1
|
Lee ASY, Lin TH, Liu YY, Wang YH, Cheng SC, Li TS, Sun CY, Chen YH. Growth inhibition and toxicity assessments of cis-3,4-diaryl-α-methylene-γ-butyrolactams in cultured human renal cancer cells and zebrafish embryos. Biochim Biophys Acta Gen Subj 2025; 1869:130761. [PMID: 39788219 DOI: 10.1016/j.bbagen.2025.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, cis-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1-8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(wt1b:egfp) were used to assess the toxicities of compounds 5, 6, and 8. The findings suggested that compound 8 was relatively non-toxic compared to the others. Western blot analysis indicated that compounds 5, 6, and 8 may interact with the P53/mTOR pathways. Based on these results, we concluded that compound 8 exhibits RCC growth inhibition properties and has lower toxicity, making it a candidate for further investigation in mammalian models.
Collapse
Affiliation(s)
- Adam Shih-Yuan Lee
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan
| | - Ta-Hsien Lin
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Ying Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Yu Liu
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan
| | - Yun-Hsin Wang
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan
| | - Shu-Chun Cheng
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Japan
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan.
| |
Collapse
|
2
|
Zhang Z, Su R, Liu J, Chen K, Wu C, Sun P, Sun T. Tubulin/HDAC dual-target inhibitors: Insights from design strategies, SARs, and therapeutic potential. Eur J Med Chem 2025; 281:117022. [PMID: 39500063 DOI: 10.1016/j.ejmech.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 12/02/2024]
Abstract
Microtubules, one of the cytoskeletons in eukaryotic cells, maintain the proper operation of several cellular functions. Additionally, they are regulated by the acetylation of HDAC6 and SIRT2 which affects microtubule dynamics. Given the fact that tubulin and HDAC inhibitors play a synergistic effect in the treatment of many cancers, the development of tubulin/HDAC dual-target inhibitors is conducive to addressing multiple limitations including drug resistance, dose toxicity, and unpredictable pharmacokinetic properties. At present, tubulin/HDAC dual-target inhibitors have been obtained in three main ways: uncleavable linked pharmacophores, cleavable linked pharmacophores, and modification of single-target drugs. Their therapeutic efficacy has been verified in vivo and in vitro assays. In this article, we reviewed the research progress of tubulin/HDAC dual inhibitors from design strategies, SARs, and biological activities, which may provide help for the discovery of novel tubulin/HDAC dual inhibitors.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Rui Su
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Junao Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Keyu Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| | - Pinghua Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, PR China.
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| |
Collapse
|
3
|
Karamanolis NN, Kounatidis D, Vallianou NG, Dimitriou K, Tsaroucha E, Tsioulos G, Anastasiou IA, Mavrothalassitis E, Karampela I, Dalamaga M. Unraveling the Anti-Cancer Mechanisms of Antibiotics: Current Insights, Controversies, and Future Perspectives. Antibiotics (Basel) 2024; 14:9. [PMID: 39858295 PMCID: PMC11762948 DOI: 10.3390/antibiotics14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation. Diverse classes of antibiotics have exhibited promising anti-cancer properties in both in vitro and in vivo studies. These mechanisms include the induction of apoptosis and cell cycle arrest, generation of reactive oxygen species, and inhibition of key regulators of cell proliferation and migration. Additional effects involve the disruption of angiogenesis and modulation of pivotal processes such as inflammation, immune response, mitochondrial dynamics, ferroptosis, and autophagy. Furthermore, antibiotics have demonstrated the potential to enhance the efficacy of conventional modalities like chemotherapy and radiotherapy, while alleviating treatment-induced toxicities. Nevertheless, the integration of antibiotics into oncological applications remains contentious, with concerns centered on their disruption of gut microbiota, interference with immunotherapeutic strategies, contribution to microbial resistance, and potential association with tumorigenesis. This narrative review explores the mechanisms of antibiotics' anti-cancer activity, addresses controversies about their dual role in cancer biology, and envisions future perspectives that include the development of novel derivatives and innovative frameworks for their incorporation into cancer treatment paradigms.
Collapse
Affiliation(s)
- Nikolaos Nektarios Karamanolis
- Second Department of Internal Medicine, Hippokratio General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.K.); (K.D.)
| | - Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (I.A.A.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Krystalia Dimitriou
- Second Department of Internal Medicine, Hippokratio General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.K.); (K.D.)
| | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Georgios Tsioulos
- Fourth Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioanna A. Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (I.A.A.)
| | - Evangelos Mavrothalassitis
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12461 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Sharma K, Kumar P, Sharma A, Bari SS, Bhullar G, Sahoo SC, Bhalla A. Dual site reactivity of indole-3-Schiff bases with S/Se/Cl substituted ketenes for stereoselective C-4 substituted indole-β-lactams, biological evaluations, magic chloro effect and molecular docking studies. Bioorg Chem 2024; 147:107337. [PMID: 38626491 DOI: 10.1016/j.bioorg.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
A convenient methodology for C-4 indole-β-lactam hybrids with chloro, sulphur and seleno substitutions through dual site reactivity of indole-3-Schiff bases towards ketenes has been developed. The reaction proceeded in a stereospecific manner with the exclusive formation of trans-β-lactams assigned with respect to C3-H and C4-H. The synthesized novel β-lactams have been characterized with the help of elemental analysis (CHNS) and spectroscopic techniques viz.1H NMR, 13C NMR, DEPT 135, HSQC and IR. The trans configuration was further estabilished based on X-ray crystallographic data. Examination of antibacterial properties unveiled that only derivatives 5a and 5b, featuring chloro substitution, exhibited potent activities, underscoring the emergence of the recently coined term "magic chloro effect". Molecular docking analysis provided additional support for the observed in vitro antibacterial activities of compounds 5a-b.
Collapse
Affiliation(s)
- Kiran Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Pankaj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Amita Sharma
- Department of Botany, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Shamsher S Bari
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gaganpreet Bhullar
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Subhash C Sahoo
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Cen JH, Xie QH, Guo GH, Gao LJ, Liao YH, Zhong XP, Liu HY. Azide-modified corrole phosphorus complexes for endoplasmic reticulum-targeted fluorescence bioimaging and effective cancer photodynamic therapy. Eur J Med Chem 2024; 265:116102. [PMID: 38176359 DOI: 10.1016/j.ejmech.2023.116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Study on corrole photosensitizers (PSs) for photodynamic therapy (PDT) has made remarkable progress. Targeted delivery of PSs is of great significance for enhancing therapeutic efficiency, decreasing the dosage, and reducing systemic toxicity during PDT. The development of PSs that can be specifically delivered to the subcellular organelle is still an attractive and challenging work. Herein, we synthesize a series of azide-modified corrole phosphorus and gallium complex PSs, in which phosphorus corrole 2-P could not only precisely target the endoplasmic reticulum (ER) with a Pearson correlation coefficient (PCC) up to 0.92 but also possesses the highest singlet oxygen quantum yields (ΦΔ = 0.75). This renders it remarkable PDT activity at a very low dosage (IC50 = 23 nM) towards HepG2 tumor cell line while ablating solid tumors in vivo with excellent biosecurity. Furthermore, 2-P exhibits intense red fluorescence (ΦF = 0.25), outstanding photostability, and a large Stokes shift (190 nm), making it a promising fluorescent probe for ER. This study provides a clinically potential photosensitizer for cancer photodynamic therapy and a promising ER fluorescent probe for bioimaging.
Collapse
Affiliation(s)
- Jing-He Cen
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Qi-Hu Xie
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Geng-Hong Guo
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Long-Jiang Gao
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| | - Xiao-Ping Zhong
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
6
|
Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023; 16:299. [PMID: 37259442 PMCID: PMC9965678 DOI: 10.3390/ph16020299] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, β-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Veena Vijayan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jashwanth Naik
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jagat Pal Yadav
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
7
|
Fu DJ, Wang T. Discovery of dual tubulin-NEDDylation inhibitors with antiproliferative activity. J Enzyme Inhib Med Chem 2023; 38:166-175. [PMID: 36330714 PMCID: PMC9639481 DOI: 10.1080/14756366.2022.2136173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although various dual-target tubulin inhibitors have been designed and synthesised, no dual tubulin-NEDDylation inhibitors as antiproliferative agents were reported so far. In this work, a series of trimethoxyphenyl analogues as potential dual tubulin-NEDDylation inhibitors were synthesised and evaluated for their antiproliferative activity. Among them, compound C11 exhibited the most potent inhibitory activity with IC50 values of 1.17, 2.48, and 1.47 μM against HepG2, PC3, and MCF7 cells, respectively. In addition, it displayed the potent inhibitory activity against tubulin with an IC50 value of 2.40 μM and obviously inhibited tubulin polymerisation in HepG2 cells. Furthermore, C11 inhibited NEDDylation by a ATP-dependent manner. Molecular docking studies revealed that the methoxy group and dithiocarbamate group of C11 could form hydrogen bonds with residues of tubulin and E1 NEDD8-activating enzyme (NAE). These results suggested that compound C11 was a dual tubulin-NEDDylation inhibitor with antiproliferative activity.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022; 23:11595. [PMID: 36232899 PMCID: PMC9570335 DOI: 10.3390/ijms231911595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Alin Grig Mihis
- Advanced Materials and Applied Technologies Laboratory, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele Str. 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Designing anticancer combretastatin A-4 analogues with aggregation-induced emission characteristics. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Alsayari A, Muhsinah AB, Asiri YI, Al-aizari FA, Kheder NA, Almarhoon ZM, Ghabbour HA, Mabkhot YN. Synthesis, Characterization, and Biological Evaluation of Some Novel Pyrazolo[5,1- b]thiazole Derivatives as Potential Antimicrobial and Anticancer Agents. Molecules 2021; 26:molecules26175383. [PMID: 34500816 PMCID: PMC8434505 DOI: 10.3390/molecules26175383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022] Open
Abstract
The pharmacological activities of thiazole and pyrazole moieties as antimicrobial and anticancer agents have been thoroughly described in many literature reviews. In this study, a convenient synthesis of novel pyrazolo[5,1-b]thiazole-based heterocycles was carried out. The synthesized compounds were characterized by IR, 1H and 13C NMR spectroscopy and mass spectrometry. Some selected examples were screened and evaluated for their antimicrobial and anticancer activities and showed promising results. These products could serve as leading compounds in the future design of new drug molecules.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.); (A.B.M.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.); (A.B.M.)
| | - Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Faiz A. Al-aizari
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (F.A.A.-a.); (Z.M.A.)
- Department of Chemistry, Faculty of Science, Al-Baydha University, Albaydah 38018, Yemen
| | - Nabila A. Kheder
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (F.A.A.-a.); (Z.M.A.)
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt;
| | - Yahia N. Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
- Correspondence: ; Tel.: +966-1724-19734
| |
Collapse
|
11
|
López-López E, Cerda-García-Rojas CM, Medina-Franco JL. Tubulin Inhibitors: A Chemoinformatic Analysis Using Cell-Based Data. Molecules 2021; 26:2483. [PMID: 33923169 PMCID: PMC8123128 DOI: 10.3390/molecules26092483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibiting the tubulin-microtubules (Tub-Mts) system is a classic and rational approach for treating different types of cancers. A large amount of data on inhibitors in the clinic supports Tub-Mts as a validated target. However, most of the inhibitors reported thus far have been developed around common chemical scaffolds covering a narrow region of the chemical space with limited innovation. This manuscript aims to discuss the first activity landscape and scaffold content analysis of an assembled and curated cell-based database of 851 Tub-Mts inhibitors with reported activity against five cancer cell lines and the Tub-Mts system. The structure-bioactivity relationships of the Tub-Mts system inhibitors were further explored using constellations plots. This recently developed methodology enables the rapid but quantitative assessment of analog series enriched with active compounds. The constellations plots identified promising analog series with high average biological activity that could be the starting points of new and more potent Tub-Mts inhibitors.
Collapse
Affiliation(s)
- Edgar López-López
- Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, Mexico City 07000, Mexico;
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos M. Cerda-García-Rojas
- Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, Mexico City 07000, Mexico;
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
12
|
Fu DJ, Liu SM, Yang JJ, Li J. Novel piperidine derivatives as colchicine binding site inhibitors induce apoptosis and inhibit epithelial-mesenchymal transition against prostate cancer PC3 cells. J Enzyme Inhib Med Chem 2021; 35:1403-1413. [PMID: 32588683 PMCID: PMC7646549 DOI: 10.1080/14756366.2020.1783664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tubulin polymerisation inhibitors that target colchicine binding site were powerful anticancer agents. Although along the years many colchicine binding site inhibitors (CBSIs) have been reported, few piperidine derivatives were identified as CBSIs. In this regard, we focussed efforts on the piperidine as a promising chemotype to develop potent CBSIs. Herein, novel piperidine derivatives were synthesised and evaluated for their antiproliferative activities. Among them, compound 17a displayed powerful anticancer activity with the IC50 value of 0.81 µM against PC3 cells, which was significantly better than 5-fluorouracil. It could inhibit tubulin polymerisation binding at the colchicine site and inhibit the tumour growth in vitro and in vivo. Further biological studies depicted that 17a suppressed the colony formation, induced apoptosis, and inhibited epithelial-mesenchymal transition against PC3 cells. These results revealed that compound 17a is a promising colchicine binding site inhibitor for the treatment of cancer and it is worthy of further exploitation.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Si-Meng Liu
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jia-Jia Yang
- Department of Pharmacy, People's Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
13
|
Xia LY, Zhang YL, Yang R, Wang ZC, Lu YD, Wang BZ, Zhu HL. Tubulin Inhibitors Binding to Colchicine-Site: A Review from 2015 to 2019. Curr Med Chem 2021; 27:6787-6814. [PMID: 31580244 DOI: 10.2174/0929867326666191003154051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022]
Abstract
Due to the three domains of the colchicine-site which is conducive to the combination with small molecule compounds, colchicine-site on the tubulin has become a common target for antitumor drug development, and accordingly, a large number of tubulin inhibitors binding to the colchicine-site have been reported and evaluated over the past years. In this study, tubulin inhibitors targeting the colchicine-site and their application as antitumor agents were reviewed based on the literature from 2015 to 2019. Tubulin inhibitors were classified into ten categories according to the structural features, including colchicine derivatives, CA-4 analogs, chalcone analogs, coumarin analogs, indole hybrids, quinoline and quinazoline analogs, lignan and podophyllotoxin derivatives, phenothiazine analogs, N-heterocycle hybrids and others. Most of them displayed potent antitumor activity, including antiproliferative effects against Multi-Drug-Resistant (MDR) cell lines and antivascular properties, both in vitro and in vivo. In this review, the design, synthesis and the analysis of the structure-activity relationship of tubulin inhibitors targeting the colchicine-site were described in detail. In addition, multi-target inhibitors, anti-MDR compounds, and inhibitors bearing antitumor activity in vivo are further listed in tables to present a clear picture of potent tubulin inhibitors, which could be beneficial for medicinal chemistry researchers.
Collapse
Affiliation(s)
- Lin-Ying Xia
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Ya-Liang Zhang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Rong Yang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Zhong-Chang Wang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Ya-Dong Lu
- Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing 210008, P.R. China
| | - Bao-Zhong Wang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Hai-Liang Zhu
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China
| |
Collapse
|
14
|
Zhu T, Wang SH, Li D, Wang SY, Liu X, Song J, Wang YT, Zhang SY. Progress of tubulin polymerization activity detection methods. Bioorg Med Chem Lett 2021; 37:127698. [PMID: 33468346 DOI: 10.1016/j.bmcl.2020.127698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Tubulin, an important target in tumor therapy, is one of the hotspots in the field of antineoplastic drugs in recent years, and it is of great significance to design and screen new inhibitors for this target. Natural products and chemical synthetic drugs are the main sources of tubulin inhibitors. However, due to the variety of compound structure types, it has always been difficult for researchers to screen out polymerization inhibitors with simple operation, high efficiency and low cost. A large number of articles have reported the screening methods of tubulin inhibitors and their biological activity. In this article, the biological activity detection methods of tubulin polymerization inhibitors are reviewed. Thus, it provides a theoretical basis for the further study of tubulin polymerization inhibitors and the selection of methods for tubulin inhibitors.
Collapse
Affiliation(s)
- Ting Zhu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Hui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Yu Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xu Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Fu DJ, Cui XX, Zhu T, Zhang YB, Hu YY, Zhang LR, Wang SH, Zhang SY. Discovery of novel indole derivatives that inhibit NEDDylation and MAPK pathways against gastric cancer MGC803 cells. Bioorg Chem 2021; 107:104634. [PMID: 33476867 DOI: 10.1016/j.bioorg.2021.104634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
A series of novel indole derivatives were synthesized and evaluated for their antiproliferative activity against three selected cancer cell lines (MGC803, EC-109 and PC-3). Among these analogues, 2-(5-methoxy-1H-indol-1-yl)-N-(4-methoxybenzyl)-N-(3,4,5-trimethoxyphenyl)acetamide (V7) showed the best inhibitory activity against MGC803 cells with an IC50 value of 1.59 μM. Cellular mechanisms elucidated that V7 inhibited colony formation, induced apoptosis and arrested cell cycle at G2/M phase. Importantly, indole analogue V7 inhibited NEDDylation pathway and MAPK pathway against MGC803 cells.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xin-Xin Cui
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Zhu
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yan-Bing Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yang-Yang Hu
- Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Li-Rong Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Hui Wang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
16
|
Fu DJ, Liu SM, Li FH, Yang JJ, Li J. Antiproliferative benzothiazoles incorporating a trimethoxyphenyl scaffold as novel colchicine site tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2020; 35:1050-1059. [PMID: 32299262 PMCID: PMC7178834 DOI: 10.1080/14756366.2020.1753721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Tubulin polymerisation inhibitors exhibited an important role in the treatment of patients with prostate cancer. Herein, we reported the medicinal chemistry efforts leading to a new series of benzothiazoles by a bioisosterism approach. Biological testing revealed that compound 12a could significantly inhibit in vitro tubulin polymerisation of a concentration dependent manner, with an IC50 value of 2.87 μM. Immunofluorescence and EBI competition assay investigated that compound 12a effectively inhibited tubulin polymerisation and directly bound to the colchicine-binding site of β-tubulin in PC3 cells. Docking analysis showed that 12a formed hydrogen bonds with residues Tyr357, Ala247 and Val353 of tubulin. Importantly, it displayed the promising antiproliferative ability against C42B, LNCAP, 22RV1 and PC3 cells with IC50 values of 2.81 μM, 4.31 μM, 2.13 μM and 2.04 μM, respectively. In summary, compound 12a was a novel colchicine site tubulin polymerisation inhibitor with potential to treat prostate cancer.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Si-Meng Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Fu-Hao Li
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jia-Jia Yang
- Department of Pharmacy, People's Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
17
|
Twamley B, O’Boyle NM, Meegan MJ. Azetidin-2-ones: structures of anti-mitotic compounds based on the 1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one core. Acta Crystallogr E Crystallogr Commun 2020; 76:1187-1194. [PMID: 32843997 PMCID: PMC7405576 DOI: 10.1107/s2056989020008555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 11/15/2022]
Abstract
A series of related substituted 1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-ones have been characterized: 3-(4-fluoro-phen-yl)-4-(4-meth-oxy-phen-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C25H24FNO5 (1), 3-(furan-2-yl)-4-(4-meth-oxy-phen-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C23H23NO6 (2), 4-(4-meth-oxyphen-yl)-3-(naphthalen-1-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C29H27NO5 (3), 3-(3,4-di-meth-oxy-phen-yl)-4-(4-meth-oxy-phen-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C27H29NO7 (4) and 4,4-bis-(4-meth-oxy-phen-yl)-3-phenyl-1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one, C32H31NO6 (5). All of the compounds are racemic. The lactam and 3,4,5-tri-meth-oxy-phenyl rings are approximately co-planar and the orientation of the lactam and the 4-meth-oxy-phenyl substituent is approximately orthogonal. The chiral centres, although eclipsed by geometry, have torsion angles ranging from -7.27 to 13.08° for the 3 position, and -8.69 to 13.76° for the 4 position of the β-lactam. The structures display intra-molecular C-H⋯O bonding between the 3,4,5-tri-meth-oxy-phenyl ring and the lactam ketone. Further C-H⋯O inter-actions are observed and form either an opposing meth-oxy 'buckle' to join two mol-ecules together or a cyclic dimer.
Collapse
Affiliation(s)
- Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, Ireland
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, Ireland
| |
Collapse
|
18
|
Discovery of tertiary amide derivatives incorporating benzothiazole moiety as anti-gastric cancer agents in vitro via inhibiting tubulin polymerization and activating the Hippo signaling pathway. Eur J Med Chem 2020; 203:112618. [PMID: 32682200 DOI: 10.1016/j.ejmech.2020.112618] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
On the basis and continuation of our previous studies on anti-tubulin and anti-gastric cancer agents, novel tertiary amide derivatives incorporating benzothiazole moiety were synthesized and the antiproliferative activity was studied in vitro. Preliminary structure activity relationships (SARs) were explored according to the in vitro antiproliferative activity results. Some of compounds could significantly inhibit the proliferation of three cancer cells (HCT-116, MGC-803 and PC-3 cells) and compound F10 exhibited excellent antiproliferative activity against HCT-116 cells (IC50 = 0.182 μM), MGC-803 cells (IC50 = 0.035 μM), PC-3 cells(IC50 = 2.11 μM) and SGC-7901 cells (IC50 = 0.049 μM). Compound F10 effectively inhibited tubulin polymerization (IC50 = 1.9 μM) and bound to colchicine binding site of tubulin. Molecular docking results suggested compound F10 could bind tightly into the colchicine binding site of β-tubulin. Moreover, compound F10 could regulate the Hippo/YAP signaling pathway. Compound F10 activated Hippo signaling pathway from its very beginning MST1/2, as the result of Hippo cascade activation YAP were inhibited. And then it led to a decrease of c-Myc and Bcl-2 expression. Further molecular experiments showed that compound F10 arrested at G2/M phase, inhibited cell colony formatting and induced extrinsic and intrinsic apoptosis in MGC-803 and SGC-7901 cells. Collectively, compound F10 was the first to be reported as a new anticancer agent in vitro via inhibiting tubulin polymerization and activating the Hippo signaling pathway.
Collapse
|
19
|
Fu DJ, Zhang YF, Chang AQ, Li J. β-Lactams as promising anticancer agents: Molecular hybrids, structure activity relationships and potential targets. Eur J Med Chem 2020; 201:112510. [PMID: 32592915 DOI: 10.1016/j.ejmech.2020.112510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
β-Lactam, commonly referred as azetidin-2-one, is a multifunctional building block for synthesizing β-amino ketones, γ-amino alcohols, and other compounds. Besides its well known antibiotic activity, this ring system exhibits a wide range of activities, attracting the attention of researchers. However, the structurally diverse β-lactam analogues as anticancer agents and their different molecular targets are poorly discussed. The purpose of this review is 3-fold: (1) to explore the molecular hybridization approach to design β-lactams hybrids as anticancer agents; (2) the structure activity relationship of the most active anticancer β-lactams and (3) to summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yun-Feng Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - An-Qi Chang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
20
|
da Silveira Pinto LS, Vasconcelos TRA, Gomes CRB, de Souza MVN. A Brief Review on the Development of Novel Potentially Active Azetidin-2-ones Against Cancer. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200303115444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Azetidin-2-ones (β-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.
Collapse
Affiliation(s)
- Ligia S. da Silveira Pinto
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica. Outeiro de Sao Joao Batista, s/no, Centro, Niteroi, 24020-141, Rio de Janeiro, Brazil
| | - Thatyana R. Alves Vasconcelos
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica. Outeiro de Sao Joao Batista, s/no, Centro, Niteroi, 24020-141, Rio de Janeiro, Brazil
| | - Claudia Regina B. Gomes
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos-Farmanguinhos. Rua Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil
| | - Marcus Vinícius N. de Souza
- Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos-Farmanguinhos. Rua Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Malebari AM, Fayne D, Nathwani SM, O'Connell F, Noorani S, Twamley B, O'Boyle NM, O'Sullivan J, Zisterer DM, Meegan MJ. β-Lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells. Eur J Med Chem 2020; 189:112050. [PMID: 31954879 DOI: 10.1016/j.ejmech.2020.112050] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022]
Abstract
A series of novel 1,4-diaryl-2-azetidinone analogues of combretastatin A-4 (CA-4) have been designed, synthesised and evaluated in vitro for antiproliferative activity, antiapoptotic activity and inhibition of tubulin polymerisation. Glucuronidation of CA-4 by uridine 5-diphosphoglucuronosyl transferase enzymes (UGTs) has been identified as a mechanism of resistance in cancer cells. Potential sites of ring B glucuronate conjugation are removed by replacing the B ring meta-hydroxy substituent of selected series of β-lactams with alternative substituents e.g. F, Cl, Br, I, CH3. The 3-phenyl-β-lactam 11 and 3-hydroxy-β-lactam 46 demonstrate improved activity over CA-4 in CA-4 resistant HT-29 colon cancer cells (IC50 = 9 nM and 3 nM respectively compared with IC50 = 4.16 μM for CA-4), while retaining potency in MCF-7 breast cancer cells (IC50 = 17 nM and 22 nM respectively compared with IC50 = for 4 nM for CA-4). Compound 46 binds at the colchicine site of tubulin, and strongly inhibits tubulin assembly at micromolar concentrations comparable to CA-4. In addition, compound 46 induced mitotic arrest at low concentration in both cell lines MCF-7 and HT-29 together with downregulation of expression of antiapoptotic proteins Mcl-1, Bcl-2 and survivin in MCF-7 cells. These novel antiproliferative and antiapoptotic β-lactams are potentially useful scaffolds in the development of tubulin-targeting agents for the treatment of breast cancers and chemoresistant colon cancers.
Collapse
Affiliation(s)
- Azizah M Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Darren Fayne
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Seema M Nathwani
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Fiona O'Connell
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, Dublin 2, Ireland
| | - Sara Noorani
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, Dublin 2, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mary J Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
22
|
Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals (Basel) 2020; 13:ph13010008. [PMID: 31947889 PMCID: PMC7168938 DOI: 10.3390/ph13010008] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
It is over 50 years since the discovery of microtubules, and they have become one of the most important drug targets for anti-cancer therapies. Microtubules are predominantly composed of the protein tubulin, which contains a number of different binding sites for small-molecule drugs. There is continued interest in drug development for compounds targeting the colchicine-binding site of tubulin, termed colchicine-binding site inhibitors (CBSIs). This review highlights CBSIs discovered through diverse sources: from natural compounds, rational design, serendipitously and via high-throughput screening. We provide an update on CBSIs reported in the past three years and discuss the clinical status of CBSIs. It is likely that efforts will continue to develop CBSIs for a diverse set of cancers, and this review provides a timely update on recent developments.
Collapse
|
23
|
Antiproliferative Evaluation In Vitro of a New Chalcone Inducing Apoptosis by ROS Generation Against MGC-803 Cells. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02034-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Jian-Song, Gao QL, Wu BW, Li D, Shi L, Zhu T, Lou JF, Jin CY, Zhang YB, Zhang SY, Liu HM. Novel tertiary sulfonamide derivatives containing benzimidazole moiety as potent anti-gastric cancer agents: Design, synthesis and SAR studies. Eur J Med Chem 2019; 183:111731. [PMID: 31577977 DOI: 10.1016/j.ejmech.2019.111731] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/08/2019] [Accepted: 09/21/2019] [Indexed: 12/30/2022]
Abstract
With the expectation to find out new anti-gastric cancer agents with high efficacy and selectivity, a series of novel tertiary sulfonamide derivatives were synthesized and the anti-cancer activity was studied in three selected cancer cell lines (MGC-803, PC-3, MCF-7) in vitro. Some of the synthesized compounds could significantly inhibit the proliferation of these tested cancer cells and were more potent than the positive control (5-Fu). The structure-activity relationship of tertiary sulfonamide derivatives was explored in this report. Among the tested compounds, compound 13g containing benzimidazole moiety showed the best anti-proliferation activities against MGC-803 cells (IC50 = 1.02 μM), HGC-27 cells (IC50 = 1.61 μM), SGC-7901 (IC50 = 2.30 μM) cells as well as the good selectivity between the cancer and normal cells. Cellular mechanism studies elucidated compound 13g inhibited the colony formation of gastric cancer cell lines. Meanwhile, compound 13g arrested cell cycle at G2/M phase and induced cell apoptosis. Mechanistically, compound 13g markedly decreased p-Akt and p-c-Raf expression, which revealed that compound 13g targeted gastric cancer cell lines via interfering with AKT/mTOR and RAS/Raf/MEK/ERK pathways. All the findings suggest that compound 13g might be a valuable lead compound for the anti-gastric cancer agents.
Collapse
Affiliation(s)
- Jian-Song
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Lei Gao
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Bo-Wen Wu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Li
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Shi
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Zhu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jian-Feng Lou
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yan-Bing Zhang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
25
|
El-Kardocy A, Mustafa M, Ahmed ER, Mohamady S, Mostafa YA. Aryl azide-sulfonamide hybrids induce cellular apoptosis: synthesis and preliminary screening of their cytotoxicity in human HCT116 and A549 cancer cell lines. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02438-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Discovery of indoline derivatives that inhibit esophageal squamous cell carcinoma growth by Noxa mediated apoptosis. Bioorg Chem 2019; 92:103190. [PMID: 31465969 DOI: 10.1016/j.bioorg.2019.103190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/27/2019] [Accepted: 08/08/2019] [Indexed: 11/23/2022]
Abstract
A series of novel indoline derivatives were synthesized and evaluated for antiproliferative activity against four selected cancer cell lines (Hela, A549, HepG2 and KYSE30). Among them, compound 20 displayed the potent inhibition activity against esophageal cancer cells (Kyse30, Kyse450, Kyse510 and EC109). Cellular mechanism studies in esophageal squamous cell carcinoma (ESCC) cells elucidated compound 20 inhibited cell growths in vitro and in vivo, reduced colony formation, arrested cell cycle at M phase, and induced Noxa-dependent apoptosis in ESCC. Importantly, compound 20 was identified as a novel Noxa mediated apoptosis inducer. These results suggested that compound 20 might be a promising anticancer agent with potential for development of further clinical applications.
Collapse
|
27
|
Fu DJ, Li JH, Yang JJ, Li P, Zhang YB, Liu S, Li ZR, Zhang SY. Discovery of novel chalcone-dithiocarbamates as ROS-mediated apoptosis inducers by inhibiting catalase. Bioorg Chem 2019; 86:375-385. [DOI: 10.1016/j.bioorg.2019.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 01/14/2023]
|
28
|
Wang S, Malebari AM, Greene TF, O'Boyle NM, Fayne D, Nathwani SM, Twamley B, McCabe T, Keely NO, Zisterer DM, Meegan MJ. 3-Vinylazetidin-2-Ones: Synthesis, Antiproliferative and Tubulin Destabilizing Activity in MCF-7 and MDA-MB-231 Breast Cancer Cells. Pharmaceuticals (Basel) 2019; 12:ph12020056. [PMID: 30979033 PMCID: PMC6630832 DOI: 10.3390/ph12020056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022] Open
Abstract
Microtubule-targeted drugs are essential chemotherapeutic agents for various types of cancer. A series of 3-vinyl-β-lactams (2-azetidinones) were designed, synthesized and evaluated as potential tubulin polymerization inhibitors, and for their antiproliferative effects in breast cancer cells. These compounds showed potent activity in MCF-7 breast cancer cells with an IC50 value of 8 nM for compound 7s 4-[3-Hydroxy-4-methoxyphenyl]-1-(3,4,5-trimethoxyphenyl)-3-vinylazetidin-2-one) which was comparable to the activity of Combretastatin A-4. Compound 7s had minimal cytotoxicity against both non-tumorigenic HEK-293T cells and murine mammary epithelial cells. The compounds inhibited the polymerisation of tubulin in vitro with an 8.7-fold reduction in tubulin polymerization at 10 μM for compound 7s and were shown to interact at the colchicine-binding site on tubulin, resulting in significant G2/M phase cell cycle arrest. Immunofluorescence staining of MCF-7 cells confirmed that β-lactam 7s is targeting tubulin and resulted in mitotic catastrophe. A docking simulation indicated potential binding conformations for the 3-vinyl-β-lactam 7s in the colchicine domain of tubulin. These compounds are promising candidates for development as antiproiferative microtubule-disrupting agents.
Collapse
Affiliation(s)
- Shu Wang
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, 2 DO2R590 Dublin, Ireland.
| | - Azizah M Malebari
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, 2 DO2R590 Dublin, Ireland.
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Thomas F Greene
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, 2 DO2R590 Dublin, Ireland.
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, 2 DO2R590 Dublin, Ireland.
| | - Darren Fayne
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, 2 DO2R590 Dublin, Ireland.
| | - Seema M Nathwani
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, 2 DO2R590 Dublin, Ireland.
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, 2 DO2R590 Dublin, Ireland.
| | - Thomas McCabe
- School of Chemistry, Trinity College Dublin, 2 DO2R590 Dublin, Ireland.
| | - Niall O Keely
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, 2 DO2R590 Dublin, Ireland.
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, 2 DO2R590 Dublin, Ireland.
| | - Mary J Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, 2 DO2R590 Dublin, Ireland.
| |
Collapse
|
29
|
Antiproliferative Evaluation of (E)-3-(3-(Allyloxy)-2-Methoxyphenyl)-1-(2,4,6-Trimethoxyphenyl)Prop-2-En-1-One as a Novel Apoptosis Inducer Against Prostate Cancer PC-3 Cells. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Fu DJ, Li P, Wu BW, Cui XX, Zhao CB, Zhang SY. Molecular diversity of trimethoxyphenyl-1,2,3-triazole hybrids as novel colchicine site tubulin polymerization inhibitors. Eur J Med Chem 2019; 165:309-322. [PMID: 30690300 DOI: 10.1016/j.ejmech.2019.01.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Structurally diverse trimethoxyphenyl-1,2,3-triazole hybrids were designed, synthesized and evaluated for their antiproliferative activity against three cancer cell lines (PC3, MGC803 and HepG2). Among them, trimethoxyphenyl-1,2,3-triazole containing the coumarin fragement 19c displayed better antiproliferative activity results with IC50 values from 0.13 μM to 1.74 μM than anticancer drug colchicine. Compound 19c could inhibit MGC803 cell growth and colony formation, induce G2/M phase arrest by down expression of CDK1, and promote apoptosis by regulating DR5 and Bcl-2 family. Moreover, 19c strongly inhibited tubulin polymerization by interacting with the colchicine site.
Collapse
Affiliation(s)
- Dong-Jun Fu
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Ping Li
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo-Wen Wu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin-Xin Cui
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Cheng-Bin Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sai-Yang Zhang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China; The Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
31
|
Abstract
Piplartine is an alkamide found in different Piper species and possesses several biological activities, including antiparasitic properties. Thus, the aim of the present study was to evaluate a series of 32 synthetic piplartine analogues against the Leishmania amazonensis promastigote forms and establish the structure-activity relationship and 3D-QSAR of these compounds. The antileishmanial effect of the compounds was determined using the MTT method. Most compounds were found to be active against L. amazonensis. Among 32 assayed derivatives, compound (E)-(−)-bornyl 3-(3,4,5-trimethoxyphenyl)-acrylate exhibited the most potent antileishmanial activity (IC50 = 0.007 ± 0.008 μM, SI > 10), followed by benzyl 3,4,5-trimethoxybenzoate (IC50 = 0.025 ± 0.009 μM, SI > 3.205) and (E)-furfuryl 3-(3,4,5-trimethoxyphenyl)-acrylate (IC50 = 0.029 ± 0.007 μM, SI > 2.688). It was found that the rigid substituents contribute to increasing antiparasitic activity against L. amazonensis promastigotes. The presence of the unsaturated heterocyclic substituent in the phenylpropanoid chemical structure (furfuryl group) resulted in a bioactive derivative. Molecular simplification of benzyl 3,4,5-trimethoxybenzoate by omitting the spacer group contributed to the bioactivity of this compound. Furthermore, bornyl radical appears to be important for antileishmanial activity, since (E)-(−)-bornyl 3-(3,4,5-trimethoxyphenyl)-acrylate exhibited the most potent antileishmanial activity. These results show that some derivatives studied would be useful as prototype molecules for the planning of new derivatives with profile of antileishmanial drugs.
Collapse
|
32
|
Fu DJ, Yang JJ, Li P, Hou YH, Huang SN, Tippin MA, Pham V, Song L, Zi X, Xue WL, Zhang LR, Zhang SY. Bioactive heterocycles containing a 3,4,5-trimethoxyphenyl fragment exerting potent antiproliferative activity through microtubule destabilization. Eur J Med Chem 2018; 157:50-61. [PMID: 30075402 DOI: 10.1016/j.ejmech.2018.07.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Novel bioactive heterocycles containing a 3,4,5-trimethoxyphenyl fragment as antiproliferative agents by targeting tubulin were synthesized and their preliminary structure activity relationships (SARs) were explored. Among all these chemical agents, 2-(Benzo[d]oxazol-2-ylthio)-N-(4-methoxybenzyl)-N-(3,4,5-trimethoxyphenyl)acetamide (4d) exhibited the potent antiproliferative activity against MGC-803 cells with an IC50 value of 0.45 μM by induction of G2/M pahse arrest and cell apoptosis. In addition, 4d could change the membrane potential (ΔΨ) of the mitochondria against MGC-803 cells. Importantly, 4d acted as a novel tubulin polymerization inhibitor binding to colchicine site with an IC50 value of 3.35 μM.
Collapse
Affiliation(s)
- Dong-Jun Fu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Jia Yang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Ping Li
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Hui Hou
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Nan Huang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | | | - Victor Pham
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Liankun Song
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Wei-Li Xue
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Li-Rong Zhang
- School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
33
|
Guo S, Zhen Y, Guo M, Zhang L, Zhou G. Design, synthesis and antiproliferative evaluation of novel sulfanilamide-1,2,3-triazole derivatives as tubulin polymerization inhibitors. Invest New Drugs 2018; 36:1147-1157. [PMID: 30019099 DOI: 10.1007/s10637-018-0632-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/27/2018] [Indexed: 11/29/2022]
Abstract
Microtubule as an important target in the cancer therapy was used to design novel tubulin polymerization inhibitors. Sulfanilamide-1,2,3-triazole hybrids were designed by a molecular hybridization strategy and their antiproliferative activity against three selected cancer cell lines (BGC-823, MGC-803 and SGC-7901) were evaluated. All sulfanilamide-1,2,3-triazole hybrids displayed potent inhibitory activity against all cell lines. In particular, compound 10b showed the most excellent inhibitory effect against MGC-803 cells, with an IC50 value of 0.4 μM. Cellular mechanism studies elucidated that 10b induced apoptosis by decreasing the expression level of Bcl-2 and Parp and increasing the expression level of BAX. 10b inhibited the epithelial-mesenchymal transition process by up-regulating E-cadherin and down-regulating N-cadherin. Furthermore, the tubulin polymerization inhibitory activity in vitro of 10b was 2.4 μM. In vivo anticancer assay, 10b effectively inhibited MGC-803 xenograft tumor growth without causing significant loss of body weight. These sulfanilamide-1,2,3-triazole hybrids as potent tubulin polymerization inhibitors might be used as promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Shewei Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yingwei Zhen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mengguo Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Longzhou Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guosheng Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|