1
|
Coyotl-Pérez WA, Ángeles-López YI, Luna-Suárez S, Rosas-Cárdenas FDF, Villa-Ruano N. Volatilomics of Capsicum pubescens Plants Infested by Solenopsis geminata: Unraveling the Role of Oleic and Palmitic Acids in Plant-Fire Ant Interaction. Chem Biodivers 2024:e202402380. [PMID: 39665862 DOI: 10.1002/cbdv.202402380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
Solenopsis geminata is an aggressive pest of manzano pepper (Capsicum pubescens) crops. Herein, we report on the volatilomics profiling of manzano pepper plants obtained during S. geminata infestation by solid-phase microextraction coupled with gas chromatography-mass spectrometry. As a result, 68 volatile organic compounds were identified from ants, non-infested plants, and infested plants, including terpenes, esters, steroids, aldehydes, phenylpropanoids, and fatty acids. As a remarkable finding, oleic and palmitic acids were the main compounds released during ant infestation. These fatty acids were evaluated as biocidal or repellent agents under in vitro and in situ conditions. From these experiments, the biocidal effect of palmitic acid was more potent (median lethal dose [LC50], 0.97 mg/cm2) than that of oleic acid (LC50, 5.03 mg/cm2) on S. geminata workers. Nevertheless, only oleic acid had a repellent effect under in situ conditions (p < 0.01). Our results represent new insights into the role of both fatty acids in manzano pepper defense mechanisms.
Collapse
Affiliation(s)
- Wendy Abril Coyotl-Pérez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN), Ex-Hacienda San Juan Molino Carretera Estatal, Santa Inés Tecuexcomac, Tepetitla, Tlaxcala, Mexico
| | - Yesenia Ithaí Ángeles-López
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla (BUAP), Prolongación 24 sur y Av. San Claudio, Puebla, Mexico
| | - Silvia Luna-Suárez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN), Ex-Hacienda San Juan Molino Carretera Estatal, Santa Inés Tecuexcomac, Tepetitla, Tlaxcala, Mexico
| | - Flor de Fátima Rosas-Cárdenas
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN), Ex-Hacienda San Juan Molino Carretera Estatal, Santa Inés Tecuexcomac, Tepetitla, Tlaxcala, Mexico
| | - Nemesio Villa-Ruano
- CONAHCyT-Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma, de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Puebla, Mexico
| |
Collapse
|
2
|
Shah FM, Wang M, Zhao J, Lee J, Farago PV, Manfron J, Khan IA, Ali A. Insecticidal and Repellent Activity of Piper crassinervium Essential Oil and Its Pure Compounds Against Imported Fire Ants (Hymenoptera: Formicidae). Molecules 2024; 29:5430. [PMID: 39598819 PMCID: PMC11597710 DOI: 10.3390/molecules29225430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Piper crassinervium Kunth (Piperaceae) essential oil (EO) was evaluated for its toxicity and repellency against red imported fire ants (RIFA), Solenopsis invicta Buren, and a hybrid (HIFA) of red (S. invicta) and black (S. richteri Forel) imported fire ants. Through bioactivity-guided fractionation, two major components, elemicin and myristicin, were isolated from the EO. Removal of treated sand in a digging bioassay was used as the criterion for repellency. The EO showed significantly higher repellency at concentrations of 7.8 µg/g against RIFA and HIFA workers, as compared to the DEET (N,N-diethyl-meta-toluamide) or ethanol control. Elemicin exhibited repellency at 3.9 and 7.8 µg/g against RIFA and HIFA workers, respectively, whereas myristicin was active at 7.8 µg/g against both species. DEET failed at 31.25 µg/g against RIFA and 15.6 µg/g against HIFA. The EO showed LC50 values of 97.9 and 73.7 µg/g against RIFA and HIFA workers, respectively. Myristicin was more toxic against RIFA and HIFA with LC50 values of 54.3 and 35.3 µg/g, respectively. Elemicin showed 20-40% mortality at the highest screening dose of 125 µg/g. Fipronil exhibited the highest toxicity against RIFA and HIFA, with LC50 of 0.43 and 0.51 µg/g, respectively. Different formulations of these natural products should be evaluated to explore their use potential under natural field conditions.
Collapse
Affiliation(s)
- Farhan Mahmood Shah
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, MS 38677, USA
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Joseph Lee
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Paulo Vitor Farago
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Jane Manfron
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Abbas Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
3
|
Ware I, Franke K, Frolov A, Bureiko K, Kysil E, Yahayu M, El Enshasy HA, Wessjohann LA. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:30. [PMID: 38743199 PMCID: PMC11093948 DOI: 10.1007/s13659-024-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia, offering both health and culinary benefits. In this study the secondary metabolites in different organs of P. sarmentosum were identified and their relative abundances were characterized. The metabolic profiles of leaves, roots, stems and fruits were comprehensively investigated by liquid chromatography high-resolution mass spectrometry (LC-HR-MS) and the data subsequently analyzed using multivariate statistical methods. Manual interpretation of the tandem mass spectrometric (MS/MS) fragmentation patterns revealed the presence of 154 tentatively identified metabolites, mostly represented by alkaloids and flavonoids. Principle component analysis and hierarchical clustering indicated the predominant occurrence of flavonoids, lignans and phenyl propanoids in leaves, aporphines in stems, piperamides in fruits and lignan-amides in roots. Overall, this study provides extensive data on the metabolite composition of P. sarmentosum, supplying useful information for bioactive compounds discovery and patterns of their preferential biosynthesis or storage in specific organs. This can be used to optimize production and harvesting as well as to maximize the plant's economic value as herbal medicine or in food applications.
Collapse
Affiliation(s)
- Ismail Ware
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany.
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Kseniia Bureiko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Maizatulakmal Yahayu
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, 21934, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Silva JRDA, de Oliveira AA, França LP, da Cruz JD, Amaral ACF. Exploring the Larvicidal and Adulticidal Activity against Aedes aegypti of Essential Oil from Bocageopsis multiflora. Molecules 2024; 29:2240. [PMID: 38792102 PMCID: PMC11124082 DOI: 10.3390/molecules29102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the chemical composition of the essential oil obtained from the leaves of Bocageopsis multiflora (Mart.) R.E.Fr (Annonaceae), examining its effectiveness in combating both the larvae and adult forms of Aedes aegypti mosquitoes. Additionally, for a deeper understanding of the insecticidal activity, toxicity properties and molecular docking calculations were conducted using the main compounds of this essential oil. GC/MS analysis revealed the presence of 26 constituents, representing 95.2% of the essential oil, with the major components identified as the sesquiterpenes α-selinene, β-selinene, and β-elemene. Larvicidal assays demonstrated potent activity of this essential oil with significant LC50 values of 40.8 and 39.4 μg/mL at 24 and 48 h, respectively. Adulticidal assessments highlighted strong efficacy with LC50 of 12.5 µg/mL. Molecular docking analysis identified optimal interaction activities of α-selinene and β-selinene with key Aedes proteins. The in silico studies comparing synthetic insecticides with the major sesquiterpenes of the essential oil revealed that β-selinene exhibited a significantly higher binding affinity compared to the other two sesquiterpenes. Also, ADMET studies of the three main sesquiterpenes indicated acceptable drug-like properties. In these findings, safety evaluations showed low toxicity and skin sensitization for the main sesquiterpenes, contrasting with commercial synthetic insecticides. Therefore, in silico analyses suggest promising interactions with Aedes proteins, indicating its potential as an effective alternative to conventional insecticides These results show the larvicidal and adulticidal potential of the essential oil from Bocageopsis multiflora against Aedes aegypti, supported by its predominant constituents, α-selinene, β-selinene and β-elemene.
Collapse
Affiliation(s)
- Jefferson Rocha de Andrade Silva
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Aimêe Almeida de Oliveira
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Leandro Pereira França
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Jefferson Diocesano da Cruz
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil;
| | - Ana Claudia Fernandes Amaral
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil;
| |
Collapse
|
5
|
Ramasamy S, Pakshirajan K, Murugan D, Saini GK. Lutein Production by Halophilic Microalgae Using Anaerobic Digestate as the Substrate and Its Potential Application as a Biopesticide. Appl Biochem Biotechnol 2024; 196:2591-2611. [PMID: 37129741 DOI: 10.1007/s12010-023-04502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Production of value-added products from waste anaerobic digestate is economically and environmentally important for sustainable development of industrial process and products. In this study halophilic microalgae, Chlorella vulgaris 92001, Chlorella vulgaris 50291, Chlorella vulgaris 10241 and Tetraselmis indica, were initially screened for lutein production using synthetic dairy digestate (DD), municipal digestate (MD) and poultry digestate (PD) as no-cost substrates. Screening and optimization of parameters, such as dilution, pH, MgCl2, NaCl, NaHCO3 and inoculum concentration for maximum lutein production were further performed employing statistically designed Plackett-Burman and response surface methodology. Cultivation of C. vulgaris 92001 in a split column photobioreactor under optimum culture condition showed increase in lutein production by 2.36-fold in batch mode. The influence of different hydraulic retention time (HRT) values of 150, 130, 100 and 90 h on lutein production was evaluated in continuous mode with the split column photobioreactor. Lutein produced using the synthetic poultry digestate showed good potential biopesticide activity against Spodoptera litura (fall armyworm). Overall, this study demonstrated bioprocess development to produce lutein using synthetic anaerobic digestate from marine algae and its potential application as a biopesticide.
Collapse
Affiliation(s)
- Surjith Ramasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Dhanasingh Murugan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
6
|
Muñoz-Acevedo A, González MC, Alonso JE, Flórez KC. The Repellent Capacity against Sitophilus zeamais (Coleoptera: Curculionidae) and In Vitro Inhibition of the Acetylcholinesterase Enzyme of 11 Essential Oils from Six Plants of the Caribbean Region of Colombia. Molecules 2024; 29:1753. [PMID: 38675573 PMCID: PMC11051817 DOI: 10.3390/molecules29081753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 04/28/2024] Open
Abstract
The repellent capacity against Sitophilus zeamais and the in vitro inhibition on AChE of 11 essential oils, isolated from six plants of the northern region of Colombia, were assessed using a modified tunnel-type device and the Ellman colorimetric method, respectively. The results were as follows: (i) the degree of repellency (DR) of the EOs against S. zeamais was 20-68% (2 h) and 28-74% (4 h); (ii) the IC50 values on AChE were 5-36 µg/mL; likewise, the %inh. on AChE (1 µg/cm3 per EO) did not show any effect in 91% of the EO tested; (iii) six EOs (Bursera graveolens-bark, B. graveolens-leaves, B. simaruba-bark, Peperomia pellucida-leaves, Piper holtonii (1b*)-leaves, and P. reticulatum-leaves) exhibited a DR (53-74%) ≥ C+ (chlorpyrifos-61%), while all EOs were less active (8-60-fold) on AChE compared to chlorpyrifos (IC50 of 0.59 µg/mL). Based on the ANOVA/linear regression and multivariate analysis of data, some differences/similarities could be established, as well as identifying the most active EOs (five: B. simaruba-bark, Pep. Pellucida-leaves, P. holtonii (1b*)-leaves, B. graveolens-bark, and B. graveolens-leaves). Finally, these EOs were constituted by spathulenol (24%)/β-selinene (18%)/caryophyllene oxide (10%)-B. simaruba; carotol (44%)/dillapiole (21%)-Pep. pellucida; dillapiole (81% confirmed by 1H-/13C-NMR)-P. holtonii; mint furanone derivative (14%)/mint furanone (14%)-B. graveolens-bark; limonene (17%)/carvone (10%)-B. graveolens-leaves.
Collapse
Affiliation(s)
- Amner Muñoz-Acevedo
- Department of Chemistry and Biology, Universidad del Norte, Puerto Colombia 081007, Colombia;
| | - María C. González
- Department of Chemistry and Biology, Universidad del Norte, Puerto Colombia 081007, Colombia;
| | - Jesús E. Alonso
- Department of Mathematics and Statistics, Universidad del Norte, Puerto Colombia 081007, Colombia; (J.E.A.); (K.C.F.)
| | - Karen C. Flórez
- Department of Mathematics and Statistics, Universidad del Norte, Puerto Colombia 081007, Colombia; (J.E.A.); (K.C.F.)
| |
Collapse
|
7
|
Tavares WR, Jiménez IA, Oliveira L, Kuhtinskaja M, Vaher M, Rosa JS, Seca AML, Bazzocchi IL, Barreto MDC. Macaronesian Plants as Promising Biopesticides against the Crop Pest Ceratitis capitata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4122. [PMID: 38140449 PMCID: PMC10747946 DOI: 10.3390/plants12244122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Ceratitis capitata is responsible for significant economic losses in the fruit production industry, and the market lacks biopesticides that are effective but also cheaper and less contaminating, with fewer negative impacts on the environment. In this regard, the present study suggests as potential options ethanolic extracts from several Macaronesian plants, which inhibit the oviposition and are toxic to C. capitata, and whose preparation involve a non-toxic solvent (i.e., ethanol), low energy expenditure and cheap apparatus (i.e., maceration at room temperature). Among the evaluated species, the extracts of Hedychium gardnerianum, Cistus symphytifolius and Salvia canariensis are the most active (50 mg/mL), revealing an increase in C. capitata adults' mortality from 21.15% to 27.41% after 72 h, a value statistically identical to azadirachtin (25.93%) at the recommended concentration (0.88 mg/mL). Considering the quantity and biomass available to prepare a biopesticide in the future, and the level of activity, the ethanolic extract of H. gardnerianum was fractionated and each fraction tested. The water fraction at 50 mg/mL proved to be more effective than the original extract, both in terms of mortality (57.69%), with LT50 = 72.5 h, and oviposition deterrence (83.43%), values statistically higher than those obtained by azadirachtin at 0.88 mg/mL. Analysis of this fraction by HPLC-MS/MS showed that it is mainly composed of glycosylated derivatives of quercetin and myricetin in addition to some triterpenes. These findings highlight some Macaronesian species, and in particular, the more polar fraction of H. gardnerianum ethanolic extract, as promising and ecological alternatives to conventional insecticides, for use in the integrated management of the C. capitata pest.
Collapse
Affiliation(s)
- Wilson R. Tavares
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (W.R.T.); (A.M.L.S.)
| | - Ignacio A. Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Luísa Oliveira
- CBA—Biotechnology Centre of Azores, Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (L.O.)
| | - Maria Kuhtinskaja
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia; (M.K.); (M.V.)
| | - Merike Vaher
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia; (M.K.); (M.V.)
| | - José S. Rosa
- CBA—Biotechnology Centre of Azores, Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (L.O.)
| | - Ana M. L. Seca
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (W.R.T.); (A.M.L.S.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel L. Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Maria do Carmo Barreto
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences and Technology, University of the Azores, 9501-321 Ponta Delgada, Portugal; (W.R.T.); (A.M.L.S.)
| |
Collapse
|
8
|
Changkeb V, Nobsathian S, Le Goff G, Coustau C, Bullangpoti V. Insecticidal efficacy and possibility of Combretum trifoliatum Vent. (Myrtales: Combretaceae) extracts in controlling Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2023; 79:4868-4878. [PMID: 37506299 DOI: 10.1002/ps.7688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The fall armyworm Spodoptera frugiperda (J.E. Smith), is an important pest of agronomical crops. It is interesting to discover secondary metabolites in plants that are environmentally safer than synthetic pesticides. For this purpose, Combretum trifoliatum crude extract and its isolated compounds were investigated for their insecticidal activities against S. frugiperda. RESULTS The median lethal dose (LD50 ) was evaluated in the second-instar larvae using the topical application method. The isolated compounds, apigenin and camphor, demonstrated a highly toxic effect on larvae at a lower LD50 dose than crude extract. Moreover, when the larvae were exposed to crude extract concentrations, the development to pupa and adult stages was reduced by more than 50%. The ovicidal toxicity was examined using a hand sprayer. The extract concentration 5, 10, and 20 μg/egg significantly decreased the egg hatchability. In addition, crude extract showed a significant difference in inhibiting acetylcholinesterase (AChE) activity while crude extract and camphor showed significant inhibitory effects on carboxylesterase (CE) and glutathione-S-transferase (GST) activities. CONCLUSION The crude ethanol extract of Combretum trifoliatum was toxic to S. frugiperda in terms of larval mortality, negatively affecting biological parameters, and decreasing egg hatchability. Additionally, the activities of cholinergic and detoxifying enzymes were affected by crude extract and its isolated compounds. These results highlight that Combretum trifoliatum might be efficient as a bioinsecticide to control S. frugiperda. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Veeravat Changkeb
- Animal Toxicology and Physiology Specialty Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Gaelle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Christine Coustau
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Vasakorn Bullangpoti
- Animal Toxicology and Physiology Specialty Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
9
|
Zainol Abidin IZ, Johari AN, Yazid MD, Zainal Ariffin Z, Eziwar Dyari HR, Zainal Ariffin SH. Osteogenic Potential and Bioactive Profiles of Piper sarmentosum Ethanolic Extract-Treated Stem Cells. Pharmaceuticals (Basel) 2023; 16:ph16050708. [PMID: 37242491 DOI: 10.3390/ph16050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Piper sarmentosum is a well-known traditional herbal plant in various diseases treatments. Multiple scientific studies have also reported various biological activities exhibited by the plant's extract, such as antimicrobial, anticarcinogenic and antihyperglycemic activities, and, in addition, a bone protective effect in ovariectomized rats has been reported. However, no known Piper sarmentosum extract is involved in osteoblast differentiation using stem cells. Our study aims to identify the potential of P. sarmentosum ethanolic extract to induce osteoblast differentiation of human peripheral blood stem cells. Prior to the assay, the proliferation ability of the cells was observed for 14 days and the presence of hematopoietic stem cells in the culture was determined by the expression of SLAMF1 and CD34 genes. During the differentiation assay, the cells were treated with P. sarmentosum ethanolic extract for 14 days. Osteoblast differentiation was examined using an (alkaline phosphatase) ALP assay, by monitoring the expression of osteogenic gene markers and by von Kossa staining. The untreated cells served as the negative control, while cells treated with 50 µg/mL ascorbic acid and 10 mM β-glycerophosphate acted as the positive control. Finally, the determination of the compound profile was performed using a gas chromatography-mass spectrometry (GC-MS) analysis. The isolated cells were able to proliferate for 14 days during the proliferation assay. The expression of hematopoietic stem cell markers was also upregulated during the 14 days assay. Following the differentiation induction, the ALP activity exhibited a significant increase (p < 0.05) from day 3 of the differentiation assay. A molecular analysis also showed that the osteogenic markers ALP, RUNX2, OPN and OCN were upregulated compared to the positive control. The presence of mineralized cells with a brownish-stained morphology was observed, indicating the mineralization process increased in a time-dependent manner regardless of the concentration used. There were 54 compounds observed in the GC-MS analysis, including β-asarones, carvacrol and phytol, which have been shown to possess osteoinductive capacities. Our results demonstrate that the ethanolic extract of P. sarmentosum can induce osteoblast differentiation of peripheral blood stem cells. The extract contains potent compounds which can potentially induce the differentiation of bone cells, i.e., osteoblasts.
Collapse
Affiliation(s)
| | - Anis Nabilah Johari
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Malaysia
| | | | - Herryawan Ryadi Eziwar Dyari
- Department of Earth Sciences and Environmental, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
10
|
Bittencourt KC, Souza RRDE. Insecticidal activity of the organotellurium 2-Phenylethynyl-Butyltellurium on the Drosophila melanogaster model. AN ACAD BRAS CIENC 2023; 95:e20211486. [PMID: 36946808 DOI: 10.1590/0001-3765202320211486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 03/18/2023] Open
Abstract
2-Phenylethynyl-Butyltellurium (PEBT) is a synthetic organotellurium compound that has shown various pharmacological properties on mammals without any signs of toxicity, but its effects on insects have not been reported before. Therefore, the aim of this study was to assess whether acute exposure to PEBT would promote an insecticidal effect against Drosophila melanogaster. The flies were exposed to three concentrations of PEBT (0.325 µmol L-1, 1.300 µmol L-1, and 5.200 µmol L-1) and a control solution (vehicle), using 450 flies per treatment (three repetitions of 150 flies), for 48 hours. Negative geotaxis and open field tests were performed (in vivo) after 24 and 48h, and acetylcholinesterase (AChE) activity was assessed (ex vivo) after 48h. Also, the mortality rate, 50% Lethal Concentration (LC50), 80% Lethal Concentration (LC80), and 95% Lethal Concentration (LC95) were calculated. Our results show that PEBT presented insecticidal activity against Drosophila melanogaster at all tested concentrations, which caused locomotor impairment and increased acetylcholinesterase activity in the flies' heads.
Collapse
Affiliation(s)
- Karina Chertok Bittencourt
- Federal University of Santa Maria (UFSM), Department of Agronomic and Environmental Sciences, Linha 7 de Setembro, s/n, BR 386, Km 40, 98400-000 Frederico Westphalen, RS, Brazil
| | - Rafael Rodrigues DE Souza
- Federal University of Santa Maria (UFSM), Department of Plant Science, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
11
|
Huang X, Du L, Liu T, Ma R, Liu X, Yuan H, Liu S. Insecticidal Activity of a Component, (-)-4-Terpineol, Isolated from the Essential Oil of Artemisia lavandulaefolia DC. against Plutella xylostella (L.). INSECTS 2022; 13:1126. [PMID: 36555036 PMCID: PMC9783381 DOI: 10.3390/insects13121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Plutella xylostella (L.) is one of the most serious pests of cruciferous vegetables. Our previous work demonstrated that the essential oil of Artemisia lavandulaefolia DC. exhibits promising insecticidal activities against P. xylostella. This study further characterizes the key components that are responsible for the insecticidal effect. In total, 47 compounds (96.52% of the total compounds) were identified from the total oil using GC-MS, and the major compounds were eucalyptol (21.57%), D(+)-camphor (17.33%), (-)-4-terpineol (9.96%) and caryophyllene oxide (10.96%). Among them, (-)-4-terpineol showed significantly larvicidal and fumigant activities against P. xylostella. The LD50 of (-)-4-terpineol was 43.15 mg/mL at 12 h and 31.22 mg/mL at 24 h for 3rd instar larvae, and the LC50 for adults was 8.34 mg/mL at 12 h and 7.35 mg/mL at 24 h. In addition, the adults treated with (-)-4-terpineol showed varying degrees of inhibitory activity toward glutathione S-transferase, catalase, acetylcholinesterase and Na+/K+-ATPase at different post-treatment intervals and concentrations. The results indicate that (-)-4-terpineol has promising insecticidal activities against P. xylostella, and it has good inhibitory effects on the four enzymes of P. xylostella adults.
Collapse
Affiliation(s)
| | | | | | | | | | - Haibin Yuan
- Correspondence: (H.Y.); (S.L.); Tel.: +86-0431-8433-3719 (H.Y.)
| | - Shuai Liu
- Correspondence: (H.Y.); (S.L.); Tel.: +86-0431-8433-3719 (H.Y.)
| |
Collapse
|
12
|
Achimón F, Peschiutta ML, Brito VD, Beato M, Pizzolitto RP, Zygadlo JA, Zunino MP. Exploring Contact Toxicity of Essential Oils against Sitophilus zeamais through a Meta-Analysis Approach. PLANTS (BASEL, SWITZERLAND) 2022; 11:3070. [PMID: 36432799 PMCID: PMC9696113 DOI: 10.3390/plants11223070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Sitophilus zeamais is a primary pest of maize. Our aim was to perform a qualitative review and meta-analyses with 56 scientific articles published from 1 January 2000 to 1 October 2022 dealing with direct (topical application) and indirect (impregnation of essential oils, EOs, onto filter paper or maize grains) contact toxicity of EOs against S. zeamais. Three independent meta-analyses of single means of LD50 (direct contact) and LC50 (indirect contact) were conducted using a random effect model. Essential oils more frequently evaluated were those belonging to Asteraceae, Apiaceae, Lamiaceae, Myrtaceae, Piperaceae, and Rutaceae. The LC50 global mean values were 33.19 µg/insect (CI95 29.81-36.95) for topical application; 0.40 µL/cm2 (CI95 0.25-0.65) for filter paper indirect contact; and 0.50 µL/g maize (CI95 0.27-0.90) for maize grains indirect contact. The species Carum carvi, Salvia umbratica, Ilicium difengpi, Periploca sepium, Cephalotaxus sinensis, Murraya exotica, Rhododendron anthopogonoides, Ruta graveolens, Eucalyptus viminalis, Ocotea odorifera, Eucalyptus globulus, Eucalyptus dunnii, Anethum graveolens, Ilicium verum, Cryptocarya alba, Azadirachta indica, Chenopodium ambrosioides, Cupressus semperivens, Schinus molle, Piper hispidinervum, Mentha longifolia, and Croton pulegiodorus showed LC50 or LD50 values lower than the global means, indicating good insecticidal properties. Our results showed that EOs have great potential to be used as bioinsecticides against S. zeamais.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Maria L. Peschiutta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Vanessa D. Brito
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Magalí Beato
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Romina P. Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Facultad de Ciencias Agropecuarias, Departamento de Recursos Naturales, Cátedra de Microbiología Agrícola, Universidad Nacional de Córdoba, Av. Ing. Agr. Félix Aldo Marrone 735, Córdoba X5016GCA, Argentina
| | - Julio A. Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Orgánica, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - María P. Zunino
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Orgánica, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| |
Collapse
|
13
|
de Lira Pimentel CS, Albuquerque BNDL, da Rocha SKL, da Silva AS, da Silva ABV, Bellon R, Agra-Neto AC, de Aguiar JCRDOF, Paiva PMG, Princival JL, Napoleão TH, Navarro DMDAF. Insecticidal activity of the essential oil of Piper corcovadensis leaves and its major compound (1-butyl-3,4-methylenedioxybenzene) against the maize weevil, Sitophilus zeamais. PEST MANAGEMENT SCIENCE 2022; 78:1008-1017. [PMID: 34766455 DOI: 10.1002/ps.6712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sitophilus zeamais is one of the most economically impactful pests, attacking various grains and processed foods. Control of this insect has been achieved using synthetic insecticides, exacerbated and careless use of which has led to the development of resistant insect populations, toxicity to non-target organisms and environmental contamination. In this study, Piper corcovadensis leaf essential oil (PcLEO) and its major compound, 1-butyl-3,4-methylenedioxybenzene (BMDB), were investigated as alternative insecticidal agents against S. zeamais. RESULTS Characterization of PcLEO showed the presence of 40 compounds. The major components were the phenylpropanoid BMDB (35.77%) and the monoterpenes α-pinene (14.95%) and terpinolene (6.23%). PcLEO and BMDB were toxic by fumigation (half-maximal lethal concentration [LC50 ]: 9.46 and 0.85 μl L-1 of air, respectively), by contact (half-maximal lethal dose [LD50 ]: 9.38 and 6.16 μg g-1 of insect, respectively) and ingestion (LC50 : 16.04 and 14.30 mg g-1 , respectively). In the ingestion test, both PcLEO and BMDB promoted the loss of insect biomass and had a strong deterrent effect. In addition, both were able to inhibit trypsin and α-amylase activities. CONCLUSION PcLEO and BMDB exhibited insecticidal activity against S. zeamais, with a toxic effect by fumigation, contact and ingestion, in addition to food deterrence and inhibiting trypsin and α-amylase activities, suggesting their potential for use in the control of this pest.
Collapse
Affiliation(s)
- Camila Soledade de Lira Pimentel
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av Jornalista Anibal Fernandes an, Recife, Brasil, 52760-540, Brazil
| | - Bheatriz Nunes de Lima Albuquerque
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av Jornalista Anibal Fernandes an, Recife, Brasil, 52760-540, Brazil
| | - Suyana Karolyne Lino da Rocha
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av Jornalista Anibal Fernandes an, Recife, Brasil, 52760-540, Brazil
| | - André Severino da Silva
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av Jornalista Anibal Fernandes an, Recife, Brasil, 52760-540, Brazil
| | - Alana Bittencourt Vieira da Silva
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av Jornalista Anibal Fernandes an, Recife, Brasil, 52760-540, Brazil
| | - Remi Bellon
- Institut Universitaire et Technologique, Université Paris-Est Créteil Val-de-Marne, Créteil, Paris, France
| | | | | | | | - Jefferson Luiz Princival
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av Jornalista Anibal Fernandes an, Recife, Brasil, 52760-540, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Daniela Maria do Amaral Ferraz Navarro
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av Jornalista Anibal Fernandes an, Recife, Brasil, 52760-540, Brazil
| |
Collapse
|
14
|
Azeem M, Zaman T, Abbasi AM, Abid M, Mozūratis R, Alwahibi MS, Elshikh MS. Pesticidal potential of some wild plant essential oils against grain pests Tribolium castaneum (Herbst, 1797) and Aspergillus flavus (Link, 1809). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
15
|
Jeelani PG, Ramalingam C. Statistical approach to synthesise biogenic silica nanoparticles from rice husk and conjugated with Justicia adhatoda extract as green, slow-release biocide. IET Nanobiotechnol 2021; 15:391-401. [PMID: 34694712 PMCID: PMC8675858 DOI: 10.1049/nbt2.12027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 11/19/2022] Open
Abstract
Biogenic silica synthesised from rice husk was used as a controlled release system of an eco-friendly biocide consisting of a Justicia adhatoda extract. Fourier-transform infrared spectroscopy (FTIR) indicated the presence of ester bonds between the silica support and the conjugated Justicia adhatoda extract. Surface area analysis and microscopy confirmed a high level of Justicia adhatoda extract loading in the silica support. The phytochemical investigation of Justicia adhatoda was done by Gas chromatography-mass spectrometry (GC-MS) spectroscopy. Moreover, compared with the naked biogenic silica nanoparticles, a better thermal stability was determined for the conjugated system of the extracted compounds. Trial of kinetic release of silica: Justicia adhatoda ∼29% of loaded Justicia adhatoda was released within 1 h and then the rate of release became slow. Net release of Justicia adhatoda was observed up to 50% within 7 h. The Justicia adhatoda compounds released from silica also showed the improved mortality rate against stored product pest rice weevil (Sitophilus oryzae).
Collapse
Affiliation(s)
- Peerzada Gh Jeelani
- Department of Biotechnology, School of Biosciences and Technology, Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu,, India
| | - C Ramalingam
- Department of Biotechnology, School of Biosciences and Technology, Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu,, India
| |
Collapse
|
16
|
Pereira Filho AA, Pessoa GCD, Yamaguchi LF, Stanton MA, Serravite AM, Pereira RHM, Neves WS, Kato MJ. Larvicidal Activity of Essential Oils From Piper Species Against Strains of Aedes aegypti (Diptera: Culicidae) Resistant to Pyrethroids. FRONTIERS IN PLANT SCIENCE 2021; 12:685864. [PMID: 34149785 PMCID: PMC8213341 DOI: 10.3389/fpls.2021.685864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The continuous and indiscriminate use of insecticides has been responsible for the emergence of insecticide resistant vector insect populations, especially in Aedes aegypti. Thus, it is urgent to find natural insecticide compounds with novel mode of action for vector control. The goal of this study was to investigate the larvicidal activity of essential oils (EOs) from Piper species against A. aegypti characterized as resistant and susceptible strains to pyrethroids. The EOs from leaves of 10 Piper species were submitted to the evaluation of larvicidal activity in populations of A. aegypti in agreement with the (World Health Organization, 2005) guidelines. The resistance of the strains characterized by determining the lethal concentrations (LCs) with the insecticide deltamethrin (positive control). The major compounds of the EOs from Piper species was identified by GC-MS. The EOs from Piper aduncum, P. marginatum, P. gaudichaudianum, P. crassinervium, and P. arboreum showed activity of up to 90% lethality at 100 ppm (concentration for screening). The activities of the EOs from these 6 species showed similar LCs in both susceptible strain (Rockefeller) and resistant strains (Pampulha and Venda Nova) to pyrethroids. The major compounds identified in the most active EO were available commercially and included β-Asarone, (E)-Anethole, (E)-β-Caryophyllene, γ-Terpinene, p-Cymene, Limonene, α-Pinene, and β-Pinene. Dillapiole was purified by from EO of P. aduncum. The phenylpropanoids [Dillapiole, (E)-Anethole and β-Asarone] and monoterpenes (γ-Terpinene, p-Cymene, Limonene, α-Pinene, and β-Pinene) showed larvicidal activity with mortality between 90 and 100% and could account for the toxicity of these EOs, but the sesquiterpene (E)-β-Caryophyllene, an abundant component in the EOs of P. hemmendorffii and P. crassinervium, did not show activity on the three populations of A. aegypti larvae at a concentration of 100 ppm. These results indicate that Piper's EOs should be further evaluated as a potential larvicide, against strains resistant to currently used pesticides, and the identification of phenylpropanoids and monoterpenes as the active compounds open the possibility to study their mechanism of action.
Collapse
Affiliation(s)
- Adalberto Alves Pereira Filho
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grasielle C. D‘Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lydia F. Yamaguchi
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Alves Stanton
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| | - Artur M. Serravite
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael H. M. Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Welber S. Neves
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| | - Massuo Jorge Kato
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
França LP, Amaral ACF, Ramos ADS, Ferreira JLP, Maria ACB, Oliveira KMT, Araujo ES, Branches ADS, Silva JN, Silva NG, Barros GDA, Chaves FCM, Tadei WP, Silva JRDA. Piper capitarianum essential oil: a promising insecticidal agent for the management of Aedes aegypti and Aedes albopictus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9760-9776. [PMID: 33159226 DOI: 10.1007/s11356-020-11148-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are responsible for serious public health problems worldwide, and as such, Aedes aegypti and Aedes albopictus are important vectors in the transmission of dengue, chikungunya, and Zika in Brazil and other countries of the world. Due to growing resistance to chemical insecticides among populations of vectors, environmentally friendly strategies for vector management are receiving ever more attention. Essential oils (EOs) extracted from plants have activities against insects with multiple mechanisms of action. These mechanisms hinder the development of resistance, and have the advantages of being less toxicity and biodegradable. Thus, the present study aimed to evaluate the chemical composition of the EOs obtained from Piper capitarianum Yunck, as well as evaluating their insecticidal potential against Aedes aegypti and A. albopictus, and their toxicity in relation to Artemia salina. The yields of the EOs extracted from the leaves, stems, and inflorescences of P. capitarianum were 1.2%, 0.9%, and 0.6%, respectively, and their main constituents were trans-caryophyllene (20.0%), α-humulene (10.2%), β-myrcene (10.5%), α-selinene (7.2%), and linalool (6.0%). The EO from the inflorescences was the most active against A. aegypti and A. albopictus, and exhibited the respective larvicidal (LC50 = 87.6 μg/mL and 76.1 μg/mL) and adulticide activities (LC50 = 126.2 μg/mL and 124.5 μg/mL). This EO was also the most active in the inhibition of AChE, since it presented an IC50 value of 14.2 μg/mL. Its larvicidal effect was observed under optical and scanning electron microscopy. Additionally, non-toxic effects against A. salina were observed. Docking modeling of trans-caryophyllene and α-humulene on sterol carrier protein-2 (SCP-2) suggests that both molecules have affinity with the active site of the enzyme, which indicates a possible mechanism of action. Therefore, the essential oil of P. capitarianum may be used in the development of new insecticide targets for the control of A. aegypti and A. albopictus in the Amazonian environment.
Collapse
Affiliation(s)
- Leandro P França
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Ana Claudia F Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Aline de S Ramos
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - José Luiz P Ferreira
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Ana Clara B Maria
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Kelson Mota T Oliveira
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Earle S Araujo
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Adjane Dalvana S Branches
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Jonathas N Silva
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Noam G Silva
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Gabriel de A Barros
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Wanderli P Tadei
- Laboratory of Malaria and Dengue, Institute for Research in the Amazon, Manaus, AM, Brazil
| | | |
Collapse
|
18
|
Sun X, Chen W, Dai W, Xin H, Rahmand K, Wang Y, Zhang J, Zhang S, Xu L, Han T. Piper sarmentosum Roxb.: A review on its botany, traditional uses, phytochemistry, and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112897. [PMID: 32620264 DOI: 10.1016/j.jep.2020.112897] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal plant widely distributed in India, Malaysia, Thailand, and the southeastern coastal areas of China including Fujian, Guangdong, and Guizhou. It has been used for centuries for the treatment of wind-cold cough, fever, rheumatism arthralgia, diarrhea dysentery, postpartum foot swelling, stomachache, toothache, diabetes, and traumatic injury. AIMS OF THE REVIEW To critically anayze the literature for the botany, traditional uses, phytochemistry, pharmacology, toxicity, and clinical trials of P. sarmentosum in order to provide a scientific consensus for further research and discovery of potential candidate drugs. MATERIALS AND METHODS The contents of this review were sourced from electronic databases including PubMed, SciFinder, Web of Science, Science Direct, Elsevier, Google Scholar, Chinese Knowledge On frastructure (CNKI), Wanfang, Chinese Scientific and Technological Periodical Database (VIP), Chinese Biomedical Database (CBM), Cochrane Controlled register of Clinical Trials, Clinical Trials. gov, and Chinese Clinical Trial Registry. Chinese medicine books published over the years were used to elucidate the traditional uses of P. sarmentosum and additional information was also collected from Yao Zhi website (https://db.yaozh.com/). RESULTS Phytochemical analyses of the chemical constituents of P. sarmentosum include essential oil, alkaloids, flavonoids, lignans, and steroids. The literature supports the ethnomedicinal uses of P. sarmentosum for the treatment of cold, gastritis, and rheumatoid joint pain, and further confirms its relatively new pharmacological activities, including anti-inflammatory, antineoplastic, and antipyretic activities. Other biological roles such as anti-osteoporosis, antibacterial, antidepressant, anti-atherosclerotic, and hypoglycemic activities have also been reported. However, the methodologies employed in individual studies are limited. CONCLUSIONS There is convincing evidence from both in vitro and in vivo studies supporting the traditional use of P. sarmentosum and it is imperative that natural bioactive compounds are examined further. More efforts should be focused on the pharmacodynamic constituents of P. sarmentosum to provide practical basis for quality control, and additional studies are needed to understand the mechanism of their action. Further studies on the comprehensive evaluation of medicinal quality and understandings of serum chemistry, multi-target network pharmacology, and molecular docking technology of P. sarmentosum are of great importance and should be considered.
Collapse
Affiliation(s)
- Xiaolei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China; Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Wenhua Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Wei Dai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China; Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Khalid Rahmand
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Yan Wang
- Military Drug Research and Development Center, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jiabao Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Shiyao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Lingchuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China.
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
19
|
Gaspar MC, de Sousa HC, Seabra IJ, Braga ME. Environmentally-safe scCO2 P. pinaster branches extracts: Composition and properties. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Huang Y, Lin M, Jia M, Hu J, Zhu L. Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaema fargesii. PEST MANAGEMENT SCIENCE 2020; 76:534-542. [PMID: 31270930 DOI: 10.1002/ps.5542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Dengue fever is caused by the spread of dengue virus by Aedes mosquito vectors. Currently, the most effective way to control dengue is by preventing mosquitoes from spreading the disease. Arisaema fargesii is a Chinese herbal medicine commonly used to repel mosquitoes. In our laboratory, anti-mosquito chemical components were extracted from A. fargesii, and the effects of these substances on mosquito larvae were examined. RESULTS In total, 48 compounds corresponding to 98.79% of the total oil were identified and the major compounds identified were linalool (12.38%), carvacrol (8.27%), eugenol (5.21%), and β-selinene (5.36%). Essential oil had larvicidal activity against Ae. aegypti and Ae. albopictus with LC50 values of 40.49 mg/L, 47.01 mg/L, respectively. The LC50 values of carvacrol, eugenol, linalool and β-selinene were 32.78, 56.34, 70.56, 136.03 mg/L against Ae. aegypti larvae, and 39.08, 52.07, 82.34, 151.74 mg/L, respectively, against Ae. albopictus larvae. Biochemical assays of Aedes larvae showed that the activities of acetylcholinesterase (AChE), monooxygenases (MO), glutathione-S-transferase (GST), p-Nitrophenyl acetate (p-NPA) esterase, α-esterase and β-esterase were significantly affected by carvacrol. Essential oil induced the detoxification mechanism for the action of GST and MO. CONCLUSION The result indicates that essential oil of A. fargesii and its isolated constituent have good inhibitory effects on the defense enzymes of Aedes mosquito larvae. A. fargesii essential oil can be used to control Aedes mosquito larvae to prevent the spread of dengue fever. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Huang
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Mengya Lin
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Mengmeng Jia
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Junpeng Hu
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Liang Zhu
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Flores N, Ticona JC, Bilbao-Ramos P, Dea-Ayuela MA, Ruiz Macedo JC, Bazzocchi IL, Bolás-Fernández F, Jiménez IA. An unprecedented chlorine-containing piperamide from Piper pseudoarboreum as potential leishmanicidal agent. Fitoterapia 2019; 134:340-345. [DOI: 10.1016/j.fitote.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
|
22
|
Zhang W, Wang Y, Geng Z, Guo S, Cao J, Zhang Z, Pang X, Chen Z, Du S, Deng Z. Antifeedant Activities of Lignans from Stem Bark of Zanthoxylum armatum DC. against Tribolium castaneum. Molecules 2018; 23:E617. [PMID: 29522428 PMCID: PMC6017925 DOI: 10.3390/molecules23030617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/18/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022] Open
Abstract
The speciation of a methanolic extract of Zanthoxylum armatum stem bark has enabled the isolation and characterization of 11 known lignans. Among them, five compounds (6, 8-11) are reported in this plant for the first time. All of the chemical structures were elucidated on the basis of NMR spectral analysis. Additionally, their antifeedant activities against Tribolium castaneum were evaluated scientifically. Among them, asarinin (1), with an EC50 of 25.64 ppm, exhibited a much stronger antifeedant activity than the positive control, toosendanin (EC50 = 71.69 ppm). Moreover, fargesin (2), horsfieldin (3), and magnolone (10), with EC50 values of 63.24, 68.39, and 78.37 ppm, showed almost the same antifeedant activity as the positive control. From the perspective of structure-effectiveness relationship, compounds with the chemical group of methylenedioxy exhibited higher antifeedant activities and have potential to be developed into novel antifeedants or potential lead compounds to protect food and crops in storage.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Yang Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Zhufeng Geng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
- Analytical and Testing Center, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Shanshan Guo
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Juqin Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Zhe Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Xue Pang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Zhenyang Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Shushan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Zhiwei Deng
- Analytical and Testing Center, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|