1
|
Uten S, Boonbanjong P, Prueksathaporn Y, Treerattrakoon K, Sathirapongsasuti N, Chanlek N, Pinitsoontorn S, Luksirikul P, Japrung D. Magnetic Graphene Oxide Nanocomposites for Selective miRNA Separation and Recovery. ACS OMEGA 2024; 9:2263-2271. [PMID: 38250391 PMCID: PMC10795033 DOI: 10.1021/acsomega.3c05919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
In this study, we developed magnetic graphene oxide composites by chemically attaching Fe3O4 nanoparticles to graphene oxide nanosheets. Characterization techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM), confirmed the successful synthesis of Fe3O4@GO composites with desirable properties. The resulting composites exhibited superparamagnetic behavior, solubility, and compatibility for efficient miRNA separation. Using miR-29a as a model, we demonstrated the effective binding of miR-29a to the magnetic graphene oxide (GO) composites at an optimal concentration of 1.5 mg/mL, followed by a simple separation using magnetic forces. Additionally, the addition of 5.0 M urea enhanced the miRNA recovery. These findings highlight the potential use of our magnetic graphene oxide composites for the efficient separation and recovery of miR-29a, suggesting their broad applicability in various miRNA-based studies. Further exploration can focus on investigating endogenous miRNAs with aberrant expression patterns, contributing to the advancements in precision medicine.
Collapse
Affiliation(s)
- Supapitch Uten
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Poramin Boonbanjong
- Program
in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Yosaphon Prueksathaporn
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Kiatnida Treerattrakoon
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, United Kingdom
| | - Nuankanya Sathirapongsasuti
- Program
in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Narong Chanlek
- Synchrotron
Light Research Institute (Public Organization), 111 University Avenue, Muang, Nakhon Ratchasrima 30000, Thailand
| | - Supree Pinitsoontorn
- Institute
of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patraporn Luksirikul
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Research
Network NANOTEC-KU on Nanocatalysts and Nanomaterials for Sustainable
Energy and Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| |
Collapse
|
2
|
Kabir MH, Marquez E, Djokoto G, Parker M, Weinstein T, Ghann W, Uddin J, Ali MM, Alam MM, Thompson M, Poyraz AS, Msimanga HZ, Rahman MM, Rulison M, Cramer J. Energy Harvesting by Mesoporous Reduced Graphene Oxide Enhanced the Mediator-Free Glucose-Powered Enzymatic Biofuel Cell for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24229-24244. [PMID: 35594363 DOI: 10.1021/acsami.1c25211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Harnessing electrochemical energy in an engineered electrical circuit from biochemical substrates in the human body using biofuel cells is gaining increasing research attention in the current decade due to the wide range of biomedical possibilities it creates for electronic devices. In this report, we describe and characterize the construction of just such an enzymatic biofuel cell (EBFC). It is simple, mediator-free, and glucose-powered, employing only biocompatible materials. A novel feature is the two-dimensional mesoporous thermally reduced graphene oxide (rGO) host electrode. An additionally novelty is that we explored the potential of using biocompatible, low-cost filter paper (FP) instead of carbon paper, a conductive polymer, or gold as support for the host electrode. Using glucose (C6H12O6) and molecular oxygen (O2) as the power-generating fuel, the cell consists of a pair of bioelectrodes incorporating immobilized enzymes, the bioanode modified by rGO-glucose oxidase (GOx/rGO), and the biocathode modified by rGO-laccase (Lac/rGO). Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy, and Raman spectroscopy techniques have been employed to investigate the surface morphology, defects, and chemical structure of rGO, GOx/rGO, and Lac/rGO. N2 sorption, SEM/EDX, and powder X-ray diffraction revealed a high Brunauer-Emmett-Teller surface area (179 m2 g-1) mesoporous rGO structure with the high C/O ratio of 80:1 as well. Results from the Fourier transform infrared spectroscopy, UV-visible spectroscopy, and electrochemical impedance spectroscopy studies indicated that GOx remained in its native biochemical functional form upon being embedded onto the rGO matrix. Cyclic voltammetry studies showed that the presence of mesoporous rGO greatly enhanced the direct electrochemistry and electrocatalytic properties of the GOx/rGO and Lac/rGO nanocomposites. The electron transfer rate constant between GOx and rGO was estimated to be 2.14 s-1. The fabricated EBFC (GOx/rGO/FP-Lac/rGO/FP) using a single GOx/rGO/FP bioanode and a single Lac/rGO/FP biocathode provides a maximum power density (Pmax) of 4.0 nW cm-2 with an open-circuit voltage (VOC) of 0.04 V and remains stable for more than 15 days with a power output of ∼9.0 nW cm-2 at a pH of 7.4 under ambient conditions.
Collapse
Affiliation(s)
- Md Humayun Kabir
- Department of Chemistry and Occupational Health Science, University of North Alabama, Florence, Alabama 35632, United States
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - Erik Marquez
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - Grace Djokoto
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - Maurice Parker
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - Talia Weinstein
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - William Ghann
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland 21216, United States
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland 21216, United States
| | - Meser M Ali
- Department of Neurosurgery, Cellular and Molecular Imaging Laboratory, Henry Ford Hospital, Detroit, Michigan 48202, United States
| | | | - Max Thompson
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
| | - Altug S Poyraz
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
| | - Huggins Z Msimanga
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Michael Rulison
- Department of Physics, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - John Cramer
- Department of Physics, Oglethorpe University, Atlanta, Georgia 30319, United States
| |
Collapse
|
3
|
A membrane-less Glucose/O 2 non-enzymatic fuel cell based on bimetallic Pd-Au nanostructure anode and air-breathing cathode: Towards micro-power applications at neutral pH. Biosens Bioelectron 2022; 210:114335. [PMID: 35512581 DOI: 10.1016/j.bios.2022.114335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023]
Abstract
Herein, the authors propose a miniaturized glucose/O2 n-EFC based on a new direct electron transfer. The anode is a screen-printed carbon electrode (SPCE) modified with functionalized carbon nanotubes (f-CNTs) and cauliflower-like PdAu nanostructures (PdAuNS). The PdAuNS/f-CNT biomimetic nanocatalyst was prepared using a cost-effective and straightforward method, which consisted of drop-casting well-dispersed f-CNTs over the SPCE surface before PdAuNS electrodeposition. This enzyme-free interface was used for glucose electrooxidation at neutral medium (pH 7.4). The electrochemical behaviour of the PdAuNS/f-CNT/SPCE was investigated using cyclic voltammetry, linear sweep voltammetry, and amperometry. Several parameters were optimized and discussed, including the metal precursor concentration (HAuCl4, PdCl2) and the electrodeposition conditions. The cathode for oxygen electroreduction is an air-cathode which is composed of Pt-coated carbon cloth. The electrochemical performances of the anode and the cathode were evaluated separately for glucose oxidation and oxygen reduction, respectively. Both electrodes were then assembled in a membrane-less single chamber n-EFC with an innovative architecture. Electrical characterization of the n-EFC supplied with a neutral buffered solution containing 20 mM glucose showed a maximal power output of 129 ± 11 μW cm-2, a current density of 600 ± 39 μA cm-2 with a cell voltage of 0.35 V, and an open circuit potential of 0.56 V. The proposed electrocatalyst possesses several advantages such as fast response, low cost, reusability, poison-free characteristics, and good stability. Hence, glucose/O2 n-EFC could be of great interest in direct glucose fuel cell applications (e.g., powering mountable/implantable biomedical micro-devices running at low electrical power supply) or in self-powered biosensing.
Collapse
|
4
|
Pakapongpan S, Poo-Arporn Y, Tuantranont A, Poo-Arporn RP. A facile one-pot synthesis of magnetic iron oxide nanoparticles embed N-doped graphene modified magnetic screen printed electrode for electrochemical sensing of chloramphenicol and diethylstilbestrol. Talanta 2022; 241:123184. [PMID: 35032900 DOI: 10.1016/j.talanta.2021.123184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 10/19/2022]
Abstract
Trace determination of antibacterial agents is crucial to minimize risks of human intoxication and in the prevention of serious environmental impacts. Herein, a simple one-pot solvothermal synthesis approach for a magnetic iron oxide embed nitrogen-doped graphene (MIO@NG) nanohybrid was fabricated without the addition of any extra reductant and its application towards ultrasensitive chloramphenicol (CAP) and diethylstilbestrol (DES) electrochemical sensor is demonstrated to screen for antibiotic residue contamination in milk samples. The prepared nanohybrid was modified on a magnetic screen-printed electrode (MSPE) to make it portable for on-site detection. The determination of two additive drugs, CAP and DES, was achieved based on the reduction current response at MIO@NG modified MSPE (MIO@NG/MSPE) to eliminate interference as far as possible. Uniform dispersed MIO nanoparticles are grown in situ on the surface of nitrogen-doped graphene sheets. The morphology of MIO@NG was confirmed by transmission electron microscopy (TEM) analysis. The chemical structure of the prepared MIO@NG was characterized by x-ray diffraction (XRD), x-ray photoemission spectroscopy (XPS), Raman spectroscopy, and extended x-ray absorption fine structure (EXAFS). Moreover, the superparamagnism property was investigated by vibrating sample magnetometry (VSM). The electrochemical properties of MIO@NG were evaluated with cyclic voltammetry (CV) and square wave voltammetry (SWV). Sensor performance was evaluated by testing the electrochemical activity of CAP and DES in the presence of interferences. The MIO@NG modified electrode presented superior electrochemical performance, including high sensitivity, high catalytic activity, ultimate sensitivity, very fast detection, selectivity, and excellent performance. The MIO@NG modified electrode demonstrated a detection limit of 10 nM for the detection of CAP and 6.5 nM for DES with satisfactory recovery in real samples.
Collapse
Affiliation(s)
- Saithip Pakapongpan
- Graphene and Printed Electronics for Dual-Use Applications Research Division, Nation Security and Dual-Use Technology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Yingyot Poo-Arporn
- Synchrotron Light Research Institute, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Adisorn Tuantranont
- Graphene and Printed Electronics for Dual-Use Applications Research Division, Nation Security and Dual-Use Technology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Rungtiva P Poo-Arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology, Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
5
|
Disposable Electrochemical Sensor for Food Colorants Detection by Reduced Graphene Oxide and Methionine Film Modified Screen Printed Carbon Electrode. Molecules 2021; 26:molecules26082312. [PMID: 33923482 PMCID: PMC8072545 DOI: 10.3390/molecules26082312] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
A facile synthesis of reduced graphene oxide (rGO) and methionine film modified screen printed carbon electrode (rGO-methionine/SPCE) was proposed as a disposable sensor for determination of food colorants including amaranth, tartrazine, sunset yellow, and carminic acid. The fabrication process can be achieved in only 2 steps including drop-casting of rGO and electropolymerization of poly(L-methionine) film on SPCE. Surface morphology of modified electrode was studied by scanning electron microscopy (SEM). This work showed a successfully developed novel disposable sensor for detection of all 4 dyes as food colorants. The electrochemical behavior of all 4 food colorants were investigated on modified electrodes. The rGO-methionine/SPCE significantly enhanced catalytic activity of all 4 dyes. The pH value and accumulation time were optimized to obtain optimal condition of each colorant. Differential pulse voltammetry (DPV) was used for determination, and two linear detection ranges were observed for each dye. Linear detection ranges were found from 1 to 10 and 10 to 100 µM for amaranth, 1 to 10 and 10 to 85 µM for tartrazine, 1 to 10 and 10 to 50 µM for sunset yellow, and 1 to 20 and 20 to 60 µM for carminic acid. The limit of detection (LOD) was calculated at 57, 41, 48, and 36 nM for amaranth, tartrazine, sunset yellow, and carminic acid, respectively. In addition, the modified sensor also demonstrated high tolerance to interference substances, good repeatability, and high performance for real sample analysis.
Collapse
|
6
|
Magnetic Graphene Oxide Composite for the Microextraction and Determination of Benzophenones in Water Samples. NANOMATERIALS 2020; 10:nano10010168. [PMID: 31963652 PMCID: PMC7022302 DOI: 10.3390/nano10010168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 11/16/2022]
Abstract
Magnetite nanoparticles (Fe3O4) functionalized with graphene oxide (GO) have been synthesized through a silanization process of the magnetic nanoparticles with tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane and further coupling of GO. The synthesized nanomaterials have been characterized by several techniques, such as transmission electron microscopy (TEM), and infrared and Raman spectroscopy, which enabled the evaluation of the different steps of the functionalization process. The hybrid nanomaterial has been employed for the extraction of five benzophenones (benzophenone-1, benzophenone-3, 4-hydroxybenzophenone, benzophenone-6 and benzophenone-8) in aqueous samples by dispersive micro-solid phase extraction, combining the magnetic properties of magnetite nanoparticles with the excellent sorption capacity of graphene oxide via hydrophobic interactions with the analytes. The subsequent separation and quantification of the analytes was performed by liquid chromatography with tandem mass spectrometric detection, achieving limits of detection (LODs) in the range 2.5 to 8.2 μg·L-1, with relative standard deviations ranging from 1.3-9.8% and relative recovering in the range 86 to 105%. Positive swimming pool water samples analysed following the developed method revealed the presence of benzophenones in from 14.3 to 39 μg·L-1.
Collapse
|
7
|
Verho O, Bäckvall JE. Nanocatalysis Meets Biology. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|