1
|
Lu X, Zhan X, Xia G, Wang F, Lv M, Liu R, Liu Y, Zi C, Li G, Wang R, Li J, Yuan F, Jia D. Improving Targeted Delivery and Antitumor Efficacy of TRAIL through Fusion with a B7H3-Antagonistic Affibody. Mol Pharm 2025; 22:284-294. [PMID: 39620978 DOI: 10.1021/acs.molpharmaceut.4c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive candidate for anticancer therapeutics due to its efficient pro-apoptotic activity against tumor cells and its well-tolerated safety profile. However, the in vivo antitumor efficacy of TRAIL is often limited by its poor tumor targeting capacity. Nowadays, the B7 homologue 3 (B7-H3) immune checkpoint has emerged as a promising target for tumor immunotherapy and drug delivery. Here, we report the achievement of tumor-targeted delivery of TRAIL by genetically fusing it with a B7H3-antagonistic affibody. The affibody-TRAIL fusion protein, named ACT, was easily expressed in Escherichia coli with a high yield and could form the active trimeric state. In vitro ACT showed significantly increased cellular binding to multiple B7H3-positive tumor cells and improved cytotoxicity by 2-3 times compared to the parent TRAIL. In vivo ACT demonstrated a 2.4-fold higher tumor uptake than TRAIL in mice bearing B7H3-positive A431 tumor grafts. More importantly, ACT exhibited significantly improved antitumor efficacy against tumors in vivo. In addition, ACT treatment did not cause body weight loss or histopathological changes in the major organs of mice, indicating its good safety profile. Overall, our findings demonstrate that targeting B7H3 to enhance TRAIL delivery is a viable approach to improve its therapeutic efficacy, and ACT may be a potential agent for targeted therapy of B7H3-positive tumors.
Collapse
Affiliation(s)
- Xiaomeng Lu
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xinyu Zhan
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Guozi Xia
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Feifei Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Mingjia Lv
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Renwei Liu
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yuxue Liu
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Chen Zi
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi 276034, China
| | - Guangyong Li
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Rui Wang
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jun Li
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Dianlong Jia
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Luo J, Zhang L, Shen F, Luo L, Chen L, Fan Z, Hou R, Yue B, Zhang X. Blood transcriptome analysis revealing aging gene expression profiles in red panda. PeerJ 2022; 10:e13743. [PMID: 35898935 PMCID: PMC9310792 DOI: 10.7717/peerj.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/27/2022] [Indexed: 01/17/2023] Open
Abstract
The red panda is an endangered forest species distributed on the edge of the Qinghai Tibet Plateau. The species has been conserved in ex-situ in many countries and its survival is threatened by many diseases. Its immune system is vulnerable to age-associated alterations, which accumulate and result in a progressive deterioration that leads to an increased incidence of diseases. We identified 2,219 differentially expressed genes (DEGs) between geriatric (11-16 years) and adult individuals (4-8 years), and 1690 DEGs between adults and juveniles (1 year). The gene expression and functional annotation results showed that the innate immunity of red pandas increases significantly in geriatric individuals, whereas its change remains unclear when comparing adults and juveniles. We found that the adaptive immunity of red pandas first increased and then decreased with age. We identified CXCR3, BLNK, and CCR4 as the hub genes in the age-related protein-protein interaction network, which showed their central role in age-related immune changes. Many DNA repair genes were down-regulated in geriatric red pandas, suggesting that the DNA repair ability of the blood tissue in geriatric red pandas is significantly reduced. The significantly up-regulated TLR5 in geriatric individuals also suggests the possibility of enhancing the vaccination immune response by incorporating flagellin, which could be used to address decreased vaccine responses caused by age-related declines in immune system function. This work provides an insight into gene expression changes associated with aging and paves the way for effective disease prevention and treatment strategies for red pandas in the future.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Li Luo
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Lei Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Rong Hou
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Helbert H, Ploeg EM, Samplonius DF, Blok SN, Antunes IF, Böhmer VI, Luurtsema G, Dierckx RAJO, Feringa BL, Elsinga PH, Szymanski W, Helfrich W. A proof-of-concept study on the use of a fluorescein-based 18F-tracer for pretargeted PET. EJNMMI Radiopharm Chem 2022; 7:3. [PMID: 35239034 PMCID: PMC8894538 DOI: 10.1186/s41181-022-00155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pretargeted immuno-PET tumor imaging has emerged as a valuable diagnostic strategy that combines the high specificity of antibody-antigen interaction with the high signal and image resolution offered by short-lived PET isotopes, while reducing the irradiation dose caused by traditional 89Zr-labelled antibodies. In this work, we demonstrate proof of concept of a novel ‘two-step’ immuno-PET pretargeting approach, based on bispecific antibodies (bsAbs) engineered to feature dual high-affinity binding activity for a fluorescein-based 18F-PET tracer and tumor markers. Results A copper(I)-catalysed click reaction-based radiolabeling protocol was developed for the synthesis of fluorescein-derived molecule [18F]TPF. Binding of [18F]TPF on FITC-bearing bsAbs was confirmed. An in vitro autoradiography assay demonstrated that [18F]TPF could be used for selective imaging of EpCAM-expressing OVCAR3 cells, when pretargeted with EpCAMxFITC bsAb. The versatility of the pretargeting approach was showcased in vitro using a series of fluorescein-binding bsAbs directed at various established cancer-associated targets, including the pan-carcinoma cell surface marker EpCAM, EGFR, melanoma marker MCSP (aka CSPG4), and immune checkpoint PD-L1, offering a range of potential future applications for this pretargeting platform. Conclusion A versatile pretargeting platform for PET imaging, which combines bispecific antibodies and a fluorescein-based 18F-tracer, is presented. It is shown to selectively target EpCAM-expressing cells in vitro and its further evaluation with different bispecific antibodies demonstrates the versatility of the approach. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-022-00155-2.
Collapse
Affiliation(s)
- Hugo Helbert
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Emily M Ploeg
- Department of Surgery, Translational Surgical Oncology, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Douwe F Samplonius
- Department of Surgery, Translational Surgical Oncology, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Simon N Blok
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ines F Antunes
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Verena I Böhmer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Wiktor Szymanski
- Department of Radiology, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Wijnand Helfrich
- Department of Surgery, Translational Surgical Oncology, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
4
|
Qi Z, Liu Y, Mints M, Mullins R, Sample R, Law T, Barrett T, Mazul AL, Jackson RS, Kang SY, Pipkorn P, Parikh AS, Tirosh I, Dougherty J, Puram SV. Single-Cell Deconvolution of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:1230. [PMID: 33799782 PMCID: PMC7999850 DOI: 10.3390/cancers13061230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
Complexities in cell-type composition have rightfully led to skepticism and caution in the interpretation of bulk transcriptomic analyses. Recent studies have shown that deconvolution algorithms can be utilized to computationally estimate cell-type proportions from the gene expression data of bulk blood samples, but their performance when applied to tumor tissues, including those from head and neck, remains poorly characterized. Here, we use single-cell data (~6000 single cells) collected from 21 head and neck squamous cell carcinoma (HNSCC) samples to generate cell-type-specific gene expression signatures. We leverage bulk RNA-seq data from >500 HNSCC samples profiled by The Cancer Genome Atlas (TCGA), and using single-cell data as a reference, apply two newly developed deconvolution algorithms (CIBERSORTx and MuSiC) to the bulk transcriptome data to quantitatively estimate cell-type proportions for each tumor in TCGA. We show that these two algorithms produce similar estimates of constituent/major cell-type proportions and that a high T-cell fraction correlates with improved survival. By further characterizing T-cell subpopulations, we identify that regulatory T-cells (Tregs) were the major contributor to this improved survival. Lastly, we assessed gene expression, specifically in the Treg population, and found that TNFRSF4 (Tumor Necrosis Factor Receptor Superfamily Member 4) was differentially expressed in the core Treg subpopulation. Moreover, higher TNFRSF4 expression was associated with greater survival, suggesting that TNFRSF4 could play a key role in mechanisms underlying the contribution of Treg in HNSCC outcomes.
Collapse
Affiliation(s)
- Zongtai Qi
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Michael Mints
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (M.M.); (I.T.)
| | - Riley Mullins
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
| | - Reilly Sample
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
- Clinical Research Training Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Travis Law
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
| | - Thomas Barrett
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
| | - Angela L. Mazul
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
| | - Ryan S. Jackson
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
| | - Stephen Y. Kang
- Division of Head and Neck Oncology, Department of Otolaryngology—Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.Y.K.); (A.S.P.)
| | - Patrik Pipkorn
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
| | - Anuraag S. Parikh
- Division of Head and Neck Oncology, Department of Otolaryngology—Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.Y.K.); (A.S.P.)
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (M.M.); (I.T.)
| | - Joseph Dougherty
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Sidharth V. Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (Z.Q.); (R.M.); (R.S.); (T.L.); (T.B.); (A.L.M.); (R.S.J.); (P.P.)
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
5
|
Zhou W, Zhang C, Zhang D, Peng J, Ma S, Wang X, Guan X, Li P, Li D, Jia G, Jia W. Comprehensive analysis of the immunological landscape of pituitary adenomas: implications of immunotherapy for pituitary adenomas. J Neurooncol 2020; 149:473-487. [PMID: 33034841 DOI: 10.1007/s11060-020-03636-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSES Immunotherapies for solid tumor are gaining traction in the clinic, however, the immunological landscape of pituitary adenomas (PAs) is not well defined. In the present study, we used the RNA-seq data of PAs to investigate the impact of immunological landscape on clinical features of pituitary adenomas and aim to evaluate the potential immunotherapy for PAs. METHODS We analyzed tumor-infiltrating immune cells in 115 PA samples using RNA-seq. Main immune cell types (B cells, CD8+ T cells, CD4+ T cells, macrophages and NK cells) were detected from the expression of genes. The association between immune cells abundance and immune checkpoint, as well as inflammatory factors were analyzed. 10 additional patients were enrolled for validation. RESULTS In RNA sequencing data, landscape of PAs were identified. Our computationally inferred immune infiltrates significantly associate with patient clinical features. Growth hormone-secreting adenomas (GHomas) were found with higher B cells and CD8+ T cells infiltration. Moreover, GHomas showed relative different genetic background, significant invasive behavior and independently correlated with reduced progress-free time. Tumor progression was related to increased expression of PD-1/PD-L1 and was associated with higher immune infiltration. Analysis of cancer-testis antigen expression and CD8+ T-cell abundance suggested CTAG2 and TSPYL6 were potential immunotherapeutic targets in GHomas and non-functioning adenomas, respectively. CONCLUSIONS Tumor-infiltrating immune cells confer important clinical and biological implications. Our results of immune-infiltrate levels in PAs may inform effective cancer vaccine and checkpoint blockade therapies and make it possible to take immunotherapy into invasive PAs.
Collapse
Affiliation(s)
- Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shunchang Ma
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Beijing Neurosurgical Institute, 199 West Road, South Fourth Ring Road, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guijun Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China. .,Beijing Neurosurgical Institute, 199 West Road, South Fourth Ring Road, Beijing, China.
| |
Collapse
|