonamides 4-8 with the following two pharmacophore groups: 2,4-dichlorobenzenesulfonamide and chalcone. The obtained compounds displayed notable anticancer effects on various human cancer cells, such as cervical HeLa, acute promyelocytic leukemia HL-60, and gastric adenocarcinoma AGS, when assessed with the MTT test. The activity of all compounds against cancer cells was significant, and the obtained IC50 values were in the range of 0.89-9.63 µg/mL. Among all the tested compounds, derivative 5 showed the highest activity on the AGS cell line. Therefore, it was tested for cell cycle inhibition, induction of mitochondrial membrane depolarization, and activation of caspase-8 and -9. These results showed that this compound strongly arrested the cell cycle in the subG0 phase, depolarized the mitochondrial membrane, and activated caspase-8 and -9. Similar to the anticancer effects, all the obtained compounds 4-8 were also assessed for their antioxidant activity. The highest antiradical effect was demonstrated for derivative 5, which was able to inhibit DPPH and ABTS radicals. All examined compounds showed dose-dependent activity against neutrophil elastase. Notably, derivatives 7 and 8 demonstrated inhibitory properties similar to oleanolic acid, with IC50 values of 25.61 ± 0.58 and 25.73 ± 0.39 µg/mL, respectively. To determine the antibacterial activity of derivatives 4-8, the minimum bacteriostatic concentration (MIC) values were estimated (>500 µg/mL for all the tested bacterial strains). The findings demonstrate the substantial potential of sulfonamide-based chalcone 5 as a promising drug in anticancer therapy.
Collapse
Affiliation(s)
- Anita Bułakowska
- Department of Organic Chemistry, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Łukasz Balewski
- Department of Chemical Technology of Drugs, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Aleja Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| |
Collapse
|
8
|
Bashandy SAE, Ebaid H, Al-Tamimi J, Hassan I, Omara EA, Elbaset MA, Alhazza IM, Siddique JA. Protective Effect of Daidzein against Diethylnitrosamine/Carbon Tetrachloride-Induced Hepatocellular Carcinoma in Male Rats. BIOLOGY 2023; 12:1184. [PMID: 37759583 PMCID: PMC10525464 DOI: 10.3390/biology12091184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second-largest cause of death among all cancer types. Many drugs have been used to treat the disease for a long time but have been mostly discontinued because of their side effects or the development of resistance in the patients with HCC. The administration of DZ orally is a great focus to address the clinical crisis. Daidzein (DZ) is a prominent isoflavone polyphenolic chemical found in soybeans and other leguminous plants. It has various pharmacological effects, including anti-inflammatory, antihemolytic, and antioxidant. This present study investigates the protective effect of DZ on chemically induced HCC in rat models. The DZ was administered orally four weeks before HCC induction and continued during treatment. Our study included four treatment groups: control (group 1, without any treatment), HCC-induced rats (group II), an HCC group treated with DZ at 20 mg/kg (group III), and an HCC group treated with DZ at 40 mg/kg (group IV). HCC rats showed elevation in all the HCC markers (AFP, GPC3, and VEGF), liver function markers (ALP, ALT, and AST), inflammatory markers (IL-6, TNF-α, and CRP), and lipid markers concomitant with a decrease in antioxidant enzymes and protein. However, groups III and IV demonstrated dose-dependent alleviation in the previous parameters resulting from HCC. In addition, the high dose of DZ reduces many hepatological changes in HCC rats. All study parameters improved with DZ administration. Due to its antioxidant and anti-inflammatory characteristics, DZ is a promising HCC treatment option for clinical use.
Collapse
Affiliation(s)
- Samir A. E. Bashandy
- Pharmacology Department, National Research Centre, 33 El-Bohouth St., Dokki, Cairo 12622, Egypt; (S.A.E.B.); (M.A.E.)
| | - Hossam Ebaid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.E.); (I.M.A.)
| | - Jameel Al-Tamimi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.E.); (I.M.A.)
| | - Iftekhar Hassan
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.E.); (I.M.A.)
| | - Enayat A. Omara
- Pathology Department, National Research Centre, 33 El-Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Marawan A. Elbaset
- Pharmacology Department, National Research Centre, 33 El-Bohouth St., Dokki, Cairo 12622, Egypt; (S.A.E.B.); (M.A.E.)
| | - Ibrahim M. Alhazza
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.E.); (I.M.A.)
| | - Jamal A. Siddique
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University (CVUT), Praha 6, 16629 Prague, Czech Republic;
| |
Collapse
|
9
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
10
|
Zhang C, Yang HY, Gao L, Bai MZ, Fu WK, Huang CF, Mi NN, Ma HD, Lu YW, Jiang NZ, Tian L, Cai T, Lin YY, Zheng XX, Gao K, Chen JJ, Meng WB. Lanatoside C decelerates proliferation and induces apoptosis through inhibition of STAT3 and ROS-mediated mitochondrial membrane potential transformation in cholangiocarcinoma. Front Pharmacol 2023; 14:1098915. [PMID: 37397486 PMCID: PMC10308052 DOI: 10.3389/fphar.2023.1098915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: The incidence of cholangiocarcinoma (CCA) has increased worldwide in recent years. Given the poor prognosis associated with the current management approach of CCA, new therapeutic agents are warranted to improve the prognosis of this patient population. Methods: In this study, we extracted five cardiac glycosides (CGs) from natural plants: digoxin, lanatoside A, lanatoside C, lanatoside B, and gitoxin. Follow-up experiments were performed to assess the effect of these five extracts on cholangiocarcinoma cells and compounds with the best efficacy were selected. Lanatoside C (Lan C) was selected as the most potent natural extract for subsequent experiments. We explored the potential mechanism underlying the anticancer activity of Lan C on cholangiocarcinoma cells by flow cytometry, western blot, immunofluorescence, transcriptomics sequencing, network pharmacology and in vivo experiments. Results: We found that Lan C time-dependently inhibited the growth and induced apoptosis of HuCCT-1 and TFK-1 cholangiocarcinoma cells. Besides Lan C increased the reactive oxygen species (ROS) content in cholangiocarcinoma cells, decreased the mitochondrial membrane potential (MMP) and resulted in apoptosis. Besides, Lan C downregulated the protein expression of STAT3, leading to decreased expression of Bcl-2 and Bcl-xl, increased expression of Bax, activation of caspase-3, and initiation of apoptosis. N-acetyl-L-cysteine (NAC) pretreatment reversed the effect of Lan C. In vivo, we found that Lan C inhibited the growth of cholangiocarcinoma xenografts without toxic effects on normal cells. Tumor immunohistochemistry showed that nude mice transplanted with human cholangiocarcinoma cells treated with Lan C exhibited decreased STAT3 expression and increased caspase-9 and caspase-3 expression in tumors, consistent with the in vitro results. Conclusion: In summary, our results substantiates that cardiac glycosides have strong anti-CCA effects. Interestingly the biological activity of Lan C provides a new anticancer candidate for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Chao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Zhen Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wen-Kang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chong-Fei Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ning-Ning Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Dong Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-Wen Lu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ning-Zu Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Teng Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan-Yan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xing-Xing Zheng
- Department of Ophthalmology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Wen-Bo Meng
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Das SS, Tambe S, Prasad Verma PR, Amin P, Singh N, Singh SK, Gupta PK. Molecular insights and therapeutic implications of nanoengineered dietary polyphenols for targeting lung cancer: part II. Nanomedicine (Lond) 2022; 17:1799-1816. [PMID: 36636965 DOI: 10.2217/nnm-2022-0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Flavonoids represent a major group of polyphenolic compounds. Their capacity to inhibit tumor proliferation, cell cycle, angiogenesis, migration and invasion is substantially responsible for their chemotherapeutic activity against lung cancer. However, their clinical application is limited due to poor aqueous solubility, low permeability and quick blood clearance, which leads to their low bioavailability. Nanoengineered systems such as liposomes, nanoparticles, micelles, dendrimers and nanotubes can considerably enhance the targeted action of the flavonoids with improved efficacy and pharmacokinetic properties, and flavonoids can be successfully translated from bench to bedside through various nanoengineering approaches. This review addresses the therapeutic potential of various flavonoids and highlights the cutting-edge progress in the nanoengineered systems that incorporate flavonoids for treating lung cancer.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.,School of Pharmaceutical & Population Health Informatics, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Srushti Tambe
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Priya Ranjan Prasad Verma
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Purnima Amin
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Neeru Singh
- Department of Biomedical Laboratory Technology, University Polytechnic, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.,Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India.,Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| |
Collapse
|
12
|
Martsinkevich DS, Chernyavskaya KF, Ahramovich TI, Tarasevich VA. Synthesis and Antibacterial Activity of Novel Chalcone-derived Pyrazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022050098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zhao W, Xu Y, Guo Q, Qian W, Zhu C, Zheng M. A novel anti-lung cancer agent inhibits proliferation and epithelial-mesenchymal transition. J Int Med Res 2022; 50:3000605211066300. [PMID: 35477254 PMCID: PMC9087257 DOI: 10.1177/03000605211066300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To synthesize a novel chalcone-1,3,4-thiadiazole hybrid and investigate its anticancer effects against NCI-H460 cells. METHODS (E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one, 1,3-dibromopropane and 1,3,4-thiadiazole-2-thiol were used as chemical materials to synthesize compound ZW97. The NCI-H460 lung cancer cell line was selected to explore the antitumor effects of compound ZW97 in vitro and in vivo. RESULTS Compound ZW97 selectively inhibited cell proliferation against lung cancer cell lines NCI-H460, HCC-44 and NCI-H3122 with IC50 values of 0.15 μM, 2.06 μM and 1.17 μM, respectively. ZW97 suppressed migration and the epithelial-mesenchymal transition process in NCI-H460 cells in a concentration-dependent manner. Based on the kinase activity results and docking analysis, compound ZW97 is a novel tyrosine-protein kinase Met (c-Met kinase) inhibitor. It also inhibited NCI-H460 cell growth in xenograft models without obvious toxicity to normal tissues. CONCLUSIONS Compound ZW97 is a potential c-Met inhibitor that might be a promising agent to treat lung cancer by inhibiting the epithelial-mesenchymal transition process.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ye Xu
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qingkui Guo
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenliang Qian
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Chen Zhu
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Min Zheng
- Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Structure-based design, synthesis and antiproliferative action of new quinazoline-4-one/chalcone hybrids as EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Adelusi TI, Oyedele AQK, Boyenle ID, Ogunlana AT, Adeyemi RO, Ukachi CD, Idris MO, Olaoba OT, Adedotun IO, Kolawole OE, Xiaoxing Y, Abdul-Hammed M. Molecular modeling in drug discovery. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
16
|
Poustforoosh A, Faramarz S, Nematollahi MH, Hashemipour H, Tüzün B, Pardakhty A, Mehrabani M. 3D-QSAR, molecular docking, molecular dynamics, and ADME/T analysis of marketed and newly designed flavonoids as inhibitors of Bcl-2 family proteins for targeting U-87 glioblastoma. J Cell Biochem 2021; 123:390-405. [PMID: 34791695 DOI: 10.1002/jcb.30178] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most common and destructive brain tumor with increasing complexity. Flavonoids are versatile natural compounds with the approved anticancer activity, which could be considered as a potential treatment for glioblastoma. A quantitative structure-activity relationship (QSAR) can provide adequate data for understanding the role of flavonoids structure against glioblastoma. The IC50 of various flavonoids for the U-87 cell line was used to prepare an adequate three-dimensional QSAR (3D-QSAR) model. The validation of the model was carried out using some statistical parameters such as R2 and Q2 . Based on the QSAR model, the activities of other marketed and newly designed flavonoids were predicted. Molecular docking study and molecular dynamics (MD) simulation were conducted for better recognition of the interactions between the most active compounds and Bcl-2 family proteins. Moreover, an AMDE/T analysis was performed for the most active flavonoids. A reliable 3D-QSAR was performed with R2 and Q2 of 0.91 and 0.82. The molecular docking study revealed that BCL-XL has a higher binding affinity with the most active compounds, and the MD simulation showed that some residues of the BH3 domain, such as Phe97, Tyr101, Arg102, and Phe105 create remarkable hydrophobic interactions with the ligands. ADME/T analysis also showed the potential of the active compounds for further investigation. 3D-QSAR study is a beneficial method to evaluate and design anticancer compounds. Considering the results of the molecular docking study, MD simulation, and ADME/T analysis, the designed compound 54 could be considered as a potential treatment for glioblastoma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Hashemipour
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Burak Tüzün
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical, Kerman, Iran
| |
Collapse
|
17
|
Constantinescu T, Lungu CN. Anticancer Activity of Natural and Synthetic Chalcones. Int J Mol Sci 2021; 22:11306. [PMID: 34768736 PMCID: PMC8582663 DOI: 10.3390/ijms222111306] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer is a condition caused by many mechanisms (genetic, immune, oxidation, and inflammatory). Anticancer therapy aims to destroy or stop the growth of cancer cells. Resistance to treatment is theleading cause of the inefficiency of current standard therapies. Targeted therapies are the most effective due to the low number of side effects and low resistance. Among the small molecule natural compounds, flavonoids are of particular interest for theidentification of new anticancer agents. Chalcones are precursors to all flavonoids and have many biological activities. The anticancer activity of chalcones is due to the ability of these compounds to act on many targets. Natural chalcones, such as licochalcones, xanthohumol (XN), panduretin (PA), and loncocarpine, have been extensively studied and modulated. Modification of the basic structure of chalcones in order to obtain compounds with superior cytotoxic properties has been performed by modulating the aromatic residues, replacing aromatic residues with heterocycles, and obtaining hybrid molecules. A huge number of chalcone derivatives with residues such as diaryl ether, sulfonamide, and amine have been obtained, their presence being favorable for anticancer activity. Modification of the amino group in the structure of aminochalconesis always favorable for antitumor activity. This is why hybrid molecules of chalcones with different nitrogen hetercycles in the molecule have been obtained. From these, azoles (imidazole, oxazoles, tetrazoles, thiazoles, 1,2,3-triazoles, and 1,2,4-triazoles) are of particular importance for the identification of new anticancer agents.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Claudiu N. Lungu
- Department of Surgery, Country Emergency Hospital Braila, 810249 Braila, Romania
| |
Collapse
|
18
|
Jasim HA, Nahar L, Jasim MA, Moore SA, Ritchie KJ, Sarker SD. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021; 11:1203. [PMID: 34439870 PMCID: PMC8392591 DOI: 10.3390/biom11081203] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Chalcones belong to the flavonoid class of phenolic compounds. They form one of the largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, structural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient to perform structural modifications to generate functionalized chalcone derivatives. Many of these synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for exploitation for new drug discovery, justifying the title of this article. However, the focus remains on critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their interactions at the biomolecular level where appropriate, and revealing their possible mechanisms of action.
Collapse
Affiliation(s)
- Hiba A. Jasim
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
- Department of Biology, College of Education for Pure Sciences, University of Anbar, Al-Anbar 10081, Iraq
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mohammad A. Jasim
- Department of Biology, College of Education for Women, University of Anbar, Al-Anbar 10081, Iraq;
| | - Sharon A. Moore
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Kenneth J. Ritchie
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| |
Collapse
|
19
|
Michalkova R, Mirossay L, Gazdova M, Kello M, Mojzis J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers (Basel) 2021; 13:cancers13112730. [PMID: 34073042 PMCID: PMC8198114 DOI: 10.3390/cancers13112730] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite the important progress in cancer treatment in the past decades, the mortality rates in some types of cancer have not significantly decreased. Therefore, the search for novel anticancer drugs has become a topic of great interest. Chalcones, precursors of flavonoid synthesis in plants, have been documented as natural compounds with pleiotropic biological effects including antiproliferative/anticancer activity. This article focuses on the knowledge on molecular mechanisms of antiproliferative action of chalcones and draws attention to this group of natural compounds that may be of importance in the treatment of cancer disease. Abstract Although great progress has been made in the treatment of cancer, the search for new promising molecules with antitumor activity is still one of the greatest challenges in the fight against cancer due to the increasing number of new cases each year. Chalcones (1,3-diphenyl-2-propen-1-one), the precursors of flavonoid synthesis in higher plants, possess a wide spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant, and anticancer. A plethora of molecular mechanisms of action have been documented, including induction of apoptosis, autophagy, or other types of cell death, cell cycle changes, and modulation of several signaling pathways associated with cell survival or death. In addition, blockade of several steps of angiogenesis and proteasome inhibition has also been documented. This review summarizes the basic molecular mechanisms related to the antiproliferative effects of chalcones, focusing on research articles from the years January 2015–February 2021.
Collapse
|
20
|
Guo T, Zhou D, Yang Y, Zhang X, Chen G, Lin B, Sun Y, Ni H, Liu J, Hou Y, Li N. Bioactive sesquiterpene coumarins from the resin of Ferula sinkiangensis targeted on over-activation of microglia. Bioorg Chem 2020; 104:104338. [PMID: 33142410 DOI: 10.1016/j.bioorg.2020.104338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Nine undescribed (1-4, 6-10) sesquiterpene coumarins, together with a new natural one (5) and ten known ones (11-20), were isolated from the low polarity fraction of the 95% ethanol extract of the resin of Ferula sinkiangensis. Their structures were elucidated based on the comprehensive analysis of HRESIMS, 1D and 2D NMR data. The absolute configurations were determined by comparison of experimental and calculated ECD spectra. All the identified SCs were evaluated for their anti-neuroinflammatory activities in LPS-induced BV-2 cells. Ferusingensine G (8) displayed a significant inhibitory effect on nitric oxide (NO) production with an IC50 value of 1.2 μM. The results suggested that natural SCs might be served as potential neuroinflammatory inhibitors.
Collapse
Affiliation(s)
- Tingting Guo
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Yanqiu Yang
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Hui Ni
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Jingyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China.
| |
Collapse
|
21
|
Nedungadi D, Binoy A, Pandurangan N, Nair BG, Mishra N. Proteasomal dysfunction and ER stress triggers 2'-hydroxy-retrochalcone-induced paraptosis in cancer cells. Cell Biol Int 2020; 45:164-176. [PMID: 33049087 DOI: 10.1002/cbin.11480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/31/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Chalcones are biologically active class of compounds, known for their anticancer activities. Here we show for the first time that out of the six synthetic derivatives of chalcone tested, 2'-hydroxy-retrochalcone (HRC) was the most effective in inducing extensive cytoplasmic vacuolation mediated death called paraptosis in malignant breast and cervical cancer cells. The cell death by HRC is found to be nonapoptotic in nature due to the absence of DNA fragmentation, PARP cleavage, and phosphatidylserine externalization. It was also found to be nonautophagic as there was an increase in the levels of autophagic markers LC3I, LC3II and p62. Immunofluorescence with the endoplasmic reticulum (ER) marker protein calreticulin showed that the cytoplasmic vacuoles formed were derived from the ER. This ER dilation was due to ER stress as evidenced from the increase in polyubiquitinated proteins, Bip and CHOP. Docking studies revealed that HRC could bind to the Thr1 residue on the active site of the chymotrypsin-like subunit of the proteasome. The inhibition of proteasomal activity was further confirmed by the fluorescence based assay of the chymotrypsin-like subunit of the 26S proteasome. The cell death by HRC was also triggered by the collapse of mitochondrial membrane potential and depletion of ATP. Pretreatment with thiol antioxidants and cycloheximide were able to inhibit this programmed cell death. Thus our data suggest that HRC can effectively kill cancer cells via paraptosis, an alternative death pathway and can be a potential lead molecule for anticancer therapy.
Collapse
Affiliation(s)
- Divya Nedungadi
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Anupama Binoy
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Nanjan Pandurangan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Nandita Mishra
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
22
|
Chen G, Xie Y, Zhou D, Yang Y, Liu J, Hou Y, Cheng M, Liu Y, Li N. Chemical constituents from shells of Xanthoceras sorbifolium. PHYTOCHEMISTRY 2020; 172:112288. [PMID: 32045741 DOI: 10.1016/j.phytochem.2020.112288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Three undescribed triterpenes and four previously unreported saponins, along with two known ones, were isolated from shells of Xanthoceras sorbifolium (Sapindaceae). Their structures were elucidated by the interpretation of 1D and 2D NMR data. The nitric oxide (NO) assay revealed that 28-O-isobutyryl-21-O-angeloyl-R1-barrigenol and 3-O-β-D-6-O-methylglucuronopyranosyl-21,22-di-O-angeloyl-R1-barrigenol possessed stronger inhibitory effects on LPS-induced NO overproduction (IC50 = 18.5 ± 1.2 and 28.2 ± 1.8 μM, respectively) than the positive drug minocycline (IC50 = 30.1 ± 1.3 μM) in activated BV2 cells. Western blot, RT-qPCR, and docking experiments further validated that the regulation of iNOS and IL-1β expressions was involved in the anti-neuroinflammatory effects of these two compounds.
Collapse
Affiliation(s)
- Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yumeng Xie
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yanqiu Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Jingyu Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Yue Hou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
23
|
Baldo F. Prediction of modes of action of components of traditional medicinal preparations. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractTraditional medicine preparations are used to treat many ailments in multiple regions across the world. Despite their widespread use, the mode of action of these preparations and their constituents are not fully understood. Traditional methods of elucidating the modes of action of these natural products (NPs) can be expensive and time consuming e. g. biochemical methods, bioactivity guided fractionation, etc. In this review, we discuss some methods for the prediction of the modes of action of traditional medicine preparations, both in mixtures and as isolated NPs. These methods are useful to predict targets of NPs before they are experimentally validated. Case studies of the applications of these methods are also provided herein.
Collapse
|
24
|
Predes D, Oliveira LFS, Ferreira LSS, Maia LA, Delou JMA, Faletti A, Oliveira I, Amado NG, Reis AH, Fraga CAM, Kuster R, Mendes FA, Borges HL, Abreu JG. The Chalcone Lonchocarpin Inhibits Wnt/β-Catenin Signaling and Suppresses Colorectal Cancer Proliferation. Cancers (Basel) 2019; 11:cancers11121968. [PMID: 31817828 PMCID: PMC6966512 DOI: 10.3390/cancers11121968] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
The deregulation of the Wnt/β-catenin signaling pathway is a central event in colorectal cancer progression, thus a promising target for drug development. Many natural compounds, such as flavonoids, have been described as Wnt/β-catenin inhibitors and consequently modulate important biological processes like inflammation, redox balance, cancer promotion and progress, as well as cancer cell death. In this context, we identified the chalcone lonchocarpin isolated from Lonchocarpus sericeus as a Wnt/β-catenin pathway inhibitor, both in vitro and in vivo. Lonchocarpin impairs β-catenin nuclear localization and also inhibits the constitutively active form of TCF4, dnTCF4-VP16. Xenopus laevis embryology assays suggest that lonchocarpin acts at the transcriptional level. Additionally, we described lonchocarpin inhibitory effects on cell migration and cell proliferation on HCT116, SW480, and DLD-1 colorectal cancer cell lines, without any detectable effects on the non-tumoral intestinal cell line IEC-6. Moreover, lonchocarpin reduces tumor proliferation on the colorectal cancer AOM/DSS mice model. Taken together, our results support lonchocarpin as a novel Wnt/β-catenin inhibitor compound that impairs colorectal cancer cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Danilo Predes
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luiz F. S. Oliveira
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Laís S. S. Ferreira
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lorena A. Maia
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - João M. A. Delou
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Anderson Faletti
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Igor Oliveira
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Nathalia G. Amado
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alice H. Reis
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Carlos A. M. Fraga
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ricardo Kuster
- Department of Chemistry, Federal University of Espírito Santo, Espírito Santo 29075-910, Brazil
| | - Fabio A. Mendes
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Helena L. Borges
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jose G. Abreu
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-21-3938-6486
| |
Collapse
|
25
|
Bihud NV, Rasol NE, Imran S, Awang K, Ahmad FB, Mai CW, Leong CO, Cordell GA, Ismail NH. Goniolanceolatins A-H, Cytotoxic Bis-styryllactones from Goniothalamus lanceolatus. JOURNAL OF NATURAL PRODUCTS 2019; 82:2430-2442. [PMID: 31433181 DOI: 10.1021/acs.jnatprod.8b01067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eight new bis-styryllactones, goniolanceolatins A-H (1-8), possessing a rare α,β-unsaturated δ-lactone moiety with a (6S)-configuration, were isolated from the CH2Cl2 extract of the stembark and roots of Goniothalamus lanceolatus Miq., a plant endemic to Malaysia. Absolute structures were established through extensive 1D- and 2D-NMR data analysis, in combination with electronic dichroism (ECD) data. All of the isolates were evaluated for their cytotoxicity against human lung and colorectal cancer cell lines. Compounds 2 and 4 showed cytotoxicity, with IC50 values ranging from 2.3 to 4.2 μM, and were inactive toward human noncancerous lung and colorectal cells. Compounds 1, 3, 6, 7, and 8 showed moderate to weak cytotoxicity. Docking studies of compounds 2 and 4 showed that they bind with EGFR tyrosine kinase and cyclin-dependent kinase 2 through hydrogen bonding interactions with the important amino acids, including Lys721, Met769, Asn818, Arg157, Ile10, and Glu12.
Collapse
Affiliation(s)
- Nur V Bihud
- Atta-ur-Rahman Institute for Natural Product Discovery , Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus , 42300 Bandar Puncak Alam , Selangor Malaysia
| | - Nurulfazlina E Rasol
- Atta-ur-Rahman Institute for Natural Product Discovery , Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus , 42300 Bandar Puncak Alam , Selangor Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery , Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus , 42300 Bandar Puncak Alam , Selangor Malaysia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science , University Malaya , 50603 Kuala Lumpur , Malaysia
| | - Fasihuddin B Ahmad
- Department of Chemistry, Faculty of Resource Science and Technology , Universiti Malaysia Sarawak , 94300 Kota Semarahan , Sarawak , Malaysia
| | - Chun-Wai Mai
- School of Pharmacy , International Medical University , Jalan Jalil Perkasa 19, Bukit Jalil , 57000 Bukit Jalil, Kuala Lumpur , Malaysia
| | - Chee-Onn Leong
- School of Pharmacy , International Medical University , Jalan Jalil Perkasa 19, Bukit Jalil , 57000 Bukit Jalil, Kuala Lumpur , Malaysia
| | | | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery , Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus , 42300 Bandar Puncak Alam , Selangor Malaysia
| |
Collapse
|
26
|
Russo A, Cardile V, Avola R, Graziano A, Montenegro I, Said B, Madrid A. Isocordoin analogues promote apoptosis in human melanoma cells via Hsp70. Phytother Res 2019; 33:3242-3250. [PMID: 31489735 DOI: 10.1002/ptr.6498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Isocordin 1 and a series of 4-oxyalkyl-isocordoin analogues 2-8 were evaluated for their cytotoxicity effect against human melanoma cells (A2058). Analogues 4, 5, and 6 showed a higher inhibitory activity with IC50 values of 12.91 ± 0.031, 24.88 ± 0.013, and 11.62 ± 0.017, respectively. These analogues, 4, 5, and 6, also induced an apoptotic response at 12.5- and 25-μM concentrations. They inhibited the expression of antiapoptotic proteins Bcl-2 and Hsp70, a critical factor that promotes tumour cell survival. In contrast, Bax and caspase-9 expression, and caspase-3 enzyme resulted activated. These results were correlated to a DNA fragmentation typical of apoptosis and an increase of intracellular reactive oxygen species (ROS) levels. Alternatively, at higher concentration (50 μM), when the capacity of the cells to sustain Hsp70 synthesis is reduced, our results seem to indicate that necrosis was induced by a further increase in ROS production. Therefore, the central finding in the present study is that these molecules downregulates Hsp70 expression. Altogether, these results suggest that 4-oxyalkyl-isocordoin analogues 4, 5, and 6 deserve to be deeply investigated for a possible application as Hsp70 inhibitor in the management of melanoma.
Collapse
Affiliation(s)
- Alessandra Russo
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Adriana Graziano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Campus de la Salud, Universidad de Valparaíso, Viña del Mar, Chile
| | - Bastian Said
- Departamento de Química, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| |
Collapse
|
27
|
Zhou D, Li X, Chang W, Han Y, Liu B, Chen G, Li N. Antiproliferative steroidal glycosides from rhizomes of Polygonatum sibiricum. PHYTOCHEMISTRY 2019; 164:172-183. [PMID: 31158602 DOI: 10.1016/j.phytochem.2019.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/19/2019] [Accepted: 05/22/2019] [Indexed: 05/26/2023]
Abstract
Screening assays showed that total glycoside-rich fraction (TG) of rhizomes of Polygonatum sibiricum unveiled remarkable anti-proliferative activities against three cancer cell lines (A549, HepG2, and Caco2). Activity-guided isolation of TG afforded seven undescribed steroidal glycosides (polygonosides 1-7), along with 24 known glycosides. Their structures were established by 1D and 2D NMR spectroscopic analyses, high-resolution mass spectrometry, and chemical evidence. The isolated steroidal glycosides were tested for their antiproliferative activities against A549, HepG2, and Caco2 cells. Compounds 8, 10, 11, and 16 possessed stronger anticancer activities against A549 cells than the positive control Bay (25.8 μM), with IC50 values ranging from 5.8 to 24.2 μM. Compound 10 reduced the expression of Blc-2 and pro-caspase3 and increased the production of Bax as determined by western blotting. Molecular docking experiment suggested that 10 bound stably to the BH3-binding groove of the Bcl-2 protein by hydrogen bond interactions. These compounds could be candidates for anticancer agents with cytotoxic activity.
Collapse
Affiliation(s)
- Di Zhou
- School of Traditional Chinese Materia Medica; Liaoning Province Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xuezheng Li
- Department of Pharmacy, Yanbian University Hospital, Yanji 133000, PR China
| | - Wenhui Chang
- School of Traditional Chinese Materia Medica; Liaoning Province Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yueqing Han
- School of Traditional Chinese Materia Medica; Liaoning Province Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Bo Liu
- School of Traditional Chinese Materia Medica; Liaoning Province Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica; Liaoning Province Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica; Liaoning Province Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
28
|
Castaño LF, Cuartas V, Bernal A, Insuasty A, Guzman J, Vidal O, Rubio V, Puerto G, Lukáč P, Vimberg V, Balíková-Novtoná G, Vannucci L, Janata J, Quiroga J, Abonia R, Nogueras M, Cobo J, Insuasty B. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur J Med Chem 2019; 176:50-60. [PMID: 31096118 DOI: 10.1016/j.ejmech.2019.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/07/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
Abstract
New sulfonamides 5/6 derived from 4-methoxyacetophenone 1 were synthesized by N-sulfonation reaction of ammonia (3) and aminopyrimidinone (4) with its sulfonyl chloride derivative 2. Sulfonamides 5 and 6 were used as precursors of two new series of chalcones 8a-f and 9a-f, which were obtained through Claisen-Schmidt condensation with aromatic aldehydes 7a-f. Compounds 5/6, 8a-d, 8f, 9a-d, and 9f were screened by the US National Cancer Institute (NCI) at 10 μM against sixty different human cancer cell lines (one-dose trial). Chalcones 8b and 9b satisfied the pre-determined threshold inhibition criteria and were selected for screening at five different concentrations (100, 10, 1.0, 0.1, and 0.01 μM). Compound 8b exhibited remarkable GI50 values ranging from 0.57 to 12.4 μM, with cytotoxic effects being observed in almost all cases, especially against the cell lines K-562 of Leukemia and LOX IMVI of Melanoma with GI50 = 0.57 and 1.28 μM, respectively. Moreover, all compounds were screened against Mycobacterium tuberculosis H37Rv, chalcones 8a-c and 9a-c were the most active showing MIC values between 14 and 42 μM, and interestingly they were devoid of antibacterial activity against Mycobacterium smegmatis and Staphylococcus aureus. These antituberculosis hits showed however low selectivity, being equally inhibitory to M. tuberculosis and mammalian T3T cells. The chalcone-sulfonamide hybrids 8a-f and 9a-f resulted to be appealing cytotoxic agents with significant antituberculosis activity.
Collapse
Affiliation(s)
- Lina Fernanda Castaño
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia
| | - Viviana Cuartas
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia; Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, Cali, A.A, 25360, Colombia
| | - Anthony Bernal
- Department of Chemistry and Biology, Basic Sciences Division, Universidad del Norte, Barranquilla, 081007, Colombia
| | - Alberto Insuasty
- Department of Chemistry and Biology, Basic Sciences Division, Universidad del Norte, Barranquilla, 081007, Colombia
| | - Juan Guzman
- Department of Chemistry and Biology, Basic Sciences Division, Universidad del Norte, Barranquilla, 081007, Colombia; Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Oscar Vidal
- Department of Medicine, Health Sciences Division, Universidad del Norte, Barranquilla, 081007, Colombia
| | - Vivian Rubio
- Mycobacteria Laboratory, National Health Institute, Bogotá, 111321, Colombia
| | - Gloria Puerto
- Mycobacteria Laboratory, National Health Institute, Bogotá, 111321, Colombia
| | - Pavol Lukáč
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Vladimir Vimberg
- Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Gabriela Balíková-Novtoná
- Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Luca Vannucci
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia; Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, Cali, A.A, 25360, Colombia
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia; Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, Cali, A.A, 25360, Colombia
| | - Manuel Nogueras
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, Jaén, 23071, Spain
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, Jaén, 23071, Spain
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia; Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, Cali, A.A, 25360, Colombia.
| |
Collapse
|
29
|
Ferreira GM, Magalhães JGD, Maltarollo VG, Kronenberger T, Ganesan A, Emery FDS, Trossini GHG. QSAR studies on the human sirtuin 2 inhibition by non-covalent 7,5,2-anilinobenzamide derivatives. J Biomol Struct Dyn 2019; 38:354-363. [PMID: 30789810 DOI: 10.1080/07391102.2019.1574603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sirtuin 2 is a key enzyme in gene expression regulation that is often associated with tumor proliferation control and therefore is a relevant anticancer drug target. Anilinobenzamide derivatives have been discussed as selective sirtuin 2 inhibitors and can be developed further. In the present study, hologram and three-dimensional quantitative structure-activity relationship (HQSAR and 3D-QSAR) analyses were employed for determining structural contributions of a compound series containing human sirtuin-2-selective inhibitors that were then correlated with structural data from the literature. The final QSAR models were robust and predictive according to statistical validation (q2 and r2pred values higher than 0.85 and 0.75, respectively) and could be employed further to generate fragment contribution and contour maps. 3D-QSAR models together with information about the chemical properties of sirtuin 2 inhibitors can be useful for designing novel bioactive ligands.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Glaucio Monteiro Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | - Vinícius Gonçalves Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Arasu Ganesan
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Flávio da Silva Emery
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
30
|
Srivastava P, Tripathi PN, Sharma P, Rai SN, Singh SP, Srivastava RK, Shankar S, Shrivastava SK. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 2019; 163:116-135. [DOI: 10.1016/j.ejmech.2018.11.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022]
|
31
|
Pradhan A, Haldar S, Mallik KB, Ghosh M, Bera M, Sepay N, Schollmeyer D, Ghatak SK, Roy S, Saha S. Mixed phenoxo and azido bridged dinuclear nickel(II) and copper(II) compounds with N,N,O-donor schiff bases: Synthesis, structure, DNA binding, DFT and molecular docking study. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Feng Y, Li N, Ma H, Bei B, Han Y, Chen G. Undescribed phenylethyl flavones isolated from Patrinia villosa show cytoprotective properties via the modulation of the mir-144-3p/Nrf2 pathway. PHYTOCHEMISTRY 2018; 153:28-35. [PMID: 29859331 DOI: 10.1016/j.phytochem.2018.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/26/2018] [Indexed: 05/25/2023]
Abstract
Five previously undescribed phenylethyl flavones, together with six known flavones, were isolated from the whole plant of Patrinia villosa. It is the first report of natural flavones bearing phenylethyl groups. Their structures were elucidated by the interpretation of 1D and 2D NMR data. The absolute configurations of the previously undescribed phenylethyl flavones were deduced by analysis of the ECD data. All isolates were investigated for their cytoprotective effects against hydrogen peroxide (H2O2)-induced oxidative damage in Caco2 cells for the first time. Moreover, the mRNA expression levels of heme oxygenase-1 (HO-1) and NAD(P)H:quinine oxidoreductase 1 (NQO1), and the expression for mir-144-3p/Nrf2 pathway in Caco2 cells were examined by RT-qPCR analysis. As a result, compound 5 showed most potent cytoprotective activity via modulating mir-144-3p/Nrf2 pathway and thereby scavenging of intracellular ROS in vitro.
Collapse
Affiliation(s)
- Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Hongmei Ma
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, China
| | - Bei Bei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yueqing Han
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
33
|
Chen G, Ma Y, Jiang Z, Feng Y, Han Y, Tang Y, Zhang J, Ni H, Li X, Li N. Lico A Causes ER Stress and Apoptosis via Up-Regulating miR-144-3p in Human Lung Cancer Cell Line H292. Front Pharmacol 2018; 9:837. [PMID: 30108506 PMCID: PMC6079201 DOI: 10.3389/fphar.2018.00837] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
During our study on the bioactivities of natural flavonoids, we found that the total flavonoids (TFs) and the main constituent of it, licochalcone A (lico A), activated unfolded protein response (UPR) and induced autophagy and thereby apoptosis in H292 cells. MicroRNAs, such as the tumor repressor miR-144-3p, were reported to be differentially expressed in lung cancer cells and were linked to ER stress, autophagy, and apoptosis. However, the underlying miRNA-based mechanism for lico A modulating proliferation, autophagy and apoptosis in lung cancer cells is elusive. In this study, we found that miR-144-3p was down-regulated in H292 cells comparing to normal embryonic lung cells WI-38, and lico A (10 μM) could increase miR-144-3p level in H292 cells. Knockdown of miR-144-3p significantly abrogated the apoptosis and proliferation-inhibiting effects of lico A, and lico A could enhance the proliferation-inhibiting effect and apoptosis induced by miR-144-3p overexpression. Moreover, overexpression miR-144-3p could induce ER stress by down-regulating Nrf2, and lico A enhanced the Nrf2 down-regulation caused by miR-144-3p overexpression. Co-transfection experiments showed that lico A potentially increased the dicing of pre-miR-144 so as to increase the mature miR-144-3p level. Interestingly, high level of lico A (40 μM) up-regulated CHOP protein, but failed to increase the downstream genes levels of CHOP, including Bim and Bcl-2 in H292 cells. Docking studies indicated that CHOP-mediated pathway was potentially blocked by high dose of lico A. Our results suggested that lico A could cause UPR, autophagy and apoptosis, and the underlying mechanism involved up-regulation of miR-144-3p, and increased lico A level would also increase the potential for lico A inhibiting CHOP-dependent apoptosis in H292 cells.
Collapse
Affiliation(s)
- Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Yueping Ma
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Zhe Jiang
- Department of Pharmacy, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Yueqing Han
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Yetian Tang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Juan Zhang
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Ürümqi, China
| | - Hui Ni
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Ürümqi, China
| | - Xuezheng Li
- Department of Pharmacy, Affiliated Hospital of Yanbian University, Yanji, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| |
Collapse
|
34
|
Zhang HW, Hu JJ, Fu RQ, Liu X, Zhang YH, Li J, Liu L, Li YN, Deng Q, Luo QS, Ouyang Q, Gao N. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci Rep 2018; 8:11255. [PMID: 30050147 PMCID: PMC6062549 DOI: 10.1038/s41598-018-29308-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Anticancer activities of flavonoids derived from Tephroseris kirilowii (Turcz.) Holub. were evaluated in human cancer cells. We isolated and identified, for the first time, eight flavonoids from T. kirilowii and found that three of them (IH: isorhamnetin, GN: genkwanin, and Aca: acacetin) inhibited cell proliferation in a variety of human cancer cell lines. These active flavonoids caused cell cycle arrest at G2/M phase and induced apoptosis and autophagy in human breast cancer cells. Molecular docking revealed that these flavonoids dock in the ATP binding pocket of PI3Kγ. Importantly, treatment with these flavonoids decreased the levels of PI3Kγ-p110, phospho-PI3K, phospho-AKT, phospho-mTOR, phospho-p70S6K, and phospho-ULK. Pretreatment with PI3Kγ specific inhibitor AS605240 potentiated flavonoids-mediated inactivation of AKT, mTOR, p70S6K, ULK, and apoptosis. Taken together, these findings represent a novel mechanism by which downregulation of PI3Kγ-p110 and consequent interruption of PI3K/AKT/mTOR/p70S6K/ULK signaling pathway might play a critical functional role in these flavonoids-induced cell cycle arrest at G2/M phase, apoptosis, and autophagy. Our studies provide novel insights into the anticancer activities of selected flavonoids and their potential uses in anticancer therapy.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Jin-Jiao Hu
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Ruo-Qiu Fu
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Xin Liu
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Yan-Hao Zhang
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Jing Li
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Lei Liu
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Yu-Nong Li
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Qin Deng
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Qing-Song Luo
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Qin Ouyang
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China
| | - Ning Gao
- College of Pharmacy, 3rd Military Medical University, Chongqing, 400038, China.
| |
Collapse
|