1
|
Bloise A, Fuoco I, Vespasiano G, Parisi F, La Russa MF, Piersante C, Perri G, Filicetti S, Pacella A, De Rosa R, Apollaro C. Assessing potentially toxic elements (PTEs) content in asbestos and related groundwater: A review of the levels detected. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177116. [PMID: 39490840 DOI: 10.1016/j.scitotenv.2024.177116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
This article provides a review of published literature on the concentration levels of potentially toxic elements (PTEs) in asbestos minerals like chrysotile, actinolite, amosite (asbestiform grunerite), anthophyllite, crocidolite (asbestiform riebeckite) and tremolite and their potential to release PTEs into groundwaters worldwide. A large number of PTEs, such as Fe, Cr, Ni, Mn, Co and Zn, may be hosted by asbestos minerals, and their release in the lung environment can cause different health problems as well as their intake via drinking water. The review highlights that amosite is the phase with the highest PTEs content, followed by crocidolite, actinolite, anthophyllite, tremolite and chrysotile. Chrysotile, tremolite, and anthophyllite contain higher levels of Cr, Ni, and Co, while Fe and Mn are more enriched in amosite and crocidolite. Actinolite contains a high concentration of all considered PTEs. High levels of Cr, Fe, Zn, Mn, and Ni were also detected in groundwater interacting with ophiolite rocks containing asbestos minerals. The three main recognized hydro-geochemical facies (Mg-HCO3, Ca-HCO3 and Ca-OH), characterizing the ophiolite aquifers, show high levels of Cr and Ni, with values sometimes above the World health Organization (WHO) thresholds for drinking waters, which can cause adverse health effects in short and long term. The knowledge emerging from this work is a significant contribution to the already wide frame of understanding asbestos-related diseases and provide a strong scientific basis for further mineralogical and geochemical studies.
Collapse
Affiliation(s)
- A Bloise
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy; Sistema Museale Universitario - SiMU, Università della Calabria, 87036 Rende, CS, Italy
| | - I Fuoco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy; Institute on Membrane Technology (ITM-CNR), P. Bucci street, cubo 17/C, 87036 Arcavacata di Rende, CS, Italy..
| | - G Vespasiano
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy.
| | - F Parisi
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy
| | - M F La Russa
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy
| | - C Piersante
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy
| | - G Perri
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy
| | - S Filicetti
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy
| | - A Pacella
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - R De Rosa
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy
| | - C Apollaro
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
2
|
Pacella A, Ballirano P, Di Carlo MC, Altieri A, Paccapelo M, Skogby H, Campopiano A, Bruno MR, Croce A, Piersante C, Apollaro C, Malvasi G, Bruni BM, Bloise A. Geological and mineralogical characterization of fibrous tremolite from Iacolinei quarry (Basilicata, Italy). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:429. [PMID: 39316223 DOI: 10.1007/s10653-024-02196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Naturally Occurring Asbestos (NOA) has drawn the attention worldwide when investigation revealed an increased incidence of malignant mesothelioma in population living near NOA sites. In Basilicata region (South Italy), population living in the villages of Castelluccio Superiore and Inferiore, Lauria, Latronico, Episcopia, San Severino Lucano, and Francavilla in Sinni may be considered at high risk of asbestos exposure because these villages are either surrounded by or built on NOA-rich ophiolitic outcrops. In this work we investigated an asbestos tremolite sample coming from the ophiolitic rocks outcropping in the quarry of Iacolinei, widely used in the past to extract aggregates for various applications. A detailed mineralogical characterization has been attained by using a multi-analytical approach (EMPA, SEM-EDS, TEM-EDS, Mössbauer, µ-Raman, X-ray powder diffraction, and thermal analysis). Morphological investigation highlighted that the sample is composed of long fibers (> 5 µm) with a significant fraction (ca. 55%) having width below 0.25 µm, considered the most biologically active fibers. Moreover, the crystal chemical characterization showed that Fe occurs at the octahedral sites of the tremolite structure. It should be noted that Fe plays a primary role in the toxicity of asbestos. Based on these results, the investigated asbestos tremolite may be considered a potent mesothelial carcinogen, requiring therefore special attention for public health protection purposes. Investigations using sentinel animals to assess the diffusion of the tremolite fibers into the environment from the serpentinite rocks and soils of Iacolinei quarry are in progress.
Collapse
Affiliation(s)
- Alessandro Pacella
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, I- 00185, Roma, Italy
| | - Paolo Ballirano
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, I- 00185, Roma, Italy
| | - Maria Cristina Di Carlo
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, I- 00185, Roma, Italy
| | - Alessandra Altieri
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, I- 00185, Roma, Italy
| | - Marco Paccapelo
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, I- 00185, Roma, Italy
| | - Henrik Skogby
- Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden
| | - Antonella Campopiano
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Rome, Italy
| | - Maria Rosaria Bruno
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Lamezia Terme, Italy
| | - Alessandro Croce
- SSD Research Laboratories, Research Training Innovation Infrastructure, Research and Innovation Department (DAIRI), Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, Via Venezia 16, 15121, Alessandria, Italy
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Costanza Piersante
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Carmine Apollaro
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Giacomo Malvasi
- Radioactivity and Asbestos Office ARPA Basilicata, Potenza, Italy
| | - Biagio Maria Bruni
- Department of Environment and Health, National Health Institute (ISS), Rome, Italy
| | - Andrea Bloise
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy.
| |
Collapse
|
3
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
4
|
Gualtieri AF, Cocchi M, Muniz-Miranda F, Pedone A, Castellini E, Strani L. Iron nuclearity in mineral fibres: Unravelling the catalytic activity for predictive modelling of toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134004. [PMID: 38521041 DOI: 10.1016/j.jhazmat.2024.134004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Chronic inflammation induced in vivo by mineral fibres, such as asbestos, is sustained by the cyclic formation of cytotoxic/genotoxic oxidant species that are catalysed by iron. High catalytic activity is observed when iron atoms are isolated in the crystal lattice (nuclearity=1), whereas the catalytic activity is expected to be reduced or null when iron forms clusters of higher nuclearity. This study presents a novel approach for systematically measuring iron nuclearity across a large range of iron-containing standards and mineral fibres of social and economic importance, and for quantitatively assessing the relation between nuclearity and toxicity. The multivariate curve resolution (MCR) empirical approach and density functional theory (DFT) calculations were applied to the analysis of UV-Vis spectra to obtain information on the nature of iron and nuclearity. This approach led to the determination of the nuclearity of selected mineral fibres which was subsequently used to calculate a toxicity-related index. High nuclearity-related toxicity was estimated for chrysotile samples, fibrous glaucophane, asbestos tremolite, and fibrous wollastonite. Intermediate values of toxicity, corresponding to a mean nuclearity of 2, were assigned to actinolite asbestos, amosite, and crocidolite. Finally, a low nuclearity-related toxicity parameter, corresponding to an iron-cluster with a lower catalytic power to produce oxidants, was assigned to asbestos anthophyllite.
Collapse
Affiliation(s)
- Alessandro F Gualtieri
- Chemical and Geological Sciences Department, 41125, University of Modena and Reggio Emilia, Modena, Italy.
| | - Marina Cocchi
- Chemical and Geological Sciences Department, 41125, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Muniz-Miranda
- Chemical and Geological Sciences Department, 41125, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfonso Pedone
- Chemical and Geological Sciences Department, 41125, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Castellini
- Chemical and Geological Sciences Department, 41125, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Strani
- Chemical and Geological Sciences Department, 41125, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Łuniewski S, Rogowska W, Łozowicka B, Iwaniuk P. Plants, Microorganisms and Their Metabolites in Supporting Asbestos Detoxification-A Biological Perspective in Asbestos Treatment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1644. [PMID: 38612157 PMCID: PMC11012542 DOI: 10.3390/ma17071644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Many countries banned asbestos due to its toxicity, but considering its colossal use, especially in the 1960s and 1970s, disposing of waste containing asbestos is the current problem. Today, many asbestos disposal technologies are known, but they usually involve colossal investment and operating expenses, and the end- and by-products of these methods negatively impact the environment. This paper identifies a unique modern direction in detoxifying asbestos minerals, which involves using microorganisms and plants and their metabolites. The work comprehensively focuses on the interactions between asbestos and plants, bacteria and fungi, including lichens and, for the first time, yeast. Biological treatment is a prospect for in situ land reclamation and under industrial conditions, which can be a viable alternative to landfilling and an environmentally friendly substitute or supplement to thermal, mechanical, and chemical methods, often characterized by high cost intensity. Plant and microbial metabolism products are part of the green chemistry trend, a central strategic pillar of global industrial and environmental development.
Collapse
Affiliation(s)
- Stanisław Łuniewski
- Faculty of Economics, L.N. Gumilyov Eurasian National University, Satpayev 2, Astana 010008, Kazakhstan; (S.Ł.); (B.Ł.)
- Faculty of Economic Sciences, The Eastern European University of Applied Sciences in Bialystok, Ciepła 40 St., 15-472 Białystok, Poland
| | - Weronika Rogowska
- Department of Environmental Engineering Technology and Systems, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E St., 15-351 Białystok, Poland
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland;
| | - Bożena Łozowicka
- Faculty of Economics, L.N. Gumilyov Eurasian National University, Satpayev 2, Astana 010008, Kazakhstan; (S.Ł.); (B.Ł.)
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland;
| | - Piotr Iwaniuk
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland;
| |
Collapse
|
6
|
Pacella A, Ballirano P, Di Carlo MC, Fantauzzi M, Rossi A, Nardi E, Viti C, Arrizza L, Campopiano A, Cannizzaro A, Bloise A, Montereali MR. Dissolution Reaction and Surface Modification of UICC Amosite in Mimicked Gamble's Solution: A Step towards Filling the Gap between Asbestos Toxicity and Its Crystal Chemical Features. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2933. [PMID: 37999287 PMCID: PMC10674585 DOI: 10.3390/nano13222933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
This study focuses on the dissolution process and surface characterization of amosite fibres following interaction with a mimicked Gamble's solution at a pH of 4.5 and T = 37 °C, up to 720 h. To achieve this, a multi-analytical approach was adopted, and the results were compared to those previously obtained on a sample of asbestos tremolite and UICC crocidolite, which were investigated under the same experimental conditions. Combining surface chemical data obtained by XPS with cation release quantified by ICP-OES, an incongruent behaviour of the fibre dissolution was highlighted for amosite fibres, similarly to asbestos tremolite and UICC crocidolite. In particular, a preferential release of Mg and Ca from the amphibole structure was observed, in agreement with their Madelung site energies. Notably, no Fe release from amosite fibres was detected in our experimental conditions (pH of 4.5 and atmospheric pO2), despite the occurrence of Fe(II) at the M(4) site of the amphibole structure, where cations are expected to be rapidly leached out during mineral dissolution. Moreover, the oxidation of both the Fe centres initially present on the fibre surface and those promoted from the bulk, because of the erosion of the outmost layers, was observed. Since biodurability (i.e., the resistance to dissolution) is one of the most important toxicity parameters, the knowledge of the surface alteration of asbestos possibly occurring in vivo may help to understand the mechanisms at the basis of its long-term toxicity.
Collapse
Affiliation(s)
- Alessandro Pacella
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.B.); (M.C.D.C.)
| | - Paolo Ballirano
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.B.); (M.C.D.C.)
- Rectoral Laboratory Fibres and Inorganic Particulate, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Cristina Di Carlo
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.B.); (M.C.D.C.)
| | - Marzia Fantauzzi
- INSTM Research Unit, Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (A.R.)
| | - Antonella Rossi
- INSTM Research Unit, Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (A.R.)
| | - Elisa Nardi
- Institute for Environmental Protection and Research, ISPRA, Via Vitaliano Brancati 48, 00144 Rome, Italy;
| | - Cecilia Viti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Laterina 8, 53100 Siena, Italy;
| | - Lorenzo Arrizza
- Microscopy Center, University of L’ Aquila, Via Vetoio, Locality Coppito, 67100 L’Aquila, Italy;
| | - Antonella Campopiano
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Via Fontana Candida 1, 00078 Rome, Italy; (A.C.); (A.C.)
| | - Annapaola Cannizzaro
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Via Fontana Candida 1, 00078 Rome, Italy; (A.C.); (A.C.)
| | - Andrea Bloise
- Department of Biology, Ecology and Earth Sciences, University of Calabria, V. P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Maria Rita Montereali
- Italian National Agency for New Technologies, ENEA, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy;
| |
Collapse
|
7
|
Gazzano E, Petriglieri JR, Aldieri E, Fubini B, Laporte-Magoni C, Pavan C, Tomatis M, Turci F. Cytotoxicity of fibrous antigorite from New Caledonia. ENVIRONMENTAL RESEARCH 2023; 230:115046. [PMID: 36525994 DOI: 10.1016/j.envres.2022.115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Exposure to asbestos and asbestos-like minerals has been related to the development of severe lung diseases, including cancer and malignant mesothelioma (MM). A high incidence of non-occupational MM was observed in New Caledonia (France) in people living in proximity of serpentinite outcrops, containing chrysotile and fibrous antigorite. Antigorite is a magnesium silicate, which shares with chrysotile asbestos the chemical formula. To achieve information on antigorite toxicity, we investigated the physico-minero-chemical features relevant for toxicity and cellular effects elicited on murine macrophages (MH-S) and alveolar epithelial cells (A549) of three fibrous antigorites (f-Atg) collected in a Caledonian nickel lateritic ore and subjected to supergene alteration. Field Atg were milled to obtain samples suitable for toxicological studies with a similar particle size distribution. UICC chrysotile (Ctl) and a non-fibrous antigorite (nf-Atg) were used as reference minerals. A high variability in toxicity was observed depending on shape, chemical alteration, and surface reactivity. The antigorites shared with Ctl a similar surface area (16.3, 12.1, 20.3, 13.4, and 15.6 m2/g for f-Atg1, 2, 3, nf-Atg, and Ctl). f-Atg showed different level of pedogenetic weathering (Ni depletion f-Atg1 ≪ f-Atg2 and 3) and contained about 50% of elongated mineral particles, some of which exhibited high aspect ratios (AR > 10 μm, 20%, 26%, 31% for f-Atg1, 2, and 3, respectively). The minerals differed in bio-accessible iron at pH 4.5 (f-Atg1 ≪ f-Atg3, < f-Atg2, nf-Atg < Ctl), and surface reactivity (ROS release in solution, f-Atg1 ≪ f-Atg2, 3, nf-Atg, and Ctl). f-Atg2 and f-Atg3 induced oxidative stress and pro-inflammatory responses, while the less altered, poorly reactive sample (f-Atg1) induced negligible effects, as well nf-Atg. The slow dissolution kinetics observed in simulated body fluids may signal a high biopersistence. Overall, our work revealed a significative cellular toxicity of f-Atg that correlates with fibrous habit and surface reactivity.
Collapse
Affiliation(s)
- Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy; "G. Scansetti" Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| | - Jasmine Rita Petriglieri
- Department of Chemistry, University of Torino, V. P. Giuria 7, 10125, Torino, Italy; "G. Scansetti" Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, V. Santena 5 bis, 10126, Torino, Italy; "G. Scansetti" Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| | - Bice Fubini
- Department of Chemistry, University of Torino, V. P. Giuria 7, 10125, Torino, Italy; "G. Scansetti" Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| | | | - Cristina Pavan
- Department of Chemistry, University of Torino, V. P. Giuria 7, 10125, Torino, Italy; "G. Scansetti" Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| | - Maura Tomatis
- Department of Chemistry, University of Torino, V. P. Giuria 7, 10125, Torino, Italy; "G. Scansetti" Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy.
| | - Francesco Turci
- Department of Chemistry, University of Torino, V. P. Giuria 7, 10125, Torino, Italy; "G. Scansetti" Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| |
Collapse
|
8
|
Petriglieri JR, Barale L, Viti C, Ballirano P, Belluso E, Bruno MR, Campopiano A, Cannizzaro A, Fantauzzi M, Gianchiglia F, Montereali MR, Nardi E, Olori A, Piana F, Tomatis M, Rossi A, Skogby H, Pacella A, Turci F. From field analysis to nanostructural investigation: A multidisciplinary approach to describe natural occurrence of asbestos in view of hazard assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131754. [PMID: 37276694 DOI: 10.1016/j.jhazmat.2023.131754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
The environmental impact of natural occurrences of asbestos (NOA) and asbestos-like minerals is a growing concern for environmental protection agencies. The lack of shared sampling and analytical procedures hinders effectively addressing this issue. To investigate the hazard posed by NOA, a multidisciplinary approach that encompasses geology, mineralogy, chemistry, and toxicology is proposed and demonstrated here, on a natural occurrence of antigorite from a site in Varenna Valley, Italy. Antigorite is, together with chrysotile asbestos, one of the serpentine polymorphs and its toxicological profile is still under debate. We described field and petrographic analyses required to sample a vein and to evaluate the NOA-hazard. A combination of standardized mechanical stress and automated morphometrical analyses on milled samples allowed to quantify the asbestos-like morphology. The low congruent solubility in acidic simulated body fluid, together with the toxicity-relevant surface reactivity due to iron speciation, signalled a bio-activity similar or even greater to that of chrysotile. Structural information on the genetic mechanism of antigorite asbestos-like fibres in nature were provided. Overall, the NOA site was reported to contain veins of asbestos-like antigorite and should be regarded as source of potentially toxic fibres during hazard assessment procedure.
Collapse
Affiliation(s)
- Jasmine R Petriglieri
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via Pietro Giuria 9, I-10125 Torino, Italy; Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Torino, Italy
| | - Luca Barale
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via Pietro Giuria 9, I-10125 Torino, Italy; Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Torino, Italy
| | - Cecilia Viti
- University of Siena, Department of Physical Sciences, Earth and Environment, Via Laterina 8, I-53100 Siena, Italy
| | - Paolo Ballirano
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy; Rectoral Laboratory Fibres and Inorganic Particulate, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Elena Belluso
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via Pietro Giuria 9, I-10125 Torino, Italy; Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, I-10125 Torino, Italy
| | - Maria R Bruno
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Lamezia Terme, Italy
| | - Antonella Campopiano
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance against Accidents at Work (INAIL), via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Annapaola Cannizzaro
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance against Accidents at Work (INAIL), via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Marzia Fantauzzi
- Department of Chemical and Geological Sciences, INSTM Research Unit, University of Cagliari, I-09042 Monserrato, Cagliari, Italy
| | - Flaminia Gianchiglia
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Maria R Montereali
- Italian National Agency for New Technologies, ENEA, Casaccia Research Centre, via Anguillarese 301, I-00123 S. Maria di Galeria, Roma, Italy
| | - Elisa Nardi
- Institute for Environmental Protection and Research, ISPRA, via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Angelo Olori
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance against Accidents at Work (INAIL), via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Fabrizio Piana
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via Pietro Giuria 9, I-10125 Torino, Italy; Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Torino, Italy
| | - Maura Tomatis
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via Pietro Giuria 9, I-10125 Torino, Italy; Department of Chemistry, University of Torino, Via Pietro Giuria 7, I-10125 Torino, Italy
| | - Antonella Rossi
- Department of Chemical and Geological Sciences, INSTM Research Unit, University of Cagliari, I-09042 Monserrato, Cagliari, Italy
| | - Henrik Skogby
- Swedish Museum of Natural History, Department of Geosciences, Box 50007, SE-104 05 Stockholm, Sweden
| | - Alessandro Pacella
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| | - Francesco Turci
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via Pietro Giuria 9, I-10125 Torino, Italy; Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Torino, Italy; Department of Chemistry, University of Torino, Via Pietro Giuria 7, I-10125 Torino, Italy.
| |
Collapse
|
9
|
Borelli V, Zangari M, Bernareggi A, Bardelli F, Vita F, Zabucchi G. Ferruginous bodies exert a strong proinflammatory effect. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:241-245. [PMID: 36809930 DOI: 10.1080/15287394.2023.2181899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One of the main problems related to ferruginous-asbestos bodies (ABs) exposure is their potential pathogenetic role in asbestos-related diseases. The aim of this study was to examine whether purified ABs, might stimulate inflammatory cells. ABs were isolated by exploiting their magnetic properties, therefore avoiding the strong chemical treatment usually employed for this purpose. This latter treatment, which is based upon the digestion of organic matter with concentrated hypochlorite, may markedly modify the AB structure and consequently also their "in vivo" manifestations. ABs were found to induce secretion of human neutrophil granular component myeloperoxidase, as well as stimulate rat mast cell degranulation. Data demonstrated that by triggering secretory processes in inflammatory cells, purified ABs may play a role in the pathogenesis of asbestos-related diseases by continuing and enhancing the pro-inflammatory activity of the asbestos fibers.
Collapse
Affiliation(s)
- Violetta Borelli
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Martina Zangari
- Department of Life Science, University of Trieste, Trieste, Italy
| | | | | | - Francesca Vita
- Pathology Unit, Department of Surgical and Medical Sciences, Hospital of Cattinara, University of Trieste, Trieste, Italy
| | | |
Collapse
|
10
|
Cox LA, Bogen KT, Conolly R, Graham U, Moolgavkar S, Oberdörster G, Roggli VL, Turci F, Mossman B. Mechanisms and shapes of causal exposure-response functions for asbestos in mesotheliomas and lung cancers. ENVIRONMENTAL RESEARCH 2023; 230:115607. [PMID: 36965793 DOI: 10.1016/j.envres.2023.115607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 05/07/2023]
Abstract
This paper summarizes recent insights into causal biological mechanisms underlying the carcinogenicity of asbestos. It addresses their implications for the shapes of exposure-response curves and considers recent epidemiologic trends in malignant mesotheliomas (MMs) and lung fiber burden studies. Since the commercial amphiboles crocidolite and amosite pose the highest risk of MMs and contain high levels of iron, endogenous and exogenous pathways of iron injury and repair are discussed. Some practical implications of recent developments are that: (1) Asbestos-cancer exposure-response relationships should be expected to have non-zero background rates; (2) Evidence from inflammation biology and other sources suggests that there are exposure concentration thresholds below which exposures do not increase inflammasome-mediated inflammation or resulting inflammation-mediated cancer risks above background risk rates; and (3) The size of the suggested exposure concentration threshold depends on both the detailed time patterns of exposure on a time scale of hours to days and also on the composition of asbestos fibers in terms of their physiochemical properties. These conclusions are supported by complementary strands of evidence including biomathematical modeling, cell biology and biochemistry of asbestos-cell interactions in vitro and in vivo, lung fiber burden analyses and epidemiology showing trends in human exposures and MM rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francesco Turci
- University of Turin, Department of Chemistry and "G. Scansetti" Center, Italy
| | - Brooke Mossman
- University of Vermont Larner College of Medicine, Department of Pathology and Laboratory Medicine, USA
| |
Collapse
|
11
|
Giordani M, Mattioli M, Cangiotti M, Fattori A, Ottaviani MF, Betti M, Ballirano P, Pacella A, Di Giuseppe D, Scognamiglio V, Hanuskova M, Gualtieri AF. Characterisation of potentially toxic natural fibrous zeolites by means of electron paramagnetic resonance spectroscopy and morphological-mineralogical studies. CHEMOSPHERE 2022; 291:133067. [PMID: 34838598 DOI: 10.1016/j.chemosphere.2021.133067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
This study explored the morphological, mineralogical, and physico-chemical features of carcinogenic erionite and other possibly hazardous zeolites, such as mesolite and thomsonite, while also investigating the interacting capability of the mineral surface at the liquid/solid interface. Extremely fibrous erionite is K+ and Ca2+-rich and shows the highest Si/Al ratio (3.38) and specific surface area (8.14 m2/g). Fibrous mesolite is Na+ and Ca2+-rich and displays both a lower Si/Al ratio (1.56) and a smaller specific surface area (1.56 m2/g). The thomsonite composition shows the lowest values of Si/Al ratio (1.23) and specific surface area (0.38 m2/g). Electron paramagnetic resonance data from selected spin probes reveal that erionite has a homogeneous site distribution and interacts well with all spin probes. The surfaces of mesolite and thomsonite are less homogeneous and closer polar sites were found through consequent interaction with the probes. The mesolite surface can also clearly interact but with a lower strength and may represent a potential health hazard for humans, though with a lower degree if compared to erionite. The thomsonite surface is not inert and interacts with the probes with a low-grade capability. We can expect small fragments of thomsonite to interact with the biological environment, though with a low-grade intensity.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
| | - Michela Cangiotti
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Alberto Fattori
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | | | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Paolo Ballirano
- Department of Earth Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Alessandro Pacella
- Department of Earth Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Valentina Scognamiglio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Miriam Hanuskova
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| |
Collapse
|
12
|
Vigliaturo R, Jamnik M, Dražić G, Podobnik M, Žnidarič MT, Ventura GD, Redhammer GJ, Žnidaršič N, Caserman S, Gieré R. Nanoscale transformations of amphiboles within human alveolar epithelial cells. Sci Rep 2022; 12:1782. [PMID: 35110621 PMCID: PMC8810849 DOI: 10.1038/s41598-022-05802-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amphibole asbestos is related to lung fibrosis and several types of lung tumors. The disease-triggering mechanisms still challenge our diagnostic capabilities and are still far from being fully understood. The literature focuses primarily on the role and formation of asbestos bodies in lung tissues, but there is a distinct lack of studies on amphibole particles that have been internalized by alveolar epithelial cells (AECs). These internalized particles may directly interact with the cell nucleus and the organelles, exerting a synergistic action with asbestos bodies (AB) from a different location. Here we document the near-atomic- to nano-scale transformations induced by, and taking place within, AECs of three distinct amphiboles (anthophyllite, grunerite, "amosite") with different Fe-content and morphologic features. We show that: (i) an Fe-rich layer is formed on the internalized particles, (ii) particle grain boundaries are transformed abiotically by the internal chemical environment of AECs and/or by a biologically induced mineralization mechanism, (iii) the Fe-rich material produced on the particle surface does not contain large amounts of P, in stark contrast to extracellular ABs, and (iv) the iron in the Fe-rich layer is derived from the particle itself. Internalized particles and ABs follow two distinct formation mechanisms reaching different physicochemical end-states.
Collapse
Affiliation(s)
- Ruggero Vigliaturo
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, USA.
| | - Maja Jamnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Giancarlo Della Ventura
- Department of Geological Sciences, University of Roma Tre, Rome, Italy
- INFN-Istituto Nazionale Di Fisica Nucleare, Frascati (Rome), Rome, Italy
- INGV, Via di Vigna Murata 605, 00143, Rome, Italy
| | - Günther J Redhammer
- Department of Materials Science and Physics, University of Salzburg, 5020, Salzburg, Austria
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Reto Gieré
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, USA
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
13
|
Pacella A, Ballirano P, Fantauzzi M, Rossi A, Nardi E, Capitani G, Arrizza L, Montereali MR. Surface and bulk modifications of amphibole asbestos in mimicked gamble's solution at acidic PH. Sci Rep 2021; 11:14249. [PMID: 34244595 PMCID: PMC8270982 DOI: 10.1038/s41598-021-93758-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
This study aimed at investigating the surface modifications occurring on amphibole asbestos (crocidolite and tremolite) during leaching in a mimicked Gamble's solution at pH of 4.5 and T = 37 °C, from 1 h up to 720 h. Results showed that the fibre dissolution starts with the release of cations prevalently allocated at the various M- and (eventually) A-sites of the amphibole structure (incongruent dissolution). The amount of released silicon, normalized to fibre surface area, highlighted a leaching faster for the crocidolite sample, about twenty times higher than that of tremolite. Besides, the fast alteration of crocidolite promotes the occurrence of Fe centres in proximity of the fibre surface, or possibly even exposed, particularly in the form of Fe(II), of which the bulk is enriched with respect to the oxidized surface. Conversely, for tremolite fibres the very slow fibre dissolution prevents the underlying cations of the bulk to be exposed on the mineral surface, and the iron oxidation, faster than the leaching process, significantly depletes the surface Fe(II) centres initially present. Results of this work may contribute to unravel possible correlations between surface properties of amphibole asbestos and its long-term toxicity.
Collapse
Affiliation(s)
- Alessandro Pacella
- Dipartimento di Scienze della Terra and Laboratorio Rettorale Fibre e Particolato Inorganico, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy.
| | - Paolo Ballirano
- Dipartimento di Scienze della Terra and Laboratorio Rettorale Fibre e Particolato Inorganico, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Marzia Fantauzzi
- Dipartimento di Scienze Chimiche e Geologiche, INSTM Research Unit, Centro Grandi Strumenti, Università di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Antonella Rossi
- Dipartimento di Scienze Chimiche e Geologiche, INSTM Research Unit, Centro Grandi Strumenti, Università di Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Elisa Nardi
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144, Roma, Italy
| | - Giancarlo Capitani
- Dipartimento di Scienze dell'Ambiente e di Scienze della Terra, Università degli Studi di Milano-Bicocca, Piazza della Scienza 4, 20126, Milano, Italy
| | - Lorenzo Arrizza
- Centro di Microscopie, Università degli Studi dell'Aquila, Via Vetoio (Coppito 1, Edificio "Renato Ricamo"), 67100, Coppito, L'Aquila, Italy
| | | |
Collapse
|
14
|
Bardelli F, Brun F, De Panfilis S, Cloetens P, Capella S, Belluso E, Bellis D, Di Napoli A, Cedola A. Chemo-physical properties of asbestos bodies in human lung tissues studied at the nano-scale by non-invasive, label free x-ray imaging and spectroscopic techniques. Toxicol Lett 2021; 348:18-27. [PMID: 34023437 DOI: 10.1016/j.toxlet.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
In the lungs, asbestos develops an Fe-rich coating (Asbestos Body, AB) that becomes the actual interface between the foreign fibers and the host organism. Conventional approaches to study ABs require an invasive sample preparation that can alter them. In this work, a novel combination of x-ray tomography and spectroscopy allowed studying unaltered lung tissue samples with chrysotile and crocidolite asbestos. The thickness and mass density maps of the ABs obtained by x-ray tomography were used to derive a truly quantitative elemental analysis from scanning x-ray fluorescence spectroscopy data. The average mass density of the ABs is compatible with that of highly loaded ferritin, or hemosiderin. The composition of all ABs analyzed was similar, with only minor differences in the relative elemental fractions. Silicon concentration decreased in the core-to-rim direction, indicating a possible partial dissolution of the inner fiber. The Fe content in the ABs was higher than that possibly contained in chrysotile and crocidolite. This finding opens two opposite scenarios, the first with Fe coming from the fiber bulk and concentrating on the surface as long as the fiber dissolves, the second where the Fe that takes part to the formation of the AB originates from the host organism Fe-pool.
Collapse
Affiliation(s)
- Fabrizio Bardelli
- Institute of Nanotechnology - CNR-Nanotec, c/o Department of Physics, Sapienza University, Roma, Italy.
| | - Francesco Brun
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Simone De Panfilis
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Roma, Italy
| | - Peter Cloetens
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Silvana Capella
- Department of Earth Sciences, University of Torino, Torino, Italy; Interdepartmental Centre for the Study of Asbestos and Other Toxic Particulate "G. Scansetti", University of Torino, Torino, Italy
| | - Elena Belluso
- Department of Earth Sciences, University of Torino, Torino, Italy; Interdepartmental Centre for the Study of Asbestos and Other Toxic Particulate "G. Scansetti", University of Torino, Torino, Italy
| | - Donata Bellis
- Interdepartmental Centre for the Study of Asbestos and Other Toxic Particulate "G. Scansetti", University of Torino, Torino, Italy; Department of Surgery, Pathological Anatomy, Ospedale degli Infermi, Biella, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Pathology Unit, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Alessia Cedola
- Institute of Nanotechnology - CNR-Nanotec, c/o Department of Physics, Sapienza University, Roma, Italy
| |
Collapse
|
15
|
Khaliullin TO, Kisin ER, Guppi S, Yanamala N, Zhernovkov V, Shvedova AA. Differential responses of murine alveolar macrophages to elongate mineral particles of asbestiform and non-asbestiform varieties: Cytotoxicity, cytokine secretion and transcriptional changes. Toxicol Appl Pharmacol 2020; 409:115302. [PMID: 33148505 DOI: 10.1016/j.taap.2020.115302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 01/19/2023]
Abstract
Human exposures to asbestiform elongate mineral particles (EMP) may lead to diffuse fibrosis, lung cancer, malignant mesothelioma and autoimmune diseases. Cleavage fragments (CF) are chemically identical to asbestiform varieties (or habits) of the parent mineral, but no consensus exists on whether to treat them as asbestos from toxicological and regulatory standpoints. Alveolar macrophages (AM) are the first responders to inhaled particulates, participating in clearance and activating other resident and recruited immunocompetent cells, impacting the long-term outcomes. In this study we address how EMP of asbestiform versus non-asbestiform habit affect AM responses. Max Planck Institute (MPI) cells, a non-transformed mouse line that has an AM phenotype and genotype, were treated with mass-, surface area- (s.a.), and particle number- (p.n.) equivalent concentrations of respirable asbestiform and non-asbestiform riebeckite/tremolite EMP for 24 h. Cytotoxicity, cytokines secretion and transcriptional changes were evaluated. At the equal mass, asbestiform EMP were more cytotoxic, however EMP of both habits induced similar LDH leakage and decrease in viability at s.a. and p.n. equivalent doses. DNA damage assessment and cell cycle analysis revealed differences in the modes of cell death between asbestos and respective CF. There was an increase in chemokines, but not pro-inflammatory cytokines after all EMP treatments. Principal component analysis of the cytokine secretion showed close clustering for the s.a. and p.n. equivalent treatments. There were mineral- and habit-specific patterns of gene expression dysregulation at s.a. equivalent doses. Our study reveals the critical nature of EMP morphometric parameters for exposure assessment and dosing approaches used in toxicity studies.
Collapse
Affiliation(s)
- T O Khaliullin
- West Virginia University, Morgantown, WV, United States of America; HELD, NIOSH, CDC, Morgantown, WV, United States of America.
| | - E R Kisin
- HELD, NIOSH, CDC, Morgantown, WV, United States of America.
| | - S Guppi
- HELD, NIOSH, CDC, Morgantown, WV, United States of America.
| | - N Yanamala
- West Virginia University, Morgantown, WV, United States of America; Carnegie Mellon University, Pittsburgh, PA, United States of America.
| | | | - A A Shvedova
- West Virginia University, Morgantown, WV, United States of America; HELD, NIOSH, CDC, Morgantown, WV, United States of America.
| |
Collapse
|
16
|
Voloaca OM, Greenhalgh CJ, Cole LM, Clench MR, Managh AJ, Haywood-Small SL. Laser ablation inductively coupled plasma mass spectrometry as a novel clinical imaging tool to detect asbestos fibres in malignant mesothelioma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8906. [PMID: 32700418 DOI: 10.1002/rcm.8906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Malignant pleural mesothelioma is an extremely aggressive and incurable malignancy associated with prior exposure to asbestos fibres. Difficulties remain in relation to early diagnosis, notably due to impeded identification of asbestos in lung tissue. This study describes a novel laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging approach to identify asbestos within mesothelioma models with clinical significance. METHODS Human mesothelioma cells were exposed to different types of asbestos fibres and prepared on plastic slides for LA-ICP-MS analysis. No further sample preparation was required prior to analysis, which was performed using an NWR Image 266 nm laser ablation system coupled to an Element XR sector-field ICP mass spectrometer, with a lateral resolution of 2 μm. Data was processed using LA-ICP-MS ImageTool v1.7 with the final graphic production made using DPlot software. RESULTS Four different mineral fibres were successfully identified within the mesothelioma samples based on some of the most abundant elements that make up these fibres (Si, Mg and Fe). Using LA-ICP-MS as an imaging tool provided information on the spatial distribution of the fibres at cellular level, which is essential in asbestos detection within tissue samples. Based on the metal counts generated by the different types of asbestos, different fibres can be identified based on shape, size, and elemental composition. Detection of Ca was attempted but requires further optimisation. CONCLUSIONS Detection of asbestos fibres in lung tissues is very useful, if not necessary, to complete the pathological dt9iagnosis of asbestos-related malignancies in the medicolegal field. For the first time, this study demonstrates the successful application of LA-ICP-MS imaging to identify asbestos fibres and other mineral fibres within mesothelioma samples. Ultimately, high-resolution, fast-speed LA-ICP-MS analysis has the potential to be integrated into clinical workflow to aid earlier detection and stratification of mesothelioma patient samples.
Collapse
Affiliation(s)
- Oana M Voloaca
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Calum J Greenhalgh
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Laura M Cole
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Malcolm R Clench
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Amy J Managh
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Sarah L Haywood-Small
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| |
Collapse
|
17
|
Pacella A, Tomatis M, Viti C, Bloise A, Arrizza L, Ballirano P, Turci F. Thermal inertization of amphibole asbestos modulates Fe topochemistry and surface reactivity. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123119. [PMID: 32768844 DOI: 10.1016/j.jhazmat.2020.123119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
This study discloses the morphological and chemical-structural modifications that occur during thermal degradation of amphibole asbestos. Low-iron tremolite and iron-rich crocidolite were heated at temperatures ranging from r.t. to 1200 °C. Heating promoted a complex sequence of iron oxidation, migration and/or clustering and, finally, the formation of brittle fibrous pseudomorphs consisting of newly formed minerals and amorphous nanophases. The effects of the thermal modifications on toxicologically relevant asbestos reactivity were evaluated by quantifying carbon- and oxygen-centred, namely hydroxyl (OH), radicals. Heating did not alter carbon radicals, but largely affected oxygen-centred radical yields. At low temperature, reactivity of both amphiboles decreased. At 1200 °C, tremolite structural breakdown was achieved and the reactivity was further reduced by migration of reactive iron ions into the more stable TO4 tetrahedra of the newly formed pyroxene(s). Differently, crocidolite breakdown at 1000 °C induced the formation of hematite, Fe-rich pyroxene, cristobalite, and abundant amorphous material and restored radical reactivity. Our finding suggests that thermally treated asbestos and its breakdown products still share some toxicologically relevant properties with pristine fibre. Asbestos inertization studies should consider morphology and surface reactivity, beyond crystallinity, when proving that a thermally inactivated asbestos-containing material is safe.
Collapse
Affiliation(s)
- Alessandro Pacella
- Dipartimento di Scienze della Terra and Laboratorio Rettorale Fibre e Particolato Inorganico, Sapienza Università di Roma, P.le A. Moro 5, I-00185, Rome, Italy
| | - Maura Tomatis
- "G. Scansetti" Center for Studies on Asbestos and Other Toxic Particulates and Dipartimento di Chimica, Università di Torino, V. P. Giuria 7, I-10125, Turin, Italy
| | - Cecilia Viti
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, V. Laterina 8, I-53100, Siena, Italy
| | - Andrea Bloise
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, V. P. Bucci, I-87036, Arcavacata di Rende, CS, Italy
| | - Lorenzo Arrizza
- Centro di Microscopie, Università degli Studi dell'Aquila, Via Vetoio (Coppito 1, Edificio "Renato Ricamo"), 67100, Coppito, L'Aquila, Italy
| | - Paolo Ballirano
- Dipartimento di Scienze della Terra and Laboratorio Rettorale Fibre e Particolato Inorganico, Sapienza Università di Roma, P.le A. Moro 5, I-00185, Rome, Italy.
| | - Francesco Turci
- "G. Scansetti" Center for Studies on Asbestos and Other Toxic Particulates and Dipartimento di Chimica, Università di Torino, V. P. Giuria 7, I-10125, Turin, Italy.
| |
Collapse
|
18
|
Boyles MSP, Poland CA, Raftis J, Duffin R. Assessment of the physicochemical properties of chrysotile-containing brake debris pertaining to toxicity. Inhal Toxicol 2019; 31:325-342. [DOI: 10.1080/08958378.2019.1683103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Craig A. Poland
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jennifer Raftis
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Concept Life Sciences, 2 James Lindsay Place Dundee Technopole Dundee, Dundee, Scotland
| |
Collapse
|
19
|
Gualtieri AF, Lusvardi G, Pedone A, Di Giuseppe D, Zoboli A, Mucci A, Zambon A, Filaferro M, Vitale G, Benassi M, Avallone R, Pasquali L, Lassinantti Gualtieri M. Structure Model and Toxicity of the Product of Biodissolution of Chrysotile Asbestos in the Lungs. Chem Res Toxicol 2019; 32:2063-2077. [DOI: 10.1021/acs.chemrestox.9b00220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alessandro F. Gualtieri
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Gigliola Lusvardi
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Alessandro Zoboli
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Adele Mucci
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Alfonso Zambon
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Monica Filaferro
- Department of Biomedical, Metabolic, and Neuro-Sciences, The University of Modena and Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Monia Benassi
- Department of Biomedical, Metabolic, and Neuro-Sciences, The University of Modena and Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, The University of Modena and Reggio Emilia, Via G. Campi 103, I-41125 Modena, Italy
| | - Luca Pasquali
- Department of Engineering “Enzo Ferrari”, The University of Modena and Reggio Emilia, Via P. Vivarelli 10, I-41125 Modena, Italy
| | - Magdalena Lassinantti Gualtieri
- Department of Engineering “Enzo Ferrari”, The University of Modena and Reggio Emilia, Via P. Vivarelli 10, I-41125 Modena, Italy
| |
Collapse
|
20
|
Gualtieri AF, Andreozzi GB, Tomatis M, Turci F. Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Free Radic Biol Med 2019; 133:21-37. [PMID: 30071299 DOI: 10.1016/j.freeradbiomed.2018.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Accepted: 07/29/2018] [Indexed: 01/08/2023]
Abstract
Iron and its role as soul of life on Earth is addressed in this review as iron is one of the most abundant elements of our universe, forms the core of our planet and that of telluric (i.e., Earth-like) planets, is a major element of the Earth's crust and is hosted in an endless number of mineral phases, both crystalline and amorphous. To study iron at an atomic level inside the bulk of mineral phases or at its surface, where it is more reactive, both spectroscopy and diffraction experimental methods can be used, taking advantage of nearly the whole spectrum of electromagnetic waves. These methods can be successfully combined to microscopy to simultaneously provide chemical (e.g. iron mapping) and morphological information on mineral particles, and shed light on the interaction of mineral surfaces with organic matter. This review describes the crystal chemistry of iron-bearing minerals of importance for the environment and human health, with special attention to iron in toxic minerals, and the experimental methods used for their study. Special attention is devoted to the Fenton-like chain reaction involving Fe2+ in the formation of highly reactive hydroxyl radicals. The final part of this review deals with release and adsorption of iron in biological fluids, coordinative and oxidative state of iron and in vitro reactivity. To disclose the very mechanisms of carcinogenesis induced by iron-bearing toxic mineral particles, crystal chemistry and surface chemistry are fundamental for a multidisciplinary approach which should involve geo-bio-scientists, toxicologists and medical doctors.
Collapse
Affiliation(s)
- Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Giovanni B Andreozzi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy; CNR-IGAG, U.O. Roma, at Department of Earth Sciences, Sapienza University of Rome, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Maura Tomatis
- Department of Chemistry, University of Torino, via Pietro Giuria 7, I-10125 Torino, Italy; "G. Sca nsetti" Interdepartmen tal Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, via Pietro Giuria 9, I-10125 Torino, Italy
| | - Francesco Turci
- Department of Chemistry, University of Torino, via Pietro Giuria 7, I-10125 Torino, Italy; "G. Sca nsetti" Interdepartmen tal Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, via Pietro Giuria 9, I-10125 Torino, Italy
| |
Collapse
|
21
|
Walter M, Schenkeveld WDC, Reissner M, Gille L, Kraemer SM. The Effect of pH and Biogenic Ligands on the Weathering of Chrysotile Asbestos: The Pivotal Role of Tetrahedral Fe in Dissolution Kinetics and Radical Formation. Chemistry 2019; 25:3286-3300. [PMID: 30417458 PMCID: PMC6582442 DOI: 10.1002/chem.201804319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/08/2018] [Indexed: 12/04/2022]
Abstract
Chrysotile asbestos is a soil pollutant in many countries. It is a carcinogenic mineral, partly due to its surface chemistry. In chrysotile, FeII and FeIII substitute Mg octahedra (Fe[6]), and FeIII substitutes Si tetrahedra (Fe[4]). Fe on fiber surfaces can generate hydroxyl radicals (HO. ) in Fenton reactions, which damage biomolecules. To better understand chrysotile weathering in soils, net Mg and Si dissolution rates over the pH range 3.0-11.5 were determined in the presence and absence of biogenic ligands. Also, HO. generation and Fe bulk speciation of pristine and weathered fibers were examined by EPR and Mössbauer spectroscopy. Dissolution rates were increased by ligands and inversely related to pH with complete inhibition at cement pH (11.5). Surface-exposed Mg layers readily dissolved at low pH, but only after days at neutral pH. On longer timescales, the slow dissolution of Si layers became rate-determining. In the absence of ligands, Fe[6] precipitated as Fenton-inactive Fe phases, whereas Fe[4] (7 % of bulk Fe) remained redox-active throughout two-week experiments and at pH 7.5 generated 50±10 % of the HO. yield of Fe[6] at pristine fiber surfaces. Ligand-promoted dissolution of Fe[4] (and potentially Al[4]) labilized exposed Si layers. This increased Si and Mg dissolution rates and lowered HO. generation to near-background level. It is concluded that Fe[4] surface species control long-term HO. generation and dissolution rates of chrysotile at natural soil pH.
Collapse
Affiliation(s)
- Martin Walter
- Department of Environmental GeosciencesUniversity of ViennaAlthanstrasse 14 (UZA II)1090ViennaAustria
| | - Walter D. C. Schenkeveld
- Department of Environmental GeosciencesUniversity of ViennaAlthanstrasse 14 (UZA II)1090ViennaAustria
- Current address: Copernicus Institute of Sustainable DevelopmentFaculty of GeosciencesUtrecht UniversityPrincetonlaan 8A3584 CBUtrechtThe Netherlands
| | - Michael Reissner
- Institute of Solid State PhysicsTU WienWiedner Hauptstrasse 8–101040ViennaAustria
| | - Lars Gille
- Institute of Pharmacology and ToxicologyUniversity of Veterinary Medicine, ViennaVeterinärplatz 11210ViennaAustria
| | - Stephan M. Kraemer
- Department of Environmental GeosciencesUniversity of ViennaAlthanstrasse 14 (UZA II)1090ViennaAustria
| |
Collapse
|