1
|
Cotta GC, Teixeira dos Santos RC, Costa GMJ, Lacerda SMDSN. Reporter Alleles in hiPSCs: Visual Cues on Development and Disease. Int J Mol Sci 2024; 25:11009. [PMID: 39456792 PMCID: PMC11507014 DOI: 10.3390/ijms252011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Reporter alleles are essential for advancing research with human induced pluripotent stem cells (hiPSCs), notably in developmental biology and disease modeling. This study investigates the state-of-the-art gene-editing techniques tailored for generating reporter alleles in hiPSCs, emphasizing their effectiveness in investigating cellular dynamics and disease mechanisms. Various methodologies, including the application of CRISPR/Cas9 technology, are discussed for accurately integrating reporter genes into the specific genomic loci. The synthesis of findings from the studies utilizing these reporter alleles reveals insights into developmental processes, genetic disorder modeling, and therapeutic screening, consolidating the existing knowledge. These hiPSC-derived models demonstrate remarkable versatility in replicating human diseases and evaluating drug efficacy, thereby accelerating translational research. Furthermore, this review addresses challenges and future directions in refining the reporter allele design and application to bolster their reliability and relevance in biomedical research. Overall, this investigation offers a comprehensive perspective on the methodologies, applications, and implications of reporter alleles in hiPSC-based studies, underscoring their essential role in advancing both fundamental scientific understanding and clinical practice.
Collapse
Affiliation(s)
| | | | | | - Samyra Maria dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; (G.C.C.); (R.C.T.d.S.); (G.M.J.C.)
| |
Collapse
|
2
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2024:10.1038/s41577-024-01081-x. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Sheveleva O, Protasova E, Nenasheva T, Butorina N, Melnikova V, Gerasimova T, Sakovnich O, Kurinov A, Grigor’eva E, Medvedev S, Lyadova I. A Model of iPSC-Derived Macrophages with TNFAIP3 Overexpression Reveals the Peculiarities of TNFAIP3 Protein Expression and Function in Human Macrophages. Int J Mol Sci 2023; 24:12868. [PMID: 37629049 PMCID: PMC10454046 DOI: 10.3390/ijms241612868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Macrophages play a crucial role in the development and control of inflammation. Understanding the mechanisms balancing macrophage inflammatory activity is important to develop new strategies for treating inflammation-related diseases. TNF-α-induced protein 3 (TNFAIP3, A20) is a negative regulator of intracellular inflammatory cascades; its deficiency induces hyper-inflammatory reactions. Whether A20 overexpression can dampen macrophage inflammatory response remains unclear. Here, we generated human-induced pluripotent stem cells with tetracycline-inducible A20 expression and differentiated them into macrophages (A20-iMacs). A20-iMacs displayed morphology, phenotype, and phagocytic activity typical of macrophages, and they displayed upregulated A20 expression in response to doxycycline. A20 overexpression dampened the A20-iMac response to TNF-α, as shown by a decreased expression of IL1B and IL6 mRNA. A dynamic analysis of A20 expression following the generation of A20-iMacs and control iMacs showed that the expression declined in iMacs and that iMacs expressed a lower molecular weight form of the A20 protein (~70 kDa) compared with less differentiated cells (~90 kDa). A low-level expression of A20 and the predominance of a low-molecular-weight A20 form were also characteristic of monocyte-derived macrophages. The study for the first time developed a model for generating macrophages with an inducible expression of a target gene and identified the peculiarities of A20 expression in macrophages that likely underlie macrophage preparedness for inflammatory reactivity. It also suggested the possibility of mitigating inflammatory macrophage responses via A20 overexpression.
Collapse
Affiliation(s)
- Olga Sheveleva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Elena Protasova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Tatiana Nenasheva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Nina Butorina
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Victoria Melnikova
- Laboratory of Comparative Developmental Physiology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia;
| | - Tatiana Gerasimova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Olga Sakovnich
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| | - Alexander Kurinov
- Laboratory of Regeneration Problems, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia;
| | - Elena Grigor’eva
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; (E.G.); (S.M.)
| | - Sergey Medvedev
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; (E.G.); (S.M.)
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova Str., 26, 119334 Moscow, Russia; (O.S.); (E.P.); (T.N.); (N.B.); (T.G.); (O.S.)
| |
Collapse
|
4
|
Huang X, Cao M, Xiao Y. Alveolar macrophages in pulmonary alveolar proteinosis: origin, function, and therapeutic strategies. Front Immunol 2023; 14:1195988. [PMID: 37388737 PMCID: PMC10303123 DOI: 10.3389/fimmu.2023.1195988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary disorder that is characterized by the abnormal accumulation of surfactant within the alveoli. Alveolar macrophages (AMs) have been identified as playing a pivotal role in the pathogenesis of PAP. In most of PAP cases, the disease is triggered by impaired cholesterol clearance in AMs that depend on granulocyte-macrophage colony-stimulating factor (GM-CSF), resulting in defective alveolar surfactant clearance and disruption of pulmonary homeostasis. Currently, novel pathogenesis-based therapies are being developed that target the GM-CSF signaling, cholesterol homeostasis, and immune modulation of AMs. In this review, we summarize the origin and functional role of AMs in PAP, as well as the latest therapeutic strategies aimed at addressing this disease. Our goal is to provide new perspectives and insights into the pathogenesis of PAP, and thereby identify promising new treatments for this disease.
Collapse
Affiliation(s)
- Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yonglong Xiao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| |
Collapse
|
5
|
Nikolouli E, Reichstein J, Hansen G, Lachmann N. In vitro systems to study inborn errors of immunity using human induced pluripotent stem cells. Front Immunol 2022; 13:1024935. [DOI: 10.3389/fimmu.2022.1024935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
In the last two decades, the exponential progress in the field of genetics could reveal the genetic impact on the onset and progression of several diseases affecting the immune system. This knowledge has led to the discovery of more than 400 monogenic germline mutations, also known as “inborn errors of immunity (IEI)”. Given the rarity of various IEI and the clinical diversity as well as the limited available patients’ material, the continuous development of novel cell-based in vitro models to elucidate the cellular and molecular mechanisms involved in the pathogenesis of these diseases is imperative. Focusing on stem cell technologies, this review aims to provide an overview of the current available in vitro models used to study IEI and which could lay the foundation for new therapeutic approaches. We elaborate in particular on the use of induced pluripotent stem cell-based systems and their broad application in studying IEI by establishing also novel infection culture models. The review will critically discuss the current limitations or gaps in the field of stem cell technology as well as the future perspectives from the use of these cell culture systems.
Collapse
|
6
|
Rasaei R, Tyagi A, Rasaei S, Lee SJ, Yang SR, Kim KS, Ramakrishna S, Hong SH. Human pluripotent stem cell-derived macrophages and macrophage-derived exosomes: therapeutic potential in pulmonary fibrosis. Stem Cell Res Ther 2022; 13:433. [PMID: 36056418 PMCID: PMC9438152 DOI: 10.1186/s13287-022-03136-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary fibrosis (PF) is a fatal chronic disease characterized by accumulation of extracellular matrix and thickening of the alveolar wall, ultimately leading to respiratory failure. PF is thought to be initiated by the dysfunction and aberrant activation of a variety of cell types in the lung. In particular, several studies have demonstrated that macrophages play a pivotal role in the development and progression of PF through secretion of inflammatory cytokines, growth factors, and chemokines, suggesting that they could be an alternative therapeutic source as well as therapeutic target for PF. In this review, we describe the characteristics, functions, and origins of subsets of macrophages involved in PF and summarize current data on the generation and therapeutic application of macrophages derived from pluripotent stem cells for the treatment of fibrotic diseases. Additionally, we discuss the use of macrophage-derived exosomes to repair fibrotic lung tissue.
Collapse
Affiliation(s)
- Roya Rasaei
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Shima Rasaei
- Department of Cellular and Molecular Science, Falavarjan Branch, Islamic Azad University, Falavarjan, Iran
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea.
- Institute of Medical Science, Kangwon National University, Chuncheon, 24341, South Korea.
- KW-Bio Co., Ltd, Wonju, South Korea.
| |
Collapse
|
7
|
Lyadova I, Vasiliev A. Macrophages derived from pluripotent stem cells: prospective applications and research gaps. Cell Biosci 2022; 12:96. [PMID: 35725499 PMCID: PMC9207879 DOI: 10.1186/s13578-022-00824-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent a valuable cell source able to give rise to different cell types of the body. Among the various pathways of iPSC differentiation, the differentiation into macrophages is a recently developed and rapidly growing technique. Macrophages play a key role in the control of host homeostasis. Their dysfunction underlies many diseases, including hereditary, infectious, oncological, metabolic and other disorders. Targeting macrophage activity and developing macrophage-based cell therapy represent promising tools for the treatment of many pathological conditions. Macrophages generated from human iPSCs (iMphs) provide great opportunities in these areas. The generation of iMphs is based on a step-wise differentiation of iPSCs into mesoderm, hematopoietic progenitors, myeloid monocyte-like cells and macrophages. The technique allows to obtain standardizable populations of human macrophages from any individual, scale up macrophage production and introduce genetic modifications, which gives significant advantages over the standard source of human macrophages, monocyte-derived macrophages. The spectrum of iMph applications is rapidly growing. iMphs have been successfully used to model hereditary diseases and macrophage-pathogen interactions, as well as to test drugs. iMph use for cell therapy is another promising and rapidly developing area of research. The principles and the details of iMph generation have recently been reviewed. This review systemizes current and prospective iMph applications and discusses the problem of iMph safety and other issues that need to be explored before iMphs become clinically applicable.
Collapse
Affiliation(s)
- Irina Lyadova
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation.
| | - Andrei Vasiliev
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation
| |
Collapse
|
8
|
Fehér A, Schnúr A, Muenthaisong S, Bellák T, Ayaydin F, Várady G, Kemter E, Wolf E, Dinnyés A. Establishment and characterization of a novel human induced pluripotent stem cell line stably expressing the iRFP720 reporter. Sci Rep 2022; 12:9874. [PMID: 35701501 PMCID: PMC9198085 DOI: 10.1038/s41598-022-12956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Stem cell therapy has great potential for replacing beta-cell loss in diabetic patients. However, a key obstacle to cell therapy’s success is to preserve viability and function of the engrafted cells. While several strategies have been developed to improve engrafted beta-cell survival, tools to evaluate the efficacy within the body by imaging are limited. Traditional labeling tools, such as GFP-like fluorescent proteins, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent this limitation, a near-infrared fluorescent mutant version of the DrBphP bacteriophytochrome, iRFP720, has been developed for in vivo imaging and stem/progenitor cell tracking. Here, we present the generation and characterization of an iRFP720 expressing human induced pluripotent stem cell (iPSC) line, which can be used for real-time imaging in various biological applications. To generate the transgenic cells, the CRISPR/Cas9 technology was applied. A puromycin resistance gene was inserted into the AAVS1 locus, driven by the endogenous PPP1R12C promoter, along with the CAG-iRFP720 reporter cassette, which was flanked by insulator elements. Proper integration of the transgene into the targeted genomic region was assessed by comprehensive genetic analysis, verifying precise genome editing. Stable expression of iRFP720 in the cells was confirmed and imaged by their near-infrared fluorescence. We demonstrated that the reporter iPSCs exhibit normal stem cell characteristics and can be efficiently differentiated towards the pancreatic lineage. As the genetically modified reporter cells show retained pluripotency and multilineage differentiation potential, they hold great potential as a cellular model in a variety of biological and pharmacological applications.
Collapse
Affiliation(s)
- Anita Fehér
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Andrea Schnúr
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | | | - Tamás Bellák
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary.,Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6724, Hungary
| | - Ferhan Ayaydin
- Functional Cell Biology and Immunology Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, University of Szeged (HCEMM-USZ), Szeged, 6720, Hungary.,Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - György Várady
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, 1117, Hungary
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - András Dinnyés
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary. .,HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, 6723, Hungary. .,Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary.
| |
Collapse
|
9
|
Pulmonary transplantation of alpha-1 antitrypsin (AAT)-transgenic macrophages provides a source of functional human AAT in vivo. Gene Ther 2021; 28:477-493. [PMID: 34276045 PMCID: PMC8455329 DOI: 10.1038/s41434-021-00269-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
Inherited deficiency of the antiprotease alpha-1 antitrypsin (AAT) is associated with liver failure and early-onset emphysema. In mice, in vivo lentiviral transduction of alveolar macrophages (AMs) has been described to yield protective pulmonary AAT levels and ameliorate emphysema development. We here investigated the pulmonary transplantation of macrophages (PMT) transgenic for AAT as a potential therapy for AAT deficiency-associated lung pathology. Employing third-generation SIN-lentiviral vectors expressing the human AAT cDNA from the CAG or Cbx-EF1α promoter, we obtained high-level AAT secretion in a murine AM cell line as well as murine bone marrow-derived macrophages differentiated in vitro (AAT MΦ). Secreted AAT demonstrated a physiologic glycosylation pattern as well as elastase-inhibitory and anti-apoptotic properties. AAT MΦ preserved normal morphology, surface phenotype, and functionality. Furthermore, in vitro generated murine AAT MΦ successfully engrafted in AM-deficient Csf2rb-/- mice and converted into a CD11c+/Siglec-F+ AM phenotype as detected in bronchoalveolar lavage fluid and homogenized lung tissue 2 months after PMT. Moreover, human AAT was detected in the lung epithelial lining fluid of transplanted animals. Efficient AAT expression and secretion were also demonstrated for human AAT MΦ, confirming the applicability of our vectors in human cells.
Collapse
|
10
|
Ackermann M, Haake K, Kempf H, Kaschutnig P, Weiss AC, Nguyen AHH, Abeln M, Merkert S, Kühnel MP, Hartmann D, Jonigk D, Thum T, Kispert A, Milsom MD, Lachmann N. A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification. Haematologica 2021; 106:1354-1367. [PMID: 32327499 PMCID: PMC8094103 DOI: 10.3324/haematol.2019.228064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 01/09/2023] Open
Abstract
Hematopoietic development is spatiotemporally tightly regulated by defined cell-intrinsic and extrinsic modifiers. The role of cytokines has been intensively studied in adult hematopoiesis; however, their role in embryonic hematopoietic specification remains largely unexplored. Here, we used induced pluripotent stem cell (iPSC) technology and established a 3-dimensional (3D), organoid-like differentiation system (“hemanoid”) maintaining the structural cellular integrity to evaluate the effect of cytokines on embryonic hematopoietic development. We show that defined stages of early human hematopoietic development were recapitulated within the generated hemanoids. We identified KDR+/CD34high/CD144+/CD43–/CD45– hemato-endothelial progenitors (HEP) forming organized, vasculature-like structures and giving rise to CD34low/CD144–/CD43+/CD45+ hematopoietic progenitor cells. We demonstrate that the endothelial to hematopoietic transition of HEP is dependent on the presence of interleukin 3 (IL-3). Inhibition of IL-3 signaling blocked hematopoietic differentiation and arrested the cells in the HEP stage. Thus, our data suggest an important role for IL-3 in early human hematopoiesis by supporting the endothelial to hematopoietic transition of HEP and highlight the potential of a hemanoid-based model to study human hematopoietic development.
Collapse
Affiliation(s)
- Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Kathrin Haake
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Henning Kempf
- Hannover Medical School and dept. of Stem Cell Discovery, Novo Nordisk, Denmark
| | - Paul Kaschutnig
- German Cancer Research Center (DKFZ) Heidelberg Institute for Stem Cell Technology, Germany
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Ariane H H Nguyen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Markus Abeln
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Sylvia Merkert
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | | | - Dorothee Hartmann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Germany
| | - Danny Jonigk
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Germany
| | - Thomas Thum
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Michael D Milsom
- German Cancer Research Center and Heidelberg Institute for Stem Cell Technology, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Hadchouel A, Drummond D, Abou Taam R, Lebourgeois M, Delacourt C, de Blic J. Alveolar proteinosis of genetic origins. Eur Respir Rev 2020; 29:29/158/190187. [PMID: 33115790 DOI: 10.1183/16000617.0187-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare form of chronic interstitial lung disease, characterised by the intra-alveolar accumulation of lipoproteinaceous material. Numerous conditions can lead to its development. Whereas the autoimmune type is the main cause in adults, genetic defects account for a large part of cases in infants and children. Even if associated extra-respiratory signs may guide the clinician during diagnostic work-up, next-generation sequencing panels represent an efficient diagnostic tool. Exome sequencing also allowed the discovery of new variants and genes involved in PAP. The aim of this article is to summarise our current knowledge of genetic causes of PAP.
Collapse
Affiliation(s)
- Alice Hadchouel
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France .,INSERM U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Faculté de Médecine, Paris, France
| | - David Drummond
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Rola Abou Taam
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Muriel Lebourgeois
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France.,INSERM U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Faculté de Médecine, Paris, France
| | - Jacques de Blic
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| |
Collapse
|
12
|
Poltavets AS, Vishnyakova PA, Elchaninov AV, Sukhikh GT, Fatkhudinov TK. Macrophage Modification Strategies for Efficient Cell Therapy. Cells 2020; 9:E1535. [PMID: 32599709 PMCID: PMC7348902 DOI: 10.3390/cells9061535] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages, important cells of innate immunity, are known for their phagocytic activity, capability for antigen presentation, and flexible phenotypes. Macrophages are found in all tissues and therefore represent an attractive therapeutic target for the treatment of diseases of various etiology. Genetic programming of macrophages is an important issue of modern molecular and cellular medicine. The controllable activation of macrophages towards desirable phenotypes in vivo and in vitro will provide effective treatments for a number of inflammatory and proliferative diseases. This review is focused on the methods for specific alteration of gene expression in macrophages, including the controllable promotion of the desired M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotypes in certain pathologies or model systems. Here we review the strategies of target selection, the methods of vector delivery, and the gene editing approaches used for modification of macrophages.
Collapse
Affiliation(s)
- Anastasiya S. Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
| | - Polina A. Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia;
| | - Andrey V. Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
- Department of Histology, Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
| | - Timur Kh. Fatkhudinov
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia;
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| |
Collapse
|
13
|
Antoniu SA, Rajnoveanu R, Grigore M, Antohe I. Pharmacotherapy options in pulmonary alveolar proteinosis. Expert Opin Pharmacother 2020; 21:1359-1366. [PMID: 32511020 DOI: 10.1080/14656566.2020.1757650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pulmonary alveolar proteinosis (PAP) is a heterogeneous group of rare diseases characterized by the abnormal production and impaired degradation of pulmonary surfactant as a result of malfunctioning of alveolar macrophages. This is due to the downstream dysregulation of the GM-CSF pathway, which can be caused by specific autoantibodies (autoimmune, aPAP formerly known as idiopathic iPAP), direct injury to alveolar macrophages (e.g. by toxic inhaled agents.), or by genetic defects (hereditary or congenital PAP). Few pharmacotherapy options are currently available to treat this disease. AREA COVERED The authors discuss the exogenous administration of GM-CSF, rituximab, and the potential role of cholesterol lowering medications in this review. The authors, furthermore, provide their opinion on the available pharmacotherapeutic options and give their future perspectives. EXPERT OPINION Inhaled GM-CSF remains the most commonly used therapy in patients with iPAP but other inhaled therapies such as PPARγ activators should be considered, especially in patients who are partially responsive or unresponsive to traditional treatments.
Collapse
Affiliation(s)
| | - Ruxandra Rajnoveanu
- Faculty of Medicine, University of Medicine and Pharmacy Iuliu Hatieganu , Cluj Napoca, Romania
| | - Mihaela Grigore
- Mother and Child Department, University of Medicine and Pharmacy Grigore T Popa , Iasi, Romania
| | - Ileana Antohe
- Faculty of Medicine, University of Medicine and Pharmacy Grigore T Popa , Iasi, Romania
| |
Collapse
|
14
|
Nenasheva T, Gerasimova T, Serdyuk Y, Grigor'eva E, Kosmiadi G, Nikolaev A, Dashinimaev E, Lyadova I. Macrophages Derived From Human Induced Pluripotent Stem Cells Are Low-Activated "Naïve-Like" Cells Capable of Restricting Mycobacteria Growth. Front Immunol 2020; 11:1016. [PMID: 32582159 PMCID: PMC7287118 DOI: 10.3389/fimmu.2020.01016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
In peripheral tissues, immune protection critically depends on the activity of tissue resident macrophages, which makes our understanding of the biology of these cells of great significance. Until recently, human macrophage studies were largely based on the analysis of monocyte-derived macrophages that differ from tissue resident macrophages by many characteristics. To model tissue resident macrophages, methods of generating macrophages from pluripotent stem cells have been developed. However, the immunological properties of macrophages derived from pluripotent stem cells remain under-investigated. In this study, we aimed to perform the multifarious immunological characteristics of macrophages generated from human induced pluripotent stem cells (iMϕs), including an analysis of their phenotype, secretory and antibacterial activities, as well as their comparison with macrophages derived from blood monocytes and infected lung tissue. We report that iMϕs displayed the morphology and the CD11b+CD45+CD14+ phenotype typical for mononuclear phagocytes. The cells co-expressed markers known to be associated with classically (CD80, CD86, CCR5) and alternatively (CD163 and CD206) activated macrophages, with a bias toward a higher expression of the latter. iMϕs secreted pro-inflammatory (IL-6, CXCL8, CCL2, CCL4, CXCL1, CXCL10) and anti-inflammatory (IL-10, IL-1RA, CCL22) cytokines with a high IL-10/IL-12p70 index (>20). iMϕs were phagocytic and restricted Mycobacterium tuberculosis growth in vitro by >75%. iMϕs differed from blood monocytes/macrophages by a lower expression level of HLA-DR and the CD14+CD16int phenotype and shared several phenotypic characteristics with lung macrophages. In response to LPS, iMϕs up-regulated HLA-DR and produced TNF-α. IFN-γ increased iMϕ reactivity to LPS, but did not increase iMϕ mycobactericidal capacity. The results characterize iMϕs as differentiated but low-activated/low-polarized “naïve-like” macrophages that are capable of mounting inflammatory and antibacterial responses when exposed to inflammatory stimuli or pathogens. iMϕs represent a valuable model for studying antibacterial responses of tissue resident macrophages and for developing approaches to modulating macrophage activity.
Collapse
Affiliation(s)
- Tatiana Nenasheva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Tatiana Gerasimova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yana Serdyuk
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Elena Grigor'eva
- Laboratory of Developmental Epigenetics, Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - George Kosmiadi
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Alexander Nikolaev
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Genome Technologies, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
15
|
Dinnyes A, Schnur A, Muenthaisong S, Bartenstein P, Burcez CT, Burton N, Cyran C, Gianello P, Kemter E, Nemeth G, Nicotra F, Prepost E, Qiu Y, Russo L, Wirth A, Wolf E, Ziegler S, Kobolak J. Integration of nano- and biotechnology for beta-cell and islet transplantation in type-1 diabetes treatment. Cell Prolif 2020; 53:e12785. [PMID: 32339373 PMCID: PMC7260069 DOI: 10.1111/cpr.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine using human or porcine β‐cells or islets has an excellent potential to become a clinically relevant method for the treatment of type‐1 diabetes. High‐resolution imaging of the function and faith of transplanted porcine pancreatic islets and human stem cell–derived beta cells in large animals and patients for testing advanced therapy medicinal products (ATMPs) is a currently unmet need for pre‐clinical/clinical trials. The iNanoBIT EU H2020 project is developing novel highly sensitive nanotechnology‐based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole‐body distribution of the cellular transplants in a porcine diabetes model with excellent translational potential to humans. We develop and validate the application of single‐photon emission computed tomography (SPECT) and optoacoustic imaging technologies in a transgenic insulin‐deficient pig model to observe transplanted porcine xeno‐islets and in vitro differentiated human beta cells. We are progressing in generating new transgenic reporter pigs and human‐induced pluripotent cell (iPSC) lines for optoacoustic imaging and testing them in transplantable bioartificial islet devices. Novel multifunctional nanoparticles have been generated and are being tested for nuclear imaging of islets and beta cells using a new, high‐resolution SPECT imaging device. Overall, the combined multidisciplinary expertise of the project partners allows progress towards creating much needed technological toolboxes for the xenotransplantation and ATMP field, and thus reinforces the European healthcare supply chain for regenerative medicinal products.
Collapse
Affiliation(s)
- Andras Dinnyes
- Biotalentum Ltd, Hungary, Godollo, Hungary.,Sichuan University, College of Life Sciences, Chengdu, China.,Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | | | | - Clemens Cyran
- Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | - Pierre Gianello
- Health Science Sector - Laboratory of Experimental Surgery and Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Elisabeth Kemter
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Gabor Nemeth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Yi Qiu
- iThera Medical GmbH, Munchen, Germany
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andras Wirth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Eckhard Wolf
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | |
Collapse
|
16
|
Lipus A, Janosz E, Ackermann M, Hetzel M, Dahlke J, Buchegger T, Wunderlich S, Martin U, Cathomen T, Schambach A, Moritz T, Lachmann N. Targeted Integration of Inducible Caspase-9 in Human iPSCs Allows Efficient in vitro Clearance of iPSCs and iPSC-Macrophages. Int J Mol Sci 2020; 21:E2481. [PMID: 32260086 PMCID: PMC7177583 DOI: 10.3390/ijms21072481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer great promise for the field of regenerative medicine, and iPSC-derived cells have already been applied in clinical practice. However, potential contamination of effector cells with residual pluripotent cells (e.g., teratoma-initiating cells) or effector cell-associated side effects may limit this approach. This also holds true for iPSC-derived hematopoietic cells. Given the therapeutic benefit of macrophages in different disease entities and the feasibility to derive macrophages from human iPSCs, we established human iPSCs harboring the inducible Caspase-9 (iCasp9) suicide safety switch utilizing transcription activator-like effector nuclease (TALEN)-based designer nuclease technology. Mono- or bi-allelic integration of the iCasp9 gene cassette into the AAVS1 locus showed no effect on the pluripotency of human iPSCs and did not interfere with their differentiation towards macrophages. In both, iCasp9-mono and iCasp9-bi-allelic clones, concentrations of 0.1 nM AP20187 were sufficient to induce apoptosis in more than 98% of iPSCs and their progeny-macrophages. Thus, here we provide evidence that the introduction of the iCasp9 suicide gene into the AAVS1 locus enables the effective clearance of human iPSCs and thereof derived macrophages.
Collapse
Affiliation(s)
- Alexandra Lipus
- RG Reprogramming and Gene Therapy, Hannover Medical School, Hannover 30625, Germany; (A.L.); (E.J.); (M.H.); (T.M.)
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Ewa Janosz
- RG Reprogramming and Gene Therapy, Hannover Medical School, Hannover 30625, Germany; (A.L.); (E.J.); (M.H.); (T.M.)
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Mania Ackermann
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
- RG Translational Hematology of Congenital Diseases, Hannover Medical School, Hannover 30625, Germany
| | - Miriam Hetzel
- RG Reprogramming and Gene Therapy, Hannover Medical School, Hannover 30625, Germany; (A.L.); (E.J.); (M.H.); (T.M.)
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Julia Dahlke
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Theresa Buchegger
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
- RG Translational Hematology of Congenital Diseases, Hannover Medical School, Hannover 30625, Germany
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover 30625, Germany; (S.W.); (U.M.)
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover 30625, Germany; (S.W.); (U.M.)
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg 79106, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg 79095, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Thomas Moritz
- RG Reprogramming and Gene Therapy, Hannover Medical School, Hannover 30625, Germany; (A.L.); (E.J.); (M.H.); (T.M.)
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
- RG Translational Hematology of Congenital Diseases, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
17
|
Happle C, Lachmann N, Ackermann M, Mirenska A, Göhring G, Thomay K, Mucci A, Hetzel M, Glomb T, Suzuki T, Chalk C, Glage S, Dittrich-Breiholz O, Trapnell B, Moritz T, Hansen G. Pulmonary Transplantation of Human Induced Pluripotent Stem Cell-derived Macrophages Ameliorates Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2019; 198:350-360. [PMID: 29652170 DOI: 10.1164/rccm.201708-1562oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Although the transplantation of induced pluripotent stem cell (iPSC)-derived cells harbors enormous potential for the treatment of pulmonary diseases, in vivo data demonstrating clear therapeutic benefits of human iPSC-derived cells in lung disease models are missing. OBJECTIVES We have tested the therapeutic potential of iPSC-derived macrophages in a humanized disease model of hereditary pulmonary alveolar proteinosis (PAP). Hereditary PAP is caused by a genetic defect of the GM-CSF (granulocyte-macrophage colony-stimulating factor) receptor, which leads to disturbed macrophage differentiation and protein/surfactant degradation in the lungs, subsequently resulting in severe respiratory insufficiency. METHODS Macrophages derived from human iPSCs underwent intrapulmonary transplantation into humanized PAP mice, and engraftment, in vivo differentiation, and therapeutic efficacy of the transplanted cells were analyzed. MEASUREMENTS AND MAIN RESULTS On intratracheal application, iPSC-derived macrophages engrafted in the lungs of humanized PAP mice. After 2 months, transplanted cells displayed the typical morphology, surface markers, functionality, and transcription profile of primary human alveolar macrophages. Alveolar proteinosis was significantly reduced as demonstrated by diminished protein content and surfactant protein D levels, decreased turbidity of the BAL fluid, and reduced surfactant deposition in the lungs of transplanted mice. CONCLUSIONS We here demonstrate for the first time that pulmonary transplantation of human iPSC-derived macrophages leads to pulmonary engraftment, their in situ differentiation to an alveolar macrophage phenotype, and a reduction of alveolar proteinosis in a humanized PAP model. To our knowledge, this finding presents the first proof-of-concept for the therapeutic potential of human iPSC-derived cells in a pulmonary disease and may have profound implications beyond the rare disease of PAP.
Collapse
Affiliation(s)
- Christine Happle
- 1 Department of Pediatric Pneumology, Allergology and Neonatology.,2 Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL)
| | - Nico Lachmann
- 3 Junior Research Group (JRG) Translational Hematology of Congenital Diseases, Regenerative Biology and Reconstructive Therapies (REBIRTH) Cluster of Excellence.,4 Institute of Experimental Hematology
| | - Mania Ackermann
- 3 Junior Research Group (JRG) Translational Hematology of Congenital Diseases, Regenerative Biology and Reconstructive Therapies (REBIRTH) Cluster of Excellence.,4 Institute of Experimental Hematology
| | - Anja Mirenska
- 1 Department of Pediatric Pneumology, Allergology and Neonatology
| | | | | | - Adele Mucci
- 4 Institute of Experimental Hematology.,6 Research Group-Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence
| | - Miriam Hetzel
- 4 Institute of Experimental Hematology.,6 Research Group-Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence
| | - Torsten Glomb
- 7 Core Unit Transcriptomics, Institute for Physiological Chemistry, and
| | - Takuji Suzuki
- 8 Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Claudia Chalk
- 8 Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Silke Glage
- 9 Central Animal Facility, Hannover Medical School, Hannover, Germany; and
| | | | - Bruce Trapnell
- 8 Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas Moritz
- 4 Institute of Experimental Hematology.,6 Research Group-Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence
| | - Gesine Hansen
- 1 Department of Pediatric Pneumology, Allergology and Neonatology.,2 Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL)
| |
Collapse
|
18
|
Li C, Mishra AS, Gil S, Wang M, Georgakopoulou A, Papayannopoulou T, Hawkins RD, Lieber A. Targeted Integration and High-Level Transgene Expression in AAVS1 Transgenic Mice after In Vivo HSC Transduction with HDAd5/35++ Vectors. Mol Ther 2019; 27:2195-2212. [PMID: 31494053 DOI: 10.1016/j.ymthe.2019.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Our goal is the development of in vivo hematopoietic stem cell (HSC) transduction technology with targeted integration. To achieve this, we modified helper-dependent HDAd5/35++ vectors to express a CRISPR/Cas9 specific to the "safe harbor" adeno-associated virus integration site 1 (AAVS1) locus and to provide a donor template for targeted integration through homology-dependent repair. We tested the HDAd-CRISPR + HDAd-donor vector system in AAVS1 transgenic mice using a standard ex vivo HSC gene therapy approach as well as a new in vivo HSC transduction approach that involves HSC mobilization and intravenous HDAd5/35++ injections. In both settings, the majority of treated mice had transgenes (GFP or human γ-globin) integrated into the AAVS1 locus. On average, >60% of peripheral blood cells expressed the transgene after in vivo selection with low-dose O6BG/bis-chloroethylnitrosourea (BCNU). Ex vivo and in vivo HSC transduction and selection studies with HDAd-CRISPR + HDAd-globin-donor resulted in stable γ-globin expression at levels that were significantly higher (>20% γ-globin of adult mouse globin) than those achieved in previous studies with a SB100x-transposase-based HDAd5/35++ system that mediates random integration. The ability to achieve therapeutically relevant transgene expression levels after in vivo HSC transduction and selection and targeted integration make our HDAd5/35++-based vector system a new tool in HSC gene therapy.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Arpit Suresh Mishra
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Meng Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | | | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Box 357720, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Mani C, Reddy PH, Palle K. DNA repair fidelity in stem cell maintenance, health, and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165444. [PMID: 30953688 DOI: 10.1016/j.bbadis.2019.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Stem cells are a sub population of cell types that form the foundation of our body, and have the potential to replicate, replenish and repair limitlessly to maintain the tissue and organ homeostasis. Increased lifetime and frequent replication set them vulnerable for both exogenous and endogenous agents-induced DNA damage compared to normal cells. To counter these damages and preserve genetic information, stem cells have evolved with various DNA damage response and repair mechanisms. Furthermore, upon experiencing irreparable DNA damage, stem cells mostly prefer early senescence or apoptosis to avoid the accumulation of damages. However, the failure of these mechanisms leads to various diseases, including cancer. Especially, given the importance of stem cells in early development, DNA repair deficiency in stem cells leads to various disabilities like developmental delay, premature aging, sensitivity to DNA damaging agents, degenerative diseases, etc. In this review, we have summarized the recent update about how DNA repair mechanisms are regulated in stem cells and their association with disease progression and pathogenesis.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - P Hemachandra Reddy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America.
| |
Collapse
|
20
|
Haenseler W, Rajendran L. Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell-Derived Microglia. Stem Cells 2019; 37:724-730. [PMID: 30801863 PMCID: PMC6849818 DOI: 10.1002/stem.2995] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. stem cells2019;37:724–730
Collapse
Affiliation(s)
- Walther Haenseler
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland.,UK-Dementia Research Institute (UK-DRI), Maurice Wohl Basic & Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Bernareggi D, Pouyanfard S, Kaufman DS. Development of innate immune cells from human pluripotent stem cells. Exp Hematol 2019; 71:13-23. [PMID: 30611869 DOI: 10.1016/j.exphem.2018.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/23/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Mouse and human pluripotent stem cells have been widely used to study the development of the hematopoietic and immune systems. Although not all cells can be derived with the same efficiency, immune cells such as natural killer (NK) cells and macrophages can be easily produced from PSCs to enable development of new cell-based therapies. NK cells and macrophages are part of the innate immune system, the first line of defense against malignancies and infectious disease. Human embryonic stem cell (hESC)- and induced pluripotent stem cell (iPSC)-derived NK cells can be produced at a clinical scale suitable for translation into clinical trials. Additionally, PSCs can be genetically modified to produce hESC/iPSC-derived human NK cells with enhanced antitumor activity. These engineered NK cells can express a stabilized version of the high-affinity Fc receptor CD16, chimeric antigen receptors, or other strategies to enable more potent and targeted cellular immunotherapies. Moreover, macrophages can also be routinely and efficiently produced from hESCs and iPSCs as a tool to expand our knowledge of the basic biology of these cells. hESC- and iPSC-derived macrophages can also be employed as a novel approach for cancer immunotherapy, as well as a strategy to repair or regenerate diseased and damaged tissues and organs.
Collapse
Affiliation(s)
- Davide Bernareggi
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, CA
| | - Somayeh Pouyanfard
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, CA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, CA.
| |
Collapse
|