1
|
Morin S, Atkinson PW, Walling LL. Whitefly-Plant Interactions: An Integrated Molecular Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:503-525. [PMID: 37816261 DOI: 10.1146/annurev-ento-120120-093940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The rapid advances in available transcriptomic and genomic data and our understanding of the physiology and biochemistry of whitefly-plant interactions have allowed us to gain new and significant insights into the biology of whiteflies and their successful adaptation to host plants. In this review, we provide a comprehensive overview of the mechanisms that whiteflies have evolved to overcome the challenges of feeding on phloem sap. We also highlight the evolution and functions of gene families involved in host perception, evaluation, and manipulation; primary metabolism; and metabolite detoxification. We discuss the emerging themes in plant immunity to whiteflies, focusing on whitefly effectors and their sites of action in plant defense-signaling pathways. We conclude with a discussion of advances in the genetic manipulation of whiteflies and the potential that they hold for exploring the interactions between whiteflies and their host plants, as well as the development of novel strategies for the genetic control of whiteflies.
Collapse
Affiliation(s)
- Shai Morin
- Department of Entomology, Hebrew University of Jerusalem, Rehovot, Israel;
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, California, USA;
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA;
| |
Collapse
|
2
|
Pym A, Troczka BJ, Hayward A, Zeng B, Gao CF, Elias J, Slater R, Zimmer CT, Bass C. The role of the Bemisia tabaci and Trialeurodes vaporariorum cytochrome-P450 clade CYP6DPx in resistance to nicotine and neonicotinoids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105743. [PMID: 38225086 DOI: 10.1016/j.pestbp.2023.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024]
Abstract
The alkaloid, nicotine, produced by tobacco and other Solanaceae as an anti-herbivore defence chemical is one of the most toxic natural insecticides in nature. However, some insects, such as the whitefly species, Trialeurodes vaporariorum and Bemisia tabaci show strong tolerance to this allelochemical and can utilise tobacco as a host. Here, we used biological, molecular and functional approaches to investigate the role of cytochrome P450 enzymes in nicotine tolerance in T. vaporariorum and B. tabaci. Insecticide bioassays revealed that feeding on tobacco resulted in strong induced tolerance to nicotine in both species. Transcriptome profiling of both species reared on tobacco and bean hosts revealed profound differences in the transcriptional response these host plants. Interrogation of the expression of P450 genes in the host-adapted lines revealed that P450 genes belonging to the CYP6DP subfamily are strongly upregulated in lines reared on tobacco. Functional characterisation of these P450s revealed that CYP6DP1 and CYP6DP2 of T. vaporariorum and CYP6DP3 of B. tabaci confer resistance to nicotine in vivo. These three genes, in addition to the B. tabaci P450 CYP6DP5, were also found to confer resistance to the neonicotinoid imidacloprid. Our data provide new insight into the molecular basis of nicotine resistance in insects and illustrates how divergence in the evolution of P450 genes in this subfamily in whiteflies may have impacted the extent to which different species can tolerate a potent natural insecticide.
Collapse
Affiliation(s)
- Adam Pym
- College for Life and Environmental Sciences, University of Exeter, TR10 9FE Penryn, Cornwall, UK.
| | - Bartlomiej J Troczka
- College for Life and Environmental Sciences, University of Exeter, TR10 9FE Penryn, Cornwall, UK
| | - Angela Hayward
- College for Life and Environmental Sciences, University of Exeter, TR10 9FE Penryn, Cornwall, UK
| | - Bin Zeng
- College for Life and Environmental Sciences, University of Exeter, TR10 9FE Penryn, Cornwall, UK; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jan Elias
- Syngenta Crop Protection AG, Rosentalstrasse 67, Basel CH4002, Switzerland
| | - Russell Slater
- Syngenta Crop Protection AG, Rosentalstrasse 67, Basel CH4002, Switzerland
| | - Christoph T Zimmer
- Syngenta Crop Protection AG, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - Chris Bass
- College for Life and Environmental Sciences, University of Exeter, TR10 9FE Penryn, Cornwall, UK
| |
Collapse
|
3
|
Tadmor E, Juravel K, Morin S, Santos-Garcia D. Evolved transcriptional responses and their trade-offs after long-term adaptation of Bemisia tabaci to a marginally-suitable host. Genome Biol Evol 2022; 14:6649882. [PMID: 35880721 PMCID: PMC9372648 DOI: 10.1093/gbe/evac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Although generalist insect herbivores can migrate and rapidly adapt to a broad range of host plants, they can face significant difficulties when accidentally migrating to novel and marginally-suitable hosts. What happens, both in performance and gene expression regulation, if these marginally-suitable hosts must be used for multiple generations before migration to a suitable host can take place, largely remains unknown. In this study, we established multigenerational colonies of the whitefly Bemisia tabaci, a generalist phloem-feeding species, adapted to a marginally-suitable host (habanero pepper) or an optimal host (cotton). We used reciprocal host tests to estimate the differences in performance of the populations on both hosts under optimal (30 oC) and mild-stressful (24 oC) temperature conditions, and documented the associated transcriptomic changes. The habanero pepper-adapted population greatly improved its performance on habanero pepper but did not reach its performance level on cotton, the original host. It also showed reduced performance on cotton, relative to the non-adapted population, and an antagonistic effect of the lower-temperature stressor. The transcriptomic data revealed that most of the expression changes, associated with long-term adaptation to habanero pepper, can be categorized as "evolved" with no initial plastic response. Three molecular functions dominated: enhanced formation of cuticle structural constituents, enhanced activity of oxidation-reduction processes involved in neutralization of phytotoxins and reduced production of proteins from the cathepsin B family. Taken together, these findings indicate that generalist insects can adapt to novel host plants by modifying the expression of a relatively small set of specific molecular functions.
Collapse
Affiliation(s)
- Ella Tadmor
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Ksenia Juravel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology University Lyon 1 - UMR CNRS 5558, Villeurbanne, France
| |
Collapse
|
4
|
Nekkanti A, Chakraborty P, Ghosh A, Iquebal MA, Jaiswal S, Baranwal VK. Transcriptomic Changes of Bemisia tabaci Asia II 1 Induced by Chilli Leaf Curl Virus Trigger Infection and Circulation in Its Vector. Front Microbiol 2022; 13:890807. [PMID: 35572639 PMCID: PMC9096263 DOI: 10.3389/fmicb.2022.890807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Bemisia tabaci (Hemiptera: Aleyrodidae) is a highly efficient vector in the spread of chilli leaf curl virus (ChiLCV, Begomovirus) which is a major constraint in the production of chilli in South Asia. Transcriptome analysis of B. tabaci post-6 h acquisition of ChiLCV showed differential expression of 80 (29 upregulated and 51 downregulated) genes. The maximum number of DEGs are categorized under the biological processes category followed by cellular components and molecular functions. KEGG analysis of DEGs showed that the genes are involved in the functions like metabolism, signaling pathways, cellular processes, and organismal systems. The expression of highly expressed 20 genes post-ChiLCV acquisition was validated in RT-qPCR. DEGs such as cytosolic carboxypeptidase 3, dual-specificity protein phosphatase 10, 15, dynein axonemal heavy chain 17, fasciclin 2, inhibin beta chain, replication factor A protein 1, and Tob1 were found enriched and favored the virus infection and circulation in B. tabaci. The present study provides an improved understanding of the networks of molecular interactions between B. tabaci and ChiLCV. The candidate genes of B. tabaci involved in ChiLCV transmission would be novel targets for the management of the B. tabaci-begomovirus complex.
Collapse
Affiliation(s)
- Aarthi Nekkanti
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India.,Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Prosenjit Chakraborty
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Virendra Kumar Baranwal
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Saurabh S, Mishra M, Rai P, Pandey R, Singh J, Khare A, Jain M, Singh PK. Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity-A Case for Next-Generation Control Strategies of Whiteflies. INSECTS 2021; 12:insects12070585. [PMID: 34203297 PMCID: PMC8307429 DOI: 10.3390/insects12070585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Simple Summary Despite being a pest of global importance, effective management of whiteflies by the implication of environmentally friendly approaches is still a far-reaching task. In this review, we have tried to bring the readers’ attention to next-generation control strategies such as RNA interference and genetic modifications of plants for the expression of anti-whitefly proteins. These strategies offer huge promise to provide an effective and sustainable solution to the problem of whiteflies, either in isolation or in combination with other widely used practices under the regimes of integrated pest management. Focus has also been given to advanced technologies such as nanotechnology and genome editing, with promising prospects for field applications. The importance, applicability, and demand of these technologies for the control of whiteflies have been highlighted. We have also attempted to present the holistic picture of challenges in the path of commercial application of these promising technologies. To underline the pest status of whiteflies concisely, we have enlisted all economically important species of the pest along with their host plants/crops across the world. A comprehensive list of various insecticides of chemical, microbial, and botanical origin, applied in the field for the control of sweetpotato whitefly along with their resistance status, ecotoxicities, and effects on biological control agents, has been provided for readers. Abstract Whiteflies are a group of universally occurring insects that are considered to be a serious pest in their own way for causing both direct and indirect damages to crops. A few of them serve as vectors of plant viruses that are detrimental to the crop in question and cause an actual loss in productivity. A lot of attention is focused on pest control measures under the umbrella of IPM. In this review, we attempt to summarize the existing literature on how and why whiteflies are a serious concern for agriculture and society. We reviewed why there could be a need for fresh insight into the ways and means with which the pest can be combated. Here, we have emphasized next-generation strategies based on macromolecules, i.e., RNA interference and genetic engineering (for the expression of anti-whitefly proteins), as these strategies possess the greatest scope for research and improvement in the future. Recent scientific efforts based on nanotechnology and genome editing, which seem to offer great potential for whitefly/crop pest control, have been discussed. Comprehensive apprehensions related to obstacles in the path of taking lab-ready technologies into the farmers’ field have also been highlighted. Although the use of RNAi, GM crops, nanotechnologies, for the control of whiteflies needs to be evaluated in the field, there is an emerging range of possible applications with promising prospects for the control of these tiny flies that are mighty pests.
Collapse
Affiliation(s)
- Sharad Saurabh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Manisha Mishra
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (M.M.); (R.P.)
| | - Preeti Rai
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Rashmi Pandey
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (M.M.); (R.P.)
| | - Jyoti Singh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Akansha Khare
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Meeta Jain
- School of Biochemistry, Khandwa Rd., D.A.V.V., Bhawarkuwa, DAVV Takshila Parisar, Indore 452001, Madhya Pradesh, India;
| | - Pradhyumna Kumar Singh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: ; Tel.: +91-7080844111
| |
Collapse
|
6
|
Whitefly adaptation to and manipulation of plant resistance. SCIENCE CHINA-LIFE SCIENCES 2021; 64:648-651. [PMID: 33580427 DOI: 10.1007/s11427-020-1890-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
|
7
|
Wang YJ, Wang HL, Wang XW, Liu SS. Transcriptome analysis and comparison reveal divergence between the Mediterranean and the greenhouse whiteflies. PLoS One 2020; 15:e0237744. [PMID: 32841246 PMCID: PMC7447059 DOI: 10.1371/journal.pone.0237744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
Both the Mediterranean (MED) species of the Bemisia tabaci whitefly complex and the greenhouse whitefly (Trialeurodes vaporariorum, TV) are important agricultural pests. The two species of whiteflies differ in many aspects such as morphology, geographical distribution, host plant range, plant virus transmission, and resistance to insecticides. However, the molecular basis underlying their differences remains largely unknown. In this study, we analyzed the genetic divergences between the transcriptomes of MED and TV. In total, 2,944 pairs of orthologous genes were identified. The average identity of amino acid sequences between the two species is 93.6%. The average nonsynonymous (Ka) and synonymous (Ks) substitution rates and the ratio of Ka/Ks of the orthologous genes are 0.0389, 2.23 and 0.0204, respectively. The low average Ka/Ks ratio indicates that orthologous genes tend to be under strong purified selection. The most divergent gene classes are related to the metabolisms of xenobiotics, cofactors, vitamins and amino acids, and this divergence may underlie the different biological characteristics between the two species of whiteflies. Genes of differential expression between the two species are enriched in carbohydrate metabolism and regulation of autophagy. These findings provide molecular clues to uncover the biological and molecular differences between the two species of whiteflies.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Ling Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
8
|
Pym A, Singh KS, Nordgren Å, Davies TGE, Zimmer CT, Elias J, Slater R, Bass C. Host plant adaptation in the polyphagous whitefly, Trialeurodes vaporariorum, is associated with transcriptional plasticity and altered sensitivity to insecticides. BMC Genomics 2019; 20:996. [PMID: 31856729 PMCID: PMC6923851 DOI: 10.1186/s12864-019-6397-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The glasshouse whitefly, Trialeurodes vaporariorum, is a damaging crop pest and an invasive generalist capable of feeding on a broad range of host plants. As such this species has evolved mechanisms to circumvent the wide spectrum of anti-herbivore allelochemicals produced by its host range. T. vaporariorum has also demonstrated a remarkable ability to evolve resistance to many of the synthetic insecticides used for control. RESULTS To gain insight into the molecular mechanisms that underpin the polyphagy of T. vaporariorum and its resistance to natural and synthetic xenobiotics, we sequenced and assembled a reference genome for this species. Curation of genes putatively involved in the detoxification of natural and synthetic xenobiotics revealed a marked reduction in specific gene families between this species and another generalist whitefly, Bemisia tabaci. Transcriptome profiling of T. vaporariorum upon transfer to a range of different host plants revealed profound differences in the transcriptional response to more or less challenging hosts. Large scale changes in gene expression (> 20% of genes) were observed during adaptation to challenging hosts with a range of genes involved in gene regulation, signalling, and detoxification differentially expressed. Remarkably, these changes in gene expression were associated with significant shifts in the tolerance of host-adapted T. vaporariorum lines to natural and synthetic insecticides. CONCLUSIONS Our findings provide further insights into the ability of polyphagous insects to extensively reprogram gene expression during host adaptation and illustrate the potential implications of this on their sensitivity to synthetic insecticides.
Collapse
Affiliation(s)
- Adam Pym
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Åsa Nordgren
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - T G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Jan Elias
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Russell Slater
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| |
Collapse
|
9
|
Gene Expression and Diet Breadth in Plant-Feeding Insects: Summarizing Trends. Trends Ecol Evol 2019; 35:259-277. [PMID: 31791830 DOI: 10.1016/j.tree.2019.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022]
Abstract
Transcriptomic studies lend insights into the role of transcriptional plasticity in adaptation and specialization. Recently, there has been growing interest in understanding the relationship between variation in herbivorous insect gene expression and the evolution of diet breadth. We review the studies that have emerged on insect gene expression and host plant use, and outline the questions and approaches in the field. Many candidate genes underlying herbivory and specialization have been identified, and a few key studies demonstrate increased transcriptional plasticity associated with generalist compared with specialist species. Addressing the roles that transcriptional variation plays in insect diet breadth will have important implications for our understanding of the evolution of specialization and the genetic and environmental factors that govern insect-plant interactions.
Collapse
|