1
|
Felipo-Benavent M, Valls M, Monteiro MC, Jávega B, García-Párraga D, Rubio-Guerri C, Martínez-Romero A, O’Connor JE. Platelet phosphatidylserine exposure and microparticle production as health bioindicators in marine mammals. Front Vet Sci 2024; 11:1393977. [PMID: 38799726 PMCID: PMC11117335 DOI: 10.3389/fvets.2024.1393977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
In human medicine, various pathologies, including decompression sickness, thrombocytopenia, and rheumatoid arthritis, have been linked to changes in cellular microparticles (MP) formation, particularly platelet microparticles (PMP). Similar disorders in marine mammals might be attributed to anthropogenic threats or illnesses, potentially impacting blood PMP levels. Thus, detecting platelet phosphatidylserine (PS) exposure and PMP formation could serve as a crucial diagnostic and monitoring approach for these conditions in marine mammals. Our group has developed a methodology to assess real-time PS exposure and PMP formation specifically tailored for marine mammals. This method, pioneered in species such as bottlenose dolphins, beluga whales, walruses, and California sea lions, represents a novel approach with significant implications for both clinical assessment and further research into platelet function in these animals. The adapted methodology for evaluating PS exposure and PMP formation in marine mammals has yielded promising results. By applying this approach, we have observed significant correlations between alterations in PMP levels and specific pathologies or environmental factors. These findings underscore the potential of platelet function assessment as a diagnostic and monitoring tool in marine mammal health. The successful adaptation and application of this methodology in marine mammals highlight its utility for understanding and managing health concerns in these animals.
Collapse
Affiliation(s)
- Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Mónica Valls
- Veterinary Services, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Maria Céu Monteiro
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Daniel García-Párraga
- Veterinary Services, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
| | - Consuelo Rubio-Guerri
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | | | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Velázquez-Wallraf A, Caballero MJ, Fernández A, Betancor MB, Saavedra P, Hemingway HW, Bernaldo de Quirós Y. Biomarkers related to gas embolism: Gas score, pathology, and gene expression in a gas bubble disease model. PLoS One 2023; 18:e0288659. [PMID: 37440588 DOI: 10.1371/journal.pone.0288659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Fish exposed to water supersaturated with dissolved gas experience gas embolism similar to decompression sickness (DCS), known as gas bubble disease (GBD) in fish. GBD has been postulated as an alternative to traditional mammals' models on DCS. Gas embolism can cause mechanical and biochemical damage, generating pathophysiological responses. Increased expression of biomarkers of cell damage such as the heat shock protein (HSP) family, endothelin 1 (ET-1) or intercellular adhesion molecule 1 (ICAM-1) has been observed, being a possible target for further studies of gas embolism. The GBD model consisted of exposing fish to supersaturation in water with approximately 170% total dissolved gas (TDG) for 18 hours, producing severe gas embolism. This diagnosis was confirmed by a complete histopathological exam and the gas score method. HSP70 showed a statistically significant upregulation compared to the control in all the studied organs (p <0.02). Gills and heart showed upregulation of HSP90 with statistical significance (p = 0.015 and p = 0.02, respectively). In addition, HSP70 gene expression in gills was positively correlated with gas score (p = 0.033). These results suggest that gas embolism modify the expression of different biomarkers, with HSP70 being shown as a strong marker of this process. Furthermore, gas score is a useful tool to study the abundance of gas bubbles, although individual variability always remains present. These results support the validity of the GBD model in fish to study gas embolism in diseases such as DCS.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Maria José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Mónica B Betancor
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Pedro Saavedra
- Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Holden W Hemingway
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
3
|
Meyer G, Puig-Lozano R, Fernández A. Anthropogenic litter in terrestrial flora and fauna: Is the situation as bad as in the ocean? A field study in Southern Germany on five meadows and 150 ruminants in comparison with marine debris. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121304. [PMID: 36804141 DOI: 10.1016/j.envpol.2023.121304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In contrast to the abundance of research on marine debris, terrestrial anthropogenic litter and its impacts are largely lacking scientific attention. Therefore, the main objective of the present study is to find out whether ingested litter produces pathological consequences to the health of domestic ruminants, as it does in their relatives in the ocean, the cetaceans. For this purpose, five meadows (49°18'N, 10°24'E) with a total survey area of 139,050 m2 as well as the gastric content of 100 slaughtered cattle and 50 slaughtered sheep have been examined for persistent man-made debris in Northern Bavaria, Germany. All the five meadows contained garbage, and plastics were always part of it. Including glass and metal, 521 persistent anthropogenic objects were detected altogether, equalling a litter density of 3747 items per km2. Of the examined animals, 30.0% of the cattle and 6.0% of the sheep harboured anthropogenic foreign bodies in their gastric tract. As in the case of cetaceans, plastics were the most dominant litter material. Bezoars had formed around plastic fibres of agricultural origin in two young bulls, whereas pointed metal objects were associated in cattle with traumatic lesions in the reticulum and the tongue. Of all the ingested anthropogenic debris, 24 items (26.4%) had direct equivalents in the studied meadows. Comparing with marine litter, 28 items (30.8%) were also present in marine environments and 27 items (29.7%) were previously reported as foreign bodies in marine animals. At least in this study region, waste pollution affected terrestrial environments and domestic animals, with clear equivalents in the marine world. Ingested foreign bodies produced lesions that may have reduced the animals' welfare and, regarding commercial purposes, their productivity.
Collapse
Affiliation(s)
- Gabriele Meyer
- Veterinarian, Department of Public Security, City Administration of Ansbach, Germany.
| | - Raquel Puig-Lozano
- Division of Histology and Animal Pathology, University Institute for Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonio Fernández
- Division of Histology and Animal Pathology, University Institute for Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
4
|
Shil SK, Zahangir MM, Rahman MM, Kibria MM, Das BC, Yadav SK, Siddiki AMAMZ. Postmortem of a juvenile male Ganges River dolphin (
Platanista gangetica
spp.
gangetica
) in Bangladesh. VETERINARY RECORD CASE REPORTS 2023. [DOI: 10.1002/vrc2.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Subrata Kumar Shil
- Department of Anatomy and Histology Faculty of Veterinary Medicine Chittagong Veterinary and Animal Sciences University Chattogram Bangladesh
| | - Md. Mahiuddin Zahangir
- Department of Fish Biology and Biotechnology Faculty of Fisheries Chittagong Veterinary and Animal Sciences University Chattogram Bangladesh
| | - Mohammad Mahbubur Rahman
- Department of Pathology and Parasitology Faculty of Veterinary Medicine Chittagong Veterinary and Animal Sciences University Chattogram Bangladesh
| | - Md. Manzoorul Kibria
- Halda River Research Laboratory Department of Zoology Faculty of Biological Sciences University of Chittagong Chattogram Bangladesh
| | - Bhajan Chandra Das
- Department of Medicine and Surgery Faculty of Veterinary Medicine Chittagong Veterinary and Animal Sciences University Chattogram Bangladesh
| | - Saroj Kumar Yadav
- Department of Medicine and Surgery Faculty of Veterinary Medicine Chittagong Veterinary and Animal Sciences University Chattogram Bangladesh
| | - AMAM Zonaed Siddiki
- Department of Pathology and Parasitology Faculty of Veterinary Medicine Chittagong Veterinary and Animal Sciences University Chattogram Bangladesh
| |
Collapse
|
5
|
Fernandez A, Jepson PD, Diaz-Delgado J, de Quiros YB, Sierra E, Mompeo B, Vela AI, Di Guardo G, Suarez-Santana C, de Los Monteros AE, Herraez P, Andrada M, Caballero MJ, Rivero M, Consoli F, Castro-Alonso A, Quesada-Canales O, Arbelo M. Budd-Chiari-like pathology in dolphins. Sci Rep 2022; 12:12635. [PMID: 35879404 PMCID: PMC9314369 DOI: 10.1038/s41598-022-16947-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Nearly two decades ago, pathologic examination results suggested that acoustic factors, such as mid-frequency active naval military sonar (MFAS) could be the cause of acute decompression-like sickness in stranded beaked whales. Acute systemic gas embolism in these whales was reported together with enigmatic cystic liver lesions (CLL), characterized by intrahepatic encapsulated gas-filled cysts, tentatively interpreted as “gas-bubble” lesions in various other cetacean species. Here we provide a pathologic reinterpretation of CLL in odontocetes. Among 1,200 cetaceans necropsied, CLL were only observed in four striped dolphins (Stenella coeruleoalba), with a low prevalence (2%, N = 179). Together, our data strongly suggest that CLL are the result of the combination of a pre-existing or concomitant hepatic vascular disorder superimposed and exacerbated by gas bubbles, and clearly differ from acute systemic gas embolism in stranded beaked whales that is linked to MFAS. Budd-Chiari-like syndrome in dolphins is hypothesized based on the present pathologic findings. Nonetheless, further researched is warranted to determine precise etiopathogenesis(es) and contributing factors for CLL in cetaceans.
Collapse
Affiliation(s)
- Antonio Fernandez
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.
| | - Paul D Jepson
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.,Institute of Zoology, London, UK
| | - Josue Diaz-Delgado
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Yara Bernaldo de Quiros
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Eva Sierra
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Blanca Mompeo
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.,Human Medicine School, University Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | - Giovanni Di Guardo
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.,Veterinary School, Teramo University, Teramo, Italy
| | - Cristian Suarez-Santana
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Antonio Espinosa de Los Monteros
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Pedro Herraez
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Maria Jose Caballero
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Miguel Rivero
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Francesco Consoli
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Ayoze Castro-Alonso
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.,Canary Islands Oceanic Platform (Plocan), Canary Islands, Spain
| | - Oscar Quesada-Canales
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| |
Collapse
|
6
|
Câmara N, Fernández A, Herráez P, Arbelo M, Andrada M, Suárez-Santana CM, Sierra E. Microscopic Findings in the Cardiac Muscle of Stranded Extreme Deep-Diving Cuvier's Beaked Whales ( Ziphius cavirostris). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-8. [PMID: 35467498 DOI: 10.1017/s1431927622000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Considerable information has been gained over the last few decades on several disease processes afflicting free-ranging cetaceans from a pathologist's point of view. Nonetheless, there is still a dearth of studies on the hearts of these species. For this reason, we aimed to improve our understanding of cardiac histological lesions occurring in free-ranging stranded cetaceans and, more specifically, in deep-diving Cuvier's beaked whales. The primary cardiac lesions that have been described include vascular changes, such as congestion, edema, hemorrhage, leukocytosis, and intravascular coagulation; acute degenerative changes, which consist of contraction band necrosis, wavy fibers, cytoplasmic hypereosinophilia, and perinuclear vacuolization; infiltration of inflammatory cells; and finally, the presence and/or deposition of different substances, such as interstitial myoglobin globules, lipofuscin pigment, polysaccharide complexes, and intra- and/or extravascular gas emboli and vessel dilation. This study advances our current knowledge about the histopathological findings in the cardiac muscle of cetaceans, and more specifically, of Cuvier's beaked whales.
Collapse
Affiliation(s)
- Nakita Câmara
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
- Plataforma Oceánica de Canarias (PLOCAN), Carretera de Taliarte s/n, Telde, Las Palmas, Gran Canaria35214, Spain
- Loro Parque Foundation, Avenida Loro Parque s/n, Puerto de la Cruz, Tenerife38400, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Pedro Herráez
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Cristian M Suárez-Santana
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| | - Eva Sierra
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas of Gran Canaria, Campus Universitario Cardones de Arucas, Trasmontaña s/n, Arucas, Las Palmas, Gran Canaria35413, Spain
| |
Collapse
|
7
|
Velázquez-Wallraf A, Fernández A, Caballero MJ, Arregui M, González Díaz Ó, Betancor MB, Bernaldo de Quirós Y. Establishment of a fish model to study gas-bubble lesions. Sci Rep 2022; 12:6592. [PMID: 35449183 PMCID: PMC9023494 DOI: 10.1038/s41598-022-10539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
Decompression sickness (DCS) is a clinical syndrome caused by the formation of systemic intravascular and extravascular gas bubbles. The presence of these bubbles in blood vessels is known as gas embolism. DCS has been described in humans and animals such as sea turtles and cetaceans. To delve deeper into DCS, experimental models in terrestrial mammals subjected to compression/decompression in a hyperbaric chamber have been used. Fish can suffer from gas bubble disease (GBD), characterized by the formation of intravascular and extravascular systemic gas bubbles, similarly to that observed in DCS. Given these similarities and the fact that fish develop this disease naturally in supersaturated water, they could be used as an alternative experimental model for the study of the pathophysiological aspect of gas bubbles. The objective of this study was to obtain a reproducible model for GBD in fish by an engineering system and a complete pathological study, validating this model for the study of the physiopathology of gas related lesions in DCS. A massive and severe GBD was achieved by exposing the fish for 18 h to TDG values of 162-163%, characterized by the presence of severe hemorrhages and the visualization of massive quantities of macroscopic and microscopic gas bubbles, systemically distributed, circulating through different large vessels of experimental fish. These pathological findings were the same as those described in small mammals for the study of explosive DCS by hyperbaric chamber, validating the translational usefulness of this first fish model to study the gas-bubbles lesions associated to DCS from a pathological standpoint.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - María José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain.
| | - Marina Arregui
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Óscar González Díaz
- Physical and Chemical Instrumental Center for the Development of Applied Research Technology and Scientific Estate, Institute for Environmental Studies and Natural Resources (I-UNAT), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
8
|
Hooker SK, Andrews RD, Arnould JPY, Bester MN, Davis RW, Insley SJ, Gales NJ, Goldsworthy SD, McKnight JC. Fur seals do, but sea lions don't - cross taxa insights into exhalation during ascent from dives. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200219. [PMID: 34121462 PMCID: PMC8200655 DOI: 10.1098/rstb.2020.0219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2020] [Indexed: 11/12/2022] Open
Abstract
Management of gases during diving is not well understood across marine mammal species. Prior to diving, phocid (true) seals generally exhale, a behaviour thought to assist with the prevention of decompression sickness. Otariid seals (fur seals and sea lions) have a greater reliance on their lung oxygen stores, and inhale prior to diving. One otariid, the Antarctic fur seal (Arctocephalus gazella), then exhales during the final 50-85% of the return to the surface, which may prevent another gas management issue: shallow-water blackout. Here, we compare data collected from animal-attached tags (video cameras, hydrophones and conductivity sensors) deployed on a suite of otariid seal species to examine the ubiquity of ascent exhalations for this group. We find evidence for ascent exhalations across four fur seal species, but that such exhalations are absent for three sea lion species. Fur seals and sea lions are no longer genetically separated into distinct subfamilies, but are morphologically distinguished by the thick underfur layer of fur seals. Together with their smaller size and energetic dives, we suggest their air-filled fur might underlie the need to perform these exhalations, although whether to reduce buoyancy and ascent speed, for the avoidance of shallow-water blackout or to prevent other cardiovascular management issues in their diving remains unclear. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- Sascha K. Hooker
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife KY16 8LB, UK
| | | | - John P. Y. Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Marthán N. Bester
- Mammal Research Institute, University of Pretoria, Hatfield 0028, Gauteng, South Africa
| | - Randall W. Davis
- Department of Marine Biology, Texas A&M University, Galveston, TX 77553, USA
| | - Stephen J. Insley
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada, V8P 5C2
- Wildlife Conservation Society Canada, Whitehorse, Yukon Territory, Canada, Y1A 0E9
| | - Nick J. Gales
- Australian Antarctic Division, Kingston, Tasmania 7050, Australia
| | - Simon D. Goldsworthy
- South Australian Research and Development Institute, West Beach, South Australia 5024, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - J. Chris McKnight
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
9
|
Velázquez-Wallraf A, Fernández A, Caballero MJ, Møllerløkken A, Jepson PD, Andrada M, Bernaldo de Quirós Y. Decompressive Pathology in Cetaceans Based on an Experimental Pathological Model. Front Vet Sci 2021; 8:676499. [PMID: 34169109 PMCID: PMC8218990 DOI: 10.3389/fvets.2021.676499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022] Open
Abstract
Decompression sickness (DCS) is a widely known clinical syndrome in human medicine, mainly in divers, related to the formation of intravascular and extravascular gas bubbles. Gas embolism and decompression-like sickness have also been described in wild animals, such as cetaceans. It was hypothesized that adaptations to the marine environment protected them from DCS, but in 2003, decompression-like sickness was described for the first time in beaked whales, challenging this dogma. Since then, several episodes of mass strandings of beaked whales coincidental in time and space with naval maneuvers have been recorded and diagnosed with DCS. The diagnosis of human DCS is based on the presence of clinical symptoms and the detection of gas embolism by ultrasound, but in cetaceans, the diagnosis is limited to forensic investigations. For this reason, it is necessary to resort to experimental animal models to support the pathological diagnosis of DCS in cetaceans. The objective of this study is to validate the pathological results of cetaceans through an experimental rabbit model wherein a complete and detailed histopathological analysis was performed. Gross and histopathological results were very similar in the experimental animal model compared to stranded cetaceans with DCS, with the presence of gas embolism systemically distributed as well as emphysema and hemorrhages as primary lesions in different organs. The experimental data reinforces the pathological findings found in cetaceans with DCS as well as the hypothesis that individuality plays an essential role in DCS, as it has previously been proposed in animal models and human diving medicine.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Maria José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Andreas Møllerløkken
- Faculty of Engineering, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Paul D Jepson
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Marisa Andrada
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
10
|
Lipids of lung and lung fat emboli of the toothed whales (Odontoceti). Sci Rep 2020; 10:14752. [PMID: 32901077 PMCID: PMC7479150 DOI: 10.1038/s41598-020-71658-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022] Open
Abstract
Lipids are biomolecules present in all living organisms that, apart from their physiological functions, can be involved in different pathologies. One of these pathologies is fat embolism, which has been described histologically in the lung of cetaceans in association with ship strikes and with gas and fat embolic syndrome. To assess pathological lung lipid composition, previous knowledge of healthy lung tissue lipid composition is essential; however, these studies are extremely scarce in cetaceans. In the present study we aimed first, to characterize the lipids ordinarily present in the lung tissue of seven cetacean species; and second, to better understand the etiopathogenesis of fat embolism by comparing the lipid composition of lungs positive for fat emboli, and those negative for emboli in Physeter macrocephalus and Ziphius cavirostris (two species in which fat emboli have been described). Results showed that lipid content and lipid classes did not differ among species or diving profiles. In contrast, fatty acid composition was significantly different between species, with C16:0 and C18:1ω9 explaining most of the differences. This baseline knowledge of healthy lung tissue lipid composition will be extremely useful in future studies assessing lung pathologies involving lipids. Concerning fat embolism, non-significant differences could be established between lipid content, lipid classes, and fatty acid composition. However, an unidentified peak was only found in the chromatogram for the two struck whales and merits further investigation.
Collapse
|
11
|
Thompson LA, Hindle AG, Black SR, Romano TA. Variation in the hemostatic complement (C5a) responses to in vitro nitrogen bubbles in monodontids and phocids. J Comp Physiol B 2020; 190:811-822. [PMID: 32815023 DOI: 10.1007/s00360-020-01297-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Immune responses to nitrogen gas bubbles, particularly activation of inflammation via the complement cascade, have been linked to the development of symptoms and damage associated with decompression sickness (DCS) in humans. Marine mammals were long thought not to be susceptible to such dive-related injury, yet evidence of DCS-like injury and new models of tissue nitrogen super-saturation suggest that bubbles may routinely form. As such, it is possible that marine mammals have protective adaptations that allow them to deal with a certain level of bubble formation during normal dives, without acute adverse effects. This work evaluated the complement response, indicative of inflammation, to in vitro nitrogen bubble exposures in several marine mammal species to assess whether a less-responsive immune system serves a protective role against DCS-like injury in these animals. Serum samples from beluga (Delphinapterus leucas), and harbor seals (Phoca vitulina) (relatively shallow divers) and deep diving narwhal (Monodon monoceros), and Weddell seals (Leptonychotes weddellii) were exposed to nitrogen bubbles in vitro. Complement activity was evaluated by measuring changes in the terminal protein C5a in serum, and results suggest marine mammal complement is less sensitive to gas bubbles than human complement, but the response varies between species. Species-specific differences may be related to dive ability, and suggest moderate or shallow divers may be more susceptible to DCS-like injury. This information is an important consideration in assessing the impact of changing dive behaviors in response to anthropogenic stressors, startle responses, or changing environmental conditions that affect prey depth distributions.
Collapse
Affiliation(s)
- Laura A Thompson
- Mystic Aquarium, a Division of SeaResearch Inc., Mystic, CT, 06355, USA.
| | | | | | - Tracy A Romano
- Mystic Aquarium, a Division of SeaResearch Inc., Mystic, CT, 06355, USA
| |
Collapse
|
12
|
Puig-Lozano R, Fernández A, Saavedra P, Tejedor M, Sierra E, De la Fuente J, Xuriach A, Díaz-Delgado J, Rivero MA, Andrada M, Bernaldo de Quirós Y, Arbelo M. Retrospective Study of Traumatic Intra-Interspecific Interactions in Stranded Cetaceans, Canary Islands. Front Vet Sci 2020; 7:107. [PMID: 32181264 PMCID: PMC7059454 DOI: 10.3389/fvets.2020.00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
Aggressive encounters involving cetacean species are widely described in the literature. However, detailed pathological studies regarding lesions produced by these encounters are scarce. From January 2000 to December 2017, 540 cetaceans stranded and were necropsied in the Canary Islands, Spain. Of them, 24 cases of eight species presented social traumatic lesions produced by cetaceans of the same or different species. All the cases presented severe multifocal vascular changes, 50% (12/24) presented fractures affecting mainly the thoracic region, 41.7% (10/24) acute tooth-rake marks, 37.5% (9/24) undigested food in the stomach, 33.3% (8/24) tracheal edema, and 12.5% (3/24) pulmonary perforation. In 10 cases with tooth-rake marks, the distance between the teeth, allowed us to further identify the aggressor species: four cases were compatible with killer whales (Orcinus orca) affecting three species [pigmy sperm whale (Kogia breviceps), Cuvier's beaked whale (Ziphius cavirostris), and short-finned pilot whale (Globicephala macrorhynchus)] and four cases compatible with common bottlenose dolphins (Tursiops truncatus) affecting two species [short-beaked common dolphin (Delphinus delphis) and Atlantic spotted dolphin (Stenella frontalis)]. We also described two cases of intraspecific interaction in stripped dolphin (Stenella coeruleoalba). Microscopically, 70.8% (17/24) of the cases presented acute degenerative myonecrosis, 66.7% (14/21) presented vacuoles in the myocardiocytes, 36.8% (7/19) pigmentary tubulonephrosis, 31.6% (6/19) cytoplasmic eosinophilic globules within hepatocytes, 21.4% (3/14) hemorrhages in the adrenal gland, and 17.3% (4/23) bronchiolar sphincter contraction. The statistical analysis revealed that deep divers, in good body condition and nearby La Gomera and Tenerife were more prone to these fatal interactions. Additionally, in this period, three animals died due to an accident during predation: a false killer whale (Pseudorca crassidens) died because of a fatal attempt of predation on a stingray, and two Risso's dolphins (Grampus griseus) died as a consequence of struggling while predating on large squids.
Collapse
Affiliation(s)
- Raquel Puig-Lozano
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Pedro Saavedra
- Department of Mathematics, University of Las Palmas de Gran Canaria, Las Palmas of Gran Canaria, Spain
| | - Marisa Tejedor
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eva Sierra
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jesús De la Fuente
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Aina Xuriach
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Josué Díaz-Delgado
- TVMDL, Texas A&M, Veterinary Medical Diagnostic Laboratory, Amarillo, TX, United States
| | - Miguel Antonio Rivero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
13
|
Bernaldo de Quirós Y, Fernandez A, Baird RW, Brownell RL, Aguilar de Soto N, Allen D, Arbelo M, Arregui M, Costidis A, Fahlman A, Frantzis A, Gulland FMD, Iñíguez M, Johnson M, Komnenou A, Koopman H, Pabst DA, Roe WD, Sierra E, Tejedor M, Schorr G. Advances in research on the impacts of anti-submarine sonar on beaked whales. Proc Biol Sci 2020; 286:20182533. [PMID: 30963955 DOI: 10.1098/rspb.2018.2533] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mass stranding events (MSEs) of beaked whales (BWs) were extremely rare prior to the 1960s but increased markedly after the development of naval mid-frequency active sonar (MFAS). The temporal and spatial associations between atypical BW MSEs and naval exercises were first observed in the Canary Islands, Spain, in the mid-1980s. Further research on BWs stranded in association with naval exercises demonstrated pathological findings consistent with decompression sickness (DCS). A 2004 ban on MFASs around the Canary Islands successfully prevented additional BW MSEs in the region, but atypical MSEs have continued in other places of the world, especially in the Mediterranean Sea, with examined individuals showing DCS. A workshop held in Fuerteventura, Canary Islands, in September 2017 reviewed current knowledge on BW atypical MSEs associated with MFAS. Our review suggests that the effects of MFAS on BWs vary among individuals or populations, and predisposing factors may contribute to individual outcomes. Spatial management specific to BW habitat, such as the MFAS ban in the Canary Islands, has proven to be an effective mitigation tool and mitigation measures should be established in other areas taking into consideration known population-level information.
Collapse
Affiliation(s)
- Y Bernaldo de Quirós
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - A Fernandez
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - R W Baird
- 2 Cascadia Research Collective , 218½ W. 4th Avenue, Olympia, WA 98501 , USA
| | - R L Brownell
- 3 NOAA Fisheries, Southwest Fisheries Science Center , Monterey, CA 93940 , USA
| | - N Aguilar de Soto
- 4 BIOECOMAC. Dept. Animal Biology, Geology and Edaphology, University of La Laguna , Tenerife , Spain
| | - D Allen
- 5 US Marine Mammal Commission , 4340 East-West Highway, Suite 700, Bethesda, MD 20814 , USA
| | - M Arbelo
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - M Arregui
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - A Costidis
- 6 Virginia Aquarium & Marine Science Center Stranding Response Program , 717 General Booth Blvd, Virginia Beach, VA 23451 , USA
| | - A Fahlman
- 7 Fundación Oceanogràfic de la Comunitat Valenciana , Gran Vía Marqués del Turia 19, 46005, Valencia , Spain
| | - A Frantzis
- 8 Pelagos Cetacean Research Institute , Terpsichoris 21, 16671 Vouliagmeni , Greece
| | - F M D Gulland
- 5 US Marine Mammal Commission , 4340 East-West Highway, Suite 700, Bethesda, MD 20814 , USA.,9 The Marine Mammal Center , 2000 Bunker Road, Sausalito, CA 94965 , USA
| | - M Iñíguez
- 10 Fundación Cethus and WDC , Cap J. Bermúdez 1598, (1636), Olivos, Prov. Buenos Aires , Argentina
| | - M Johnson
- 11 Sea Mammal Research Unit, University of St Andrews , St Andrews , UK
| | - A Komnenou
- 12 School of Veterinary Medicine, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - H Koopman
- 13 Department of Biology and Marine Biology, University of North Carolina Wilmington , Wilmington, NC 28403 , USA
| | - D A Pabst
- 13 Department of Biology and Marine Biology, University of North Carolina Wilmington , Wilmington, NC 28403 , USA
| | - W D Roe
- 14 Massey University , Palmerston North, PN4222 , New Zealand
| | - E Sierra
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - M Tejedor
- 15 Canary Islands Stranding Network , Irlanda 7, Playa Blanca, 35580, Lanzarote , Spain
| | - G Schorr
- 16 Marine Ecology & Telemetry Research , 2468 Camp McKenzie Tr NW, Seabeck, WA 98380 , USA
| |
Collapse
|
14
|
Fahlman A, Miedler S, Rocho-Levine J, Jabois A, Arenarez J, Marti-Bonmati L, García-Párraga D, Cauture F. Re-evaluating the significance of the dive response during voluntary surface apneas in the bottlenose dolphin, Tursiops truncatus. Sci Rep 2019; 9:8613. [PMID: 31197193 PMCID: PMC6565721 DOI: 10.1038/s41598-019-45064-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/29/2019] [Indexed: 11/24/2022] Open
Abstract
The dive response is well documented for marine mammals, and includes a significant reduction in heart rate (fH) during submersion as compared while breathing at the surface. In the current study we assessed the influence of the Respiratory Sinus Arrhythmia (RSA) while estimating the resting fH while breathing. Using transthoracic echocardiography we measured fH, and stroke volume (SV) during voluntary surface apneas at rest up to 255 s, and during recovery from apnea in 11 adult bottlenose dolphins (Tursiops truncatus, 9 males and 2 females, body mass range: 140–235 kg). The dolphins exhibited a significant post-respiratory tachycardia and increased SV. Therefore, only data after this RSA had stabilized were used for analysis and comparison. The average (±s.d.) fH, SV, and cardiac output (CO) after spontaneous breaths while resting at the surface were 44 ± 6 beats min−1, 179 ± 31 ml, and 7909 ± 1814 l min−1, respectively. During the apnea the fH, SV, and CO decreased proportionally with the breath-hold duration, and after 255 s they, respectively, had decreased by an average of 18%, 1–21%, and 12–37%. During recovery, the fH, SV, and CO rapidly increased by as much as 117%, 34%, and 190%, respectively. Next, fH, SV and CO rapidly decreased to resting values between 90–110 s following the surface apnea. These data highlight the necessity to define how the resting fH is estimated at the surface, and separating it from the RSA associated with each breath to evaluate the significance of cardiorespiratory matching during diving.
Collapse
Affiliation(s)
- A Fahlman
- Research Group on Biomedical Imaging (GIBI230), Instituto de Investigación Sanitaria la Fe, 46026, Valencia, Spain. .,Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain.
| | - S Miedler
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain.,Veterinary Cardiology, Plaza Mayor 7/10, 46120 Alboraya, Valencia, Spain
| | | | - A Jabois
- Departamento de Biología, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| | - J Arenarez
- Departamento de Biología, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| | - L Marti-Bonmati
- Research Group on Biomedical Imaging (GIBI230), Instituto de Investigación Sanitaria la Fe, 46026, Valencia, Spain
| | - D García-Párraga
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain.,Departamento de Biología, Avanqua-Oceanográfic SL, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| | - F Cauture
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| |
Collapse
|
15
|
Fahlman A, Brodsky M, Miedler S, Dennison S, Ivančić M, Levine G, Rocho-Levine J, Manley M, Rocabert J, Borque-Espinosa A. Ventilation and gas exchange before and after voluntary static surface breath-holds in clinically healthy bottlenose dolphins, Tursiops truncatus. ACTA ACUST UNITED AC 2019; 222:jeb.192211. [PMID: 30760549 DOI: 10.1242/jeb.192211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/05/2019] [Indexed: 01/14/2023]
Abstract
We measured respiratory flow (V̇), breathing frequency (f R), tidal volume (V T), breath duration and end-expired O2 content in bottlenose dolphins (Tursiops truncatus) before and after static surface breath-holds ranging from 34 to 292 s. There was considerable variation in the end-expired O2, V T and f R following a breath-hold. The analysis suggests that the dolphins attempt to minimize recovery following a dive by altering V T and f R to rapidly replenish the O2 stores. For the first breath following a surface breath-hold, the end-expired O2 decreased with dive duration, while V T and f R increased. Throughout the recovery period, end-expired O2 increased while the respiratory effort (V T, f R) decreased. We propose that the dolphins alter respiratory effort following a breath-hold according to the reduction in end-expired O2 levels, allowing almost complete recovery after 1.2 min.
Collapse
Affiliation(s)
- Andreas Fahlman
- Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain .,Departamento de Zoología, Grupo de Investigación Biomédica en Imagen GIBI230, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Micah Brodsky
- Micah Brodsky, V.M.D. Consulting, 1287 NE 96th Street, Miami Shores, FL 33138, USA
| | - Stefan Miedler
- Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Sophie Dennison
- TeleVet Imaging Solutions, PLLC, PO BOX 3344, Oakton, VA 22124, USA
| | - Marina Ivančić
- Chicago Zoological Society, 3300 Golf Road, Brookfield, IL 60513, USA
| | - Gregg Levine
- Dolphin Quest, Oahu, 5000 Kahala Ave, Honolulu, HI 96816, USA
| | | | - Mercy Manley
- Siegfried & Roy's Secret Garden and Dolphin Habitat, The Mirage, Las Vegas, NV 89109, USA
| | - Joan Rocabert
- Mellow Design, C/ Bany dels pavesos 3, 46001 Valencia, Spain
| | - Alicia Borque-Espinosa
- Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain.,Departamento de Zoología, Grupo de Investigación Biomédica en Imagen GIBI230, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain.,Universidad de Valencia, Av. de Blasco Ibáñez, 13, 46010 Valencia, Spain
| |
Collapse
|
16
|
Arranz P, Benoit-Bird KJ, Friedlaender AS, Hazen EL, Goldbogen JA, Stimpert AK, DeRuiter SL, Calambokidis J, Southall BL, Fahlman A, Tyack PL. Diving Behavior and Fine-Scale Kinematics of Free-Ranging Risso's Dolphins Foraging in Shallow and Deep-Water Habitats. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
17
|
Díaz-Delgado J, Fernández A, Sierra E, Sacchini S, Andrada M, Vela AI, Quesada-Canales Ó, Paz Y, Zucca D, Groch K, Arbelo M. Pathologic findings and causes of death of stranded cetaceans in the Canary Islands (2006-2012). PLoS One 2018; 13:e0204444. [PMID: 30289951 PMCID: PMC6173391 DOI: 10.1371/journal.pone.0204444] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
This study describes the pathologic findings and most probable causes of death (CD) of 224 cetaceans stranded along the coastline of the Canary Islands (Spain) over a 7-year period, 2006-2012. Most probable CD, grouped as pathologic categories (PCs), was identified in 208/224 (92.8%) examined animals. Within natural PCs, those associated with good nutritional status represented 70/208 (33.6%), whereas, those associated with significant loss of nutritional status represented 49/208 (23.5%). Fatal intra- and interspecific traumatic interactions were 37/208 (17.8%). Vessel collisions included 24/208 (11.5%). Neonatal/perinatal pathology involved 13/208 (6.2%). Fatal interaction with fishing activities comprised 10/208 (4.8%). Within anthropogenic PCs, foreign body-associated pathology represented 5/208 (2.4%). A CD could not be determined in 16/208 (7.7%) cases. Natural PCs were dominated by infectious and parasitic disease processes. Herein, our results suggest that between 2006 and 2012, in the Canary Islands, direct human activity appeared responsible for 19% of cetaceans deaths, while natural pathologies accounted for 81%. These results, integrating novel findings and published reports, aid in delineating baseline knowledge on cetacean pathology and may be of value to rehabilitators, caregivers, diagnosticians and future conservation policies.
Collapse
Affiliation(s)
- Josué Díaz-Delgado
- Veterinary Histology and Pathology, Institute of Animal Health and Food Hygiene (IUSA), University of Las Palmas of Gran Canaria, Las Palmas of Gran Canaria, Spain
- Wildlife Comparative Pathology Laboratory, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Hygiene (IUSA), University of Las Palmas of Gran Canaria, Las Palmas of Gran Canaria, Spain
| | - Eva Sierra
- Veterinary Histology and Pathology, Institute of Animal Health and Food Hygiene (IUSA), University of Las Palmas of Gran Canaria, Las Palmas of Gran Canaria, Spain
| | - Simona Sacchini
- Veterinary Histology and Pathology, Institute of Animal Health and Food Hygiene (IUSA), University of Las Palmas of Gran Canaria, Las Palmas of Gran Canaria, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Institute of Animal Health and Food Hygiene (IUSA), University of Las Palmas of Gran Canaria, Las Palmas of Gran Canaria, Spain
| | - Ana Isabel Vela
- Department of Animal Health, Veterinary College, Complutense University, Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET). Complutense University, Madrid, Spain
| | - Óscar Quesada-Canales
- Veterinary Histology and Pathology, Institute of Animal Health and Food Hygiene (IUSA), University of Las Palmas of Gran Canaria, Las Palmas of Gran Canaria, Spain
| | - Yania Paz
- Veterinary Histology and Pathology, Institute of Animal Health and Food Hygiene (IUSA), University of Las Palmas of Gran Canaria, Las Palmas of Gran Canaria, Spain
| | - Daniele Zucca
- Veterinary Histology and Pathology, Institute of Animal Health and Food Hygiene (IUSA), University of Las Palmas of Gran Canaria, Las Palmas of Gran Canaria, Spain
| | - Kátia Groch
- Wildlife Comparative Pathology Laboratory, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Hygiene (IUSA), University of Las Palmas of Gran Canaria, Las Palmas of Gran Canaria, Spain
| |
Collapse
|
18
|
Fahlman A, McHugh K, Allen J, Barleycorn A, Allen A, Sweeney J, Stone R, Faulkner Trainor R, Bedford G, Moore MJ, Jensen FH, Wells R. Resting Metabolic Rate and Lung Function in Wild Offshore Common Bottlenose Dolphins, Tursiops truncatus, Near Bermuda. Front Physiol 2018; 9:886. [PMID: 30065656 PMCID: PMC6056772 DOI: 10.3389/fphys.2018.00886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022] Open
Abstract
Diving mammals have evolved a suite of physiological adaptations to manage respiratory gases during extended breath-hold dives. To test the hypothesis that offshore bottlenose dolphins have evolved physiological adaptations to improve their ability for extended deep dives and as protection for lung barotrauma, we investigated the lung function and respiratory physiology of four wild common bottlenose dolphins (Tursiops truncatus) near the island of Bermuda. We measured blood hematocrit (Hct, %), resting metabolic rate (RMR, l O2 ⋅ min-1), tidal volume (VT, l), respiratory frequency (fR, breaths ⋅ min-1), respiratory flow (l ⋅ min-1), and dynamic lung compliance (CL, l ⋅ cmH2O-1) in air and in water, and compared measurements with published results from coastal, shallow-diving dolphins. We found that offshore dolphins had greater Hct (56 ± 2%) compared to shallow-diving bottlenose dolphins (range: 30–49%), thus resulting in a greater O2 storage capacity and longer aerobic diving duration. Contrary to our hypothesis, the specific CL (sCL, 0.30 ± 0.12 cmH2O-1) was not different between populations. Neither the mass-specific RMR (3.0 ± 1.7 ml O2 ⋅ min-1 ⋅ kg-1) nor VT (23.0 ± 3.7 ml ⋅ kg-1) were different from coastal ecotype bottlenose dolphins, both in the wild and under managed care, suggesting that deep-diving dolphins do not have metabolic or respiratory adaptations that differ from the shallow-diving ecotypes. The lack of respiratory adaptations for deep diving further support the recently developed hypothesis that gas management in cetaceans is not entirely passive but governed by alteration in the ventilation-perfusion matching, which allows for selective gas exchange to protect against diving related problems such as decompression sickness.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia, Valencia, Spain.,Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States.,Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Katherine McHugh
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Jason Allen
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Aaron Barleycorn
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Austin Allen
- Duke University Marine Lab, Beaufort, NC, United States
| | | | - Rae Stone
- Dolphin Quest, Waikoloa, HI, United States
| | | | - Guy Bedford
- Wildlife Consulting Service, Currumbin, QLD, Australia
| | - Michael J Moore
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Frants H Jensen
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Randall Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| |
Collapse
|
19
|
Garcia Párraga D, Moore M, Fahlman A. Pulmonary ventilation-perfusion mismatch: a novel hypothesis for how diving vertebrates may avoid the bends. Proc Biol Sci 2018; 285:20180482. [PMID: 29695441 PMCID: PMC5936736 DOI: 10.1098/rspb.2018.0482] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/28/2018] [Indexed: 11/22/2022] Open
Abstract
Hydrostatic lung compression in diving marine mammals, with collapsing alveoli blocking gas exchange at depth, has been the main theoretical basis for limiting N2 uptake and avoiding gas emboli (GE) as they ascend. However, studies of beached and bycaught cetaceans and sea turtles imply that air-breathing marine vertebrates may, under unusual circumstances, develop GE that result in decompression sickness (DCS) symptoms. Theoretical modelling of tissue and blood gas dynamics of breath-hold divers suggests that changes in perfusion and blood flow distribution may also play a significant role. The results from the modelling work suggest that our current understanding of diving physiology in many species is poor, as the models predict blood and tissue N2 levels that would result in severe DCS symptoms (chokes, paralysis and death) in a large fraction of natural dive profiles. In this review, we combine published results from marine mammals and turtles to propose alternative mechanisms for how marine vertebrates control gas exchange in the lung, through management of the pulmonary distribution of alveolar ventilation ([Formula: see text]) and cardiac output/lung perfusion ([Formula: see text]), varying the level of [Formula: see text] in different regions of the lung. Man-made disturbances, causing stress, could alter the [Formula: see text] mismatch level in the lung, resulting in an abnormally elevated uptake of N2, increasing the risk for GE. Our hypothesis provides avenues for new areas of research, offers an explanation for how sonar exposure may alter physiology causing GE and provides a new mechanism for how air-breathing marine vertebrates usually avoid the diving-related problems observed in human divers.
Collapse
Affiliation(s)
| | - Michael Moore
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Andreas Fahlman
- Fundación Oceanogràfic, Ciudad de las Artes y las Ciencias, 46013 Valencia, Spain
| |
Collapse
|