1
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
2
|
Wu C, Liu H, Zhong D, Yang X, Liao Z, Chen Y, Zhang S, Su D, Zhang B, Li C, Tian L, Xu C, Su P. Mapk7 deletion in chondrocytes causes vertebral defects by reducing MEF2C/PTEN/AKT signaling. Genes Dis 2024; 11:964-977. [PMID: 37692479 PMCID: PMC10491872 DOI: 10.1016/j.gendis.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Mutation of the MAPK7 gene was related to human scoliosis. Mapk7 regulated the development of limb bones and skulls in mice. However, the role of MAPK7 in vertebral development is still unclear. In this study, we constructed Col2a1-cre; Mapk7f/f transgenic mouse model to delete Mapk7 in cartilage, which displayed kyphosis and osteopenia. Mechanistically, Mapk7 loss decreased MEF2C expression and thus activated PTEN to oppose PI3K/AKT signaling in vertebral growth plate chondrocytes, which impaired chondrocyte hypertrophy and attenuated vertebral ossification. In vivo, systemic pharmacological activation of AKT rescued impaired chondrocyte hypertrophy and alleviated mouse vertebral defects caused by Mapk7 deficiency. Our study firstly clarified the mechanism by which MAPK7 was involved in vertebral development, which might contribute to understanding the pathology of spinal deformity and provide a basis for the treatment of developmental disorders of the spine.
Collapse
Affiliation(s)
- Chengzhi Wu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hengyu Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dongmei Zhong
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhiheng Liao
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuyu Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shun Zhang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Baolin Zhang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chuan Li
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Liru Tian
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peiqiang Su
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
3
|
Kim C. Extracellular Signal-Regulated Kinases Play Essential but Contrasting Roles in Osteoclast Differentiation. Int J Mol Sci 2023; 24:15342. [PMID: 37895023 PMCID: PMC10607827 DOI: 10.3390/ijms242015342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bone homeostasis is regulated by the balanced actions of osteoblasts that form the bone and osteoclasts (OCs) that resorb the bone. Bone-resorbing OCs are differentiated from hematopoietic monocyte/macrophage lineage cells, whereas osteoblasts are derived from mesenchymal progenitors. OC differentiation is induced by two key cytokines, macrophage colony-stimulating factor (M-CSF), a factor essential for the proliferation and survival of the OCs, and receptor activator of nuclear factor kappa-B ligand (RANKL), a factor for responsible for the differentiation of the OCs. Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases, play an essential role in regulating the proliferation, differentiation, and function of OCs. ERKs have been known to play a critical role in the differentiation and activation of OCs. In most cases, ERKs positively regulate OC differentiation and function. However, several reports present conflicting conclusions. Interestingly, the inhibition of OC differentiation by ERK1/2 is observed only in OCs differentiated from RAW 264.7 cells. Therefore, in this review, we summarize the current understanding of the conflicting actions of ERK1/2 in OC differentiation.
Collapse
Affiliation(s)
- Chaekyun Kim
- BK21 Program in Biomedical Science & Engineering, Laboratory for Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Greenblatt MB, Shim JH, Bok S, Kim JM. The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. J Bone Metab 2022; 29:1-15. [PMID: 35325978 PMCID: PMC8948490 DOI: 10.11005/jbm.2022.29.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
- Research Division, Hospital for Special Surgery, New York, NY,
USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
- Horae Gene Therapy Center, and Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA,
USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
| | - Jung-Min Kim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
| |
Collapse
|
5
|
Paudel R, Fusi L, Schmidt M. The MEK5/ERK5 Pathway in Health and Disease. Int J Mol Sci 2021; 22:ijms22147594. [PMID: 34299213 PMCID: PMC8303459 DOI: 10.3390/ijms22147594] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.
Collapse
|
6
|
Deshet-Unger N, Kolomansky A, Ben-Califa N, Hiram-Bab S, Gilboa D, Liron T, Ibrahim M, Awida Z, Gorodov A, Oster HS, Mittelman M, Rauner M, Wielockx B, Gabet Y, Neumann D. Erythropoietin receptor in B cells plays a role in bone remodeling in mice. Theranostics 2020; 10:8744-8756. [PMID: 32754275 PMCID: PMC7392011 DOI: 10.7150/thno.45845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a key regulator of erythropoiesis. However, EPO receptors (EPO-Rs) are also expressed on non-erythroid cell types, including myeloid and bone cells. Immune cells also participate in bone homeostasis. B cells produce receptor activator of nuclear factor kappa-Β ligand (RANKL) and osteoprotegerin (OPG), two pivotal regulators of bone metabolism. Here we explored the ability of B cells to transdifferentiate into functional osteoclasts and examined the role of EPO in this process in a murine model. Methods: We have combined specifically-designed experimental mouse models and in vitro based osteoclastogenesis assays, as well as PCR analysis of gene expression. Results: (i) EPO treatment in vivo increased RANKL expression in bone marrow (BM) B cells, suggesting a paracrine effect on osteoclastogenesis; (ii) B cell-derived osteoclastogenesis occured in vivo and in vitro, as demonstrated by B cell lineage tracing in murine models; (iii) B-cell-derived osteoclastogenesis in vitro was restricted to Pro-B cells expressing CD115/CSF1-R and is enhanced by EPO; (iv) EPO treatment increased the number of B-cell-derived preosteoclasts (β3+CD115+), suggesting a physiological rationale for B cell derived osteoclastogenesis; (v) finally, mice with conditional EPO-R knockdown in the B cell lineage (cKD) displayed a higher cortical and trabecular bone mass. Moreover, cKD displayed attenuated EPO-driven trabecular bone loss, an effect that was observed despite the fact that cKD mice attained higher hemoglobin levels following EPO treatment. Conclusions: Our work highlights B cells as an important extra-erythropoietic target of EPO-EPO-R signaling and suggests their involvement in the regulation of bone homeostasis and possibly in EPO-stimulated erythropoietic response. Importantly, we present here for the first time, histological evidence for B cell-derived osteoclastogenesis in vivo.
Collapse
|
7
|
Ma C, Geng B, Zhang X, Li R, Yang X, Xia Y. Fluid Shear Stress Suppresses Osteoclast Differentiation in RAW264.7 Cells through Extracellular Signal-Regulated Kinase 5 (ERK5) Signaling Pathway. Med Sci Monit 2020; 26:e918370. [PMID: 31914120 PMCID: PMC6977602 DOI: 10.12659/msm.918370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Although extracellular signal-regulated kinase 5 (ERK5) is known to be critical for osteoclast differentiation, there are few studies on how fluid shear stress (FSS) regulates osteoclast differentiation through the ERK5 signaling pathway. We examined the expression of nuclear factor of activated T cells c1 (NFATc1) in RAW264.7 cells and its downstream factors, including cathepsin K (CTSK), tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinases-9 (MMP-9) and their relationship with ERK5. Material/Methods RAW264.7 cells were treated with RANKL, XMD8-92 (ERK5 inhibitor), and then loaded onto 12 dyn/cm2 FSS for 4 days. Endpoints measured were osteoclast differentiation, bone resorption, and TRAP activity. Cell viability was detected by using the Cell Counting Kit-8 (CCK-8) assay. Western blot was used to analyze protein expression of phosphorylated-ERK5 (p-ERK5), NFATc1, CTSK, TRAP, and MMP-9. Results FSS inhibited osteoclast differentiation and expression of NFATc1, CTSK, TRAP, and MMP-9; cell viability was not affected. ERK5 expression increased by FSS but not by RANKL, and it was blocked by XMD8-92. Furthermore, FSS suppressed osteoclast differentiation in RAW264.7 cells through ERK5 pathway. Conclusions Our findings demonstrated that FSS inhibited osteoclast differentiation in RAW264.7 cells via the ERK5 pathway through reduced NFATc1 expression and its downstream factors MMP-9, CTSK, and TRAP.
Collapse
Affiliation(s)
- Chongwen Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xiaohui Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Rui Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xinxin Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
8
|
Lee K, Seo I, Choi MH, Jeong D. Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology. Int J Mol Sci 2018; 19:ijms19103004. [PMID: 30275408 PMCID: PMC6213329 DOI: 10.3390/ijms19103004] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 01/20/2023] Open
Abstract
Bone undergoes continuous remodeling, which is homeostatically regulated by concerted communication between bone-forming osteoblasts and bone-degrading osteoclasts. Multinucleated giant osteoclasts are the only specialized cells that degrade or resorb the organic and inorganic bone components. They secrete proteases (e.g., cathepsin K) that degrade the organic collagenous matrix and establish localized acidosis at the bone-resorbing site through proton-pumping to facilitate the dissolution of inorganic mineral. Osteoporosis, the most common bone disease, is caused by excessive bone resorption, highlighting the crucial role of osteoclasts in intact bone remodeling. Signaling mediated by mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, has been recognized to be critical for normal osteoclast differentiation and activation. Various exogenous (e.g., toll-like receptor agonists) and endogenous (e.g., growth factors and inflammatory cytokines) stimuli contribute to determining whether MAPKs positively or negatively regulate osteoclast adhesion, migration, fusion and survival, and osteoclastic bone resorption. In this review, we delineate the unique roles of MAPKs in osteoclast metabolism and provide an overview of the upstream regulators that activate or inhibit MAPKs and their downstream targets. Furthermore, we discuss the current knowledge about the differential kinetics of ERK, JNK, and p38, and the crosstalk between MAPKs in osteoclast metabolism.
Collapse
Affiliation(s)
- Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| | - Incheol Seo
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| | - Mun Hwan Choi
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| |
Collapse
|
9
|
Cheung L, Le Tissier P, Goldsmith SGJ, Treier M, Lovell-Badge R, Rizzoti K. NOTCH activity differentially affects alternative cell fate acquisition and maintenance. eLife 2018; 7:e33318. [PMID: 29578405 PMCID: PMC5889214 DOI: 10.7554/elife.33318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/24/2018] [Indexed: 01/08/2023] Open
Abstract
The pituitary is an essential endocrine gland regulating multiple processes. Regeneration of endocrine cells is of therapeutic interest and recent studies are promising, but mechanisms of endocrine cell fate acquisition need to be better characterised. The NOTCH pathway is important during pituitary development. Here, we further characterise its role in the murine pituitary, revealing differential sensitivity within and between lineages. In progenitors, NOTCH activation blocks cell fate acquisition, with time-dependant modulation. In differentiating cells, response to activation is blunted in the POU1F1 lineage, with apparently normal cell fate specification, while POMC cells remain sensitive. Absence of apparent defects in Pou1f1-Cre; Rbpjfl/fl mice further suggests no direct role for NOTCH signalling in POU1F1 cell fate acquisition. In contrast, in the POMC lineage, NICD expression induces a regression towards a progenitor-like state, suggesting that the NOTCH pathway specifically blocks POMC cell differentiation. These results have implications for pituitary development, plasticity and regeneration. Activation of NOTCH signalling in different cell lineages of the embryonic murine pituitary uncovers an unexpected differential sensitivity, and this consequently reveals new aspects of endocrine lineages development and plasticity.
Collapse
Affiliation(s)
- Leonard Cheung
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Paul Le Tissier
- Centre for Discovery Brain ScienceIntegrative PhysiologyEdinburghUnited Kingdom
| | | | - Mathias Treier
- Cardiovascular and Metabolic SciencesMax Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité-Universitätsmedizin BerlinBerlinGermany
| | | | | |
Collapse
|