1
|
Leong E, Cifuentes-González C, Hu Y W J, Perumal Samy R, Khairallah M, Rojas-Carabali W, Putera I, de-la-Torre A, Agrawal R. Clinical Insights: Antimicrobial Therapy for Infectious Uveitis. Ocul Immunol Inflamm 2024:1-21. [PMID: 38759216 DOI: 10.1080/09273948.2024.2345848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Infectious uveitis is a major global cause of vision impairment. Despite the eye's immune privilege, afforded by the blood-ocular barrier that restricts microbial entry, several pathogens such as bacteria, viruses, fungi, and parasites can still infiltrate and cause ocular infections and complications. Clinicians often encounter significant challenges in treating infectious uveitis due to limited or ineffective treatment options. Modern molecular techniques and imaging can aid in diagnosing and assessing intraocular infections. Various antimicrobial therapies exist, spanning topical and systemic treatments, but these are constrained by issues like drug concentration, penetration, effective duration, toxicity, and side effects. Treatment approaches also differ based on the infection's etiology. This review provides recent updates on antimicrobial therapies from a clinical perspective, covering topical, systemic, and regional treatments for infectious uveitis.
Collapse
Affiliation(s)
- Evangeline Leong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carlos Cifuentes-González
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jeremy Hu Y W
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ramar Perumal Samy
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ocular Infections and Antimicrobial Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Moncef Khairallah
- Department of Ophthalmology, Faculty of Medicine, Fattouma Bourguiba University Hospital, University of Monastir, Monastir, Tunisia
| | - William Rojas-Carabali
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ikhwanuliman Putera
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alejandra de-la-Torre
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Rupesh Agrawal
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Ocular Infections and Antimicrobial Group, Singapore Eye Research Institute, Singapore, Singapore
- Lee Kong Chian School of Medicine, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Manikandan SK, Logan A, Cerrada-Gimenez M, Fitzhenry L, Coffey L, Kaja S, Rani S. Immune System, Inflammation and Autoantigens in Wet Age-Related Macular Degeneration: Pathological Significance and Therapeutic Importance. Life (Basel) 2023; 13:2236. [PMID: 38137838 PMCID: PMC10744676 DOI: 10.3390/life13122236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
Wet age-related macular degeneration (wAMD) is a chronic inflammation-associated neurodegenerative disease affecting the posterior part of the eye in the aging population. Aging results in the reduced functionality of cells and tissues, including the cells of the retina. Initiators of a chronic inflammatory and pathologic state in wAMD may be a result of the accumulation of inevitable metabolic injuries associated with the maintenance of tissue homeostasis from a young age to over 50. Apart from this, risk factors like smoking, genetic predisposition, and failure to repair the injuries that occur, alongside attempts to rescue the hypoxic outer retina may also contribute to the pathogenesis. Aging of the immune system (immunosenescence) and a compromised outer blood retinal barrier (BRB) result in the exposure of the privileged milieu of the retina to the systemic immune system, further increasing the severity of the disease. When immune-privileged sites like the retina are under pathological stress, certain age- and disease-related conditions may necessitate assistance from cells distant from the resident ones to help restore the functionality of the tissue. As a necessary part of tissue repair, inflammation is a major response to disease and recruits immune cells to the site of damage. We suspect that the specific reparative inflammatory responses are controlled by an autoantigen-T cell-mediated mechanism, a process that may be hindered in wAMD.
Collapse
Affiliation(s)
- Sreeraj Kuruppilakath Manikandan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford Campus, X91 K0EK Waterford, Ireland; (S.K.M.); (L.F.)
| | - Ann Logan
- Department of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK;
| | | | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford Campus, X91 K0EK Waterford, Ireland; (S.K.M.); (L.F.)
| | - Lee Coffey
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford Campus, X91 K0EK Waterford, Ireland; (S.K.M.); (L.F.)
| | - Simon Kaja
- Departments of Ophthalmology, Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sweta Rani
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford Campus, X91 K0EK Waterford, Ireland; (S.K.M.); (L.F.)
| |
Collapse
|
3
|
Klaska IP, Yu T, Fordyce R, Kamoi K, Cornall RJ, Martin-Granados C, Kuffova L, Forrester JV. Targeted delivery of autoantigen to dendritic cells prevents development of spontaneous uveitis. Front Immunol 2023; 14:1227633. [PMID: 37727784 PMCID: PMC10505613 DOI: 10.3389/fimmu.2023.1227633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Restoration of immunological tolerance to self antigens has been a major drive in understanding the mechanisms of, and developing new treatments for, autoimmune and autoinflammatory disease. Sessile dendritic cells (DC) are considered the main instruments underpinning immunological tolerance particularly the CD205+ (DEC205+) cDC1 subset in contrast to DCIR2+ cDC2 which mediate immunogenicity. Targeting DC using autoantigen peptide-antibody fusion proteins has been a well explored methodology for inducing tolerance. Here we show that subcutaneous (s.c.) inoculation of hen-egg lysozyme (HEL)-DEC205 Ig fusion prevents the development of spontaneous uveoretinitis (experimental autoimmune uveoretinitis, EAU) in a transgenic mouse model generated by crossing interphotoreceptor retinol binding protein (IRBP)-HEL (sTg HEL) with HEL specific TCR (sTg TCR) mice. Prolonged suppression of EAU required injections of HEL-DEC205 Ig once weekly, reflecting the half life of s.c. DC. Interestingly, HEL-DCIR2 Ig also had a suppressive effect on development of EAU but less so than DEC205 Ig while it had minimal effect on preventing the retinal atrophy associated with EAU. In addition, HEL-DEC205 Ig was only effective when administered s.c. rather than systemically and had no effect on EAU induced by adoptive transfer of HEL-activated T cells. These data demonstrate the importance of systemic (lymph node) rather than local (eye) antigen presentation in the development of EAU as well as suggest a potential therapeutic approach to controlling sight-threatening immune-mediated uveitis provided relevant antigen(s) can be identified.
Collapse
Affiliation(s)
- Izabela P. Klaska
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tian Yu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Rosie Fordyce
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Koju Kamoi
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Richard J. Cornall
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V. Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
4
|
Guo X, Zhang J, Liu X, Lu Y, Shi Y, Li X, Wang S, Huang J, Liu H, Zhou H, Li Q, Luo L, You J. Antioxidant nanoemulsion loaded with latanoprost enables highly effective glaucoma treatment. J Control Release 2023; 361:534-546. [PMID: 37567509 DOI: 10.1016/j.jconrel.2023.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Glaucoma is the third leading cause of blindness worldwide and is primarily characterized by elevated intraocular pressure (IOP). Common risk factors such as age, myopia, ocular trauma, and hypertension all increase the risk of elevated IOP. Prolonged high IOP not only causes physiological discomfort like headaches, but also directly damages retinal cells and leads to retinal ischemia, oxidative imbalance, and accumulation of reactive oxygen species (ROS) in the retina. This oxidative stress causes the oxidation of proteins and unsaturated lipids, leading to peroxide formation and exacerbating retinal damage. While current clinical treatments primarily target reducing IOP through medication or surgery, there are currently no effective methods to mitigate the retinal cell damage associated with glaucoma. To address this gap, we developed a novel nanoemulsion to co-delivery latanoprost and α-tocopherol (referred to as LA@VNE later) that prolongs ocular retention and enhances retinal permeability through localized administration. By encapsulating latanoprost, an IOP-lowering drug, and α-tocopherol, a potent antioxidant, we effectively reduced ROS accumulation (>1.5-fold in vitro and 2.5-fold in vivo), retinal ganglion cell (RGC) apoptosis (>9 fold), and inflammatory cell infiltration (>1.6 fold). Our approach showed strong biocompatibility and significant potential for clinical translation, providing a promising platform for the treatment of glaucoma.
Collapse
Affiliation(s)
- Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Sije Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huihui Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 Zhejiang, PR China.
| |
Collapse
|
5
|
Mölzer C, Liu YH, Muckersie E, Klaska IP, Cornall R, Wilson HM, Kuffová L, Forrester JV. Colitis in a transgenic mouse model of autoimmune uveitis may be induced by neoantigen presentation in the bowel. Sci Rep 2023; 13:1256. [PMID: 36690619 PMCID: PMC9870966 DOI: 10.1038/s41598-022-27018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023] Open
Abstract
Undifferentiated uveitis (intraocular inflammation, IOI) is an idiopathic sight-threatening, presumed autoimmune disease, accountable for ~ 10% of all blindness in the developed world. We have investigated the association of uveitis with inflammatory bowel disease (IBD) using a mouse model of spontaneous experimental autoimmune uveoretinitis (EAU). Mice expressing the transgene (Tg) hen egg lysozyme (HEL) in the retina crossed with 3A9 mice expressing a transgenic HEL-specific TCR spontaneously develop uveoretinitis at post-partum day (P)20/21. Double transgenic (dTg TCR/HEL) mice also spontaneously develop clinical signs of colitis at ~ P30 with diarrhoea, bowel shortening, oedema and lamina propria (LP) inflammatory cell infiltration. Single (s)Tg TCR (3A9) mice also show increased histological LP cell infiltration but no bowel shortening and diarrhoea. dTg TCR/HEL mice are profoundly lymphopenic at weaning. In addition, dTg TCR/HEL mice contain myeloid cells which express MHC Class II-HEL peptide complexes (MHCII-HEL), not only in the inflamed retina but also in the colon and have the potential for antigen presentation. In this model the lymphopenia and reduction in the absolute Treg numbers in dTg TCR/HEL mice is sufficient to initiate eye disease. We suggest that cell-associated antigen released from the inflamed eye can activate colonic HEL-specific T cells which, in a microbial micro-environment, not only cause colitis but feedback to amplify IOI.
Collapse
Affiliation(s)
- C Mölzer
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna General Hospital, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Y-H Liu
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Flow Facility, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | - E Muckersie
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - I P Klaska
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Centre for Gene Therapy and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - R Cornall
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7BN, UK
| | - H M Wilson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - L Kuffová
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Eye Clinic, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK
| | - J V Forrester
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
6
|
Mitchell JL, MacDougall L, Dobromylskyj MJ, Smith K, Stavinohova R, Gunn-Moore DA, Hope JC, Scurrell E. Ocular mycobacterial lesions in cats. Vet Pathol 2022; 59:792-805. [PMID: 35587045 PMCID: PMC9358306 DOI: 10.1177/03009858221098431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ocular mycobacterial infections are an under-recognized cause of morbidity in the
domestic cat. This study aimed to explore the distribution, histopathological
appearance, and severity of feline ocular mycobacterial lesions, and to
characterize the immune cell population with immunohistochemistry. Routine
histological staining with hematoxylin and eosin, and Masson’s trichrome, was
performed to identify ocular lesions and assign an inflammation score based on
the number of cells present. Acid-fast bacilli were detected with Ziehl-Neelsen,
and immunohistochemistry for ionized calcium-binding adaptor protein-1 (Iba1),
calprotectin, cluster of differentiation 3 (CD3), and Pax5 was undertaken on
formalin-fixed paraffin-embedded tissue samples from 24 cases of ocular
mycobacteriosis. Posterior or panuveitis with concurrent retinitis was
identified in 20/24 cases (83%), with retinal detachment in 16/20 (80%) of these
cases. Choroidal lesions had the highest median inflammation score.
Ziehl-Neelsen-positive organisms were detected in 20/24 cases (83%), with the
highest prevalence of acid-fast bacilli detected in choroidal lesions (16/20,
80%). Lesions were typically granulomatous to pyogranulomatous, characterized by
abundant numbers of Iba1-positive macrophages, followed by calprotectin-positive
granulocytes and monocytes, fewer T cells, and rarer B cells. However, where
iritis was identified, inflammation was typically lymphoplasmacytic (11/16
cases, 69%). Where diagnostic testing was performed, tuberculosis (ie, infection
with Mycobacterium bovis, Mycobacterium
microti, or a nonspeciated Mycobacterium
tuberculosis-complex pathogen) was diagnosed in 20/22 cats (91%),
with Mycobacterium lepraemurium infection identified in the
other 2/22 cats (9%). These results suggest the choroid is the primary site of
lesion development in most cases of feline ocular mycobacteriosis, and
inflammatory changes are associated with the presence of mycobacteria localized
to ocular tissues.
Collapse
Affiliation(s)
| | | | | | - Ken Smith
- Royal Veterinary College, Hatfield, UK
| | | | | | | | | |
Collapse
|
7
|
Wollanke B, Gerhards H, Ackermann K. Infectious Uveitis in Horses and New Insights in Its Leptospiral Biofilm-Related Pathogenesis. Microorganisms 2022; 10:387. [PMID: 35208842 PMCID: PMC8875353 DOI: 10.3390/microorganisms10020387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Uveitis is a sight-threatening eye disease in equids known worldwide that leads to considerable pain and suffering. By far the most common type of uveitis in Germany and neighboring countries is classical equine recurrent uveitis (ERU), which is caused by chronic intraocular leptospiral infection and is the main cause of infectious uveitis in horses. Other infectious causes are extremely rare and are usually clinically distinguishable from ERU. ERU can be treated very effectively by vitreous cavity lavage (vitrectomy). For proper indications of this demanding surgery, it is necessary to differentiate ERU from other types of uveitis in which vitrectomy is not helpful. This can be conducted on the basis of anamnesis in combination with ophthalmologic findings and by aqueous humor examination. During vitrectomy, vitreous material is obtained. These vitreous samples have historically been used for numerous etiologic studies. In this way, a chronic intraocular leptospiral infection has been shown to be the cause of typical ERU and, among other findings, ERU has also been recognized as a biofilm infection, providing new insights into the pathogenesis of ERU and explaining some thus far unexplainable phenomena of ERU. ERU may not only have transmissible aspects to some types of uveitis in humans but may also serve as a model for a spontaneously occurring biofilm infection. Vitreous material obtained during therapeutically indicated vitrectomy can be used for further studies on in vivo biofilm formation, biofilm composition and possible therapeutic approaches.
Collapse
Affiliation(s)
- Bettina Wollanke
- Equine Clinic, Ludwig-Maximilians-University, 80539 Munich, Germany; (H.G.); (K.A.)
| | | | | |
Collapse
|
8
|
Adamus G. Importance of Autoimmune Responses in Progression of Retinal Degeneration Initiated by Gene Mutations. Front Med (Lausanne) 2021; 8:672444. [PMID: 34926479 PMCID: PMC8674421 DOI: 10.3389/fmed.2021.672444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous rare disorders associated with retinal dysfunction and death of retinal photoreceptor cells, leading to blindness. Among the most frequent and severe forms of those retinopathies is retinitis pigmentosa (RP) that affects 1:4,000 individuals worldwide. The genes that have been implicated in RP are associated with the proteins present in photoreceptor cells or retinal pigment epithelium (RPE). Asymmetric presentation or sudden progression in retinal disease suggests that a gene mutation alone might not be responsible for retinal degeneration. Immune responses could directly target the retina or be site effect of immunity as a bystander deterioration. Autoantibodies against retinal autoantigens have been found in RP, which led to a hypothesis that autoimmunity could be responsible for the progression of photoreceptor cell death initiated by a genetic mutation. The other contributory factor to retinal degeneration is inflammation that activates the innate immune mechanisms, such as complement. If autoimmune responses contribute to the progression of retinopathy, this could have an implication on treatment, such as gene replacement therapy. In this review, we provide a perspective on the current role of autoimmunity/immunity in RP pathophysiology.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
9
|
Ackermann K, Kenngott R, Settles M, Gerhards H, Maierl J, Wollanke B. In Vivo Biofilm Formation of Pathogenic Leptospira spp. in the Vitreous Humor of Horses with Recurrent Uveitis. Microorganisms 2021; 9:microorganisms9091915. [PMID: 34576809 PMCID: PMC8464839 DOI: 10.3390/microorganisms9091915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
Equine recurrent uveitis (ERU) causes painful inflammatory attacks and oftentimes blindness in the affected eyes. The disease is considered a late sequela of systemic leptospirosis. The most effective therapy is the surgical removal of the vitreous (vitrectomy), which is not only therapeutic, but provides vitreous material that can be assessed diagnostically. For example, the lipL32 gene, culturable Leptospira spp., and anti-Leptospira antibodies have all been detected in vitreous samples obtained from eyes with chronic ERU. Despite this clear evidence of leptospiral involvement, the systemic administration of antibiotics in infected horses is ineffective at resolving ERU. This syndrome of chronic recurrent inflammation, which is unresponsive to antibiotic therapy, combined with apparent bacteria evading the immune response, is consistent with a biofilm-associated infection. The purpose of this study, therefore, was to detect the in vivo biofilm formation of Leptospira spp. in vitreous samples collected during vitrectomy and examined using a Warthin-Starry silver stain and immunohistochemistry. All known steps of biofilm formation were visualized in these samples, including individual Leptospira spp., leptospiral microcolonies and dense roundish accumulations of Leptospira spp. In many instances spirochetes were surrounded by an extracellular substance. Taken together, data from the present study show that ERU is a biofilm-associated intraocular leptospiral infection, which best explains the typical clinical course.
Collapse
Affiliation(s)
- Kerstin Ackermann
- Equine Clinic, Clinical Department, Ludwig-Maximilians-University, 80539 Munich, Germany
- Correspondence: (K.A.); (R.K.); (H.G.); (B.W.)
| | - Rebecca Kenngott
- Institute for Anatomy, Histology and Embryology, Department of Veterinary Science, Ludwig-Maximilians-University, 80539 Munich, Germany; (M.S.); (J.M.)
- Correspondence: (K.A.); (R.K.); (H.G.); (B.W.)
| | - Monica Settles
- Institute for Anatomy, Histology and Embryology, Department of Veterinary Science, Ludwig-Maximilians-University, 80539 Munich, Germany; (M.S.); (J.M.)
| | - Hartmut Gerhards
- Equine Clinic, Clinical Department, Ludwig-Maximilians-University, 80539 Munich, Germany
- Correspondence: (K.A.); (R.K.); (H.G.); (B.W.)
| | - Johann Maierl
- Institute for Anatomy, Histology and Embryology, Department of Veterinary Science, Ludwig-Maximilians-University, 80539 Munich, Germany; (M.S.); (J.M.)
| | - Bettina Wollanke
- Equine Clinic, Clinical Department, Ludwig-Maximilians-University, 80539 Munich, Germany
- Correspondence: (K.A.); (R.K.); (H.G.); (B.W.)
| |
Collapse
|
10
|
Shome A, Mugisho OO, Niederer RL, Rupenthal ID. Blocking the inflammasome: A novel approach to treat uveitis. Drug Discov Today 2021; 26:2839-2857. [PMID: 34229084 DOI: 10.1016/j.drudis.2021.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
Uveitis is a complex ocular inflammatory disease often accompanied by bacterial or viral infections (infectious uveitis) or underlying autoimmune diseases (non-infectious uveitis). Treatment of the underlying infection along with corticosteroid-mediated suppression of acute inflammation usually resolves infectious uveitis. However, to develop more effective therapies for non-infectious uveitis and to better address acute inflammation in infectious disease, an improved understanding of the underlying inflammatory pathways is needed. In this review, we discuss the disease aetiology, preclinical in vitro and in vivo uveitis models, the role of inflammatory pathways, as well as current and future therapies. In particular, we highlight the involvement of the inflammasome in the development of non-infectious uveitis and how it could be a future target for effective treatment of the disease.
Collapse
Affiliation(s)
- Avik Shome
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Rachael L Niederer
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand; Auckland District Health Board, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
11
|
Goldberg-Murow M, Cedillo-Peláez C, Concha-Del-Río LE, Cheja-Kalb R, Salgar-Henao MJ, Orozco-Velasco E, Luna-Pastén H, Gómez-Chávez F, Ibarra A, Correa D. Autoantibodies Against Ubiquitous and Confined Antigens in Patients With Ocular, Neuro-Ophthalmic and Congenital Cerebral Toxoplasmosis. Front Immunol 2021; 12:606963. [PMID: 34054794 PMCID: PMC8149787 DOI: 10.3389/fimmu.2021.606963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii infection can trigger autoreactivity by different mechanisms. In the case of ocular toxoplasmosis, disruption of the blood-retinal barrier may cause exposure of confined retinal antigens such as recoverin. Besides, cross-reactivity can be induced by molecular mimicry of parasite antigens like HSP70, which shares 76% identity with the human ortholog. Autoreactivity can be a determining factor of clinical manifestations in the eye and in the central nervous system. We performed a prospective observational study to determine the presence of autoantibodies against recoverin and HSP70 by indirect ELISA in the serum of 65 patients with ocular, neuro-ophthalmic and congenital cerebral toxoplasmosis. We found systemic autoantibodies against recoverin and HSP70 in 33.8% and 15.6% of individuals, respectively. The presence of autoantibodies in cases of OT may be related to the severity of clinical manifestations, while in cases with CNS involvement they may have a protective role. Unexpectedly, anti-recoverin antibodies were found in patients with cerebral involvement, without ocular toxoplasmosis; therefore, we analyzed and proved cross-reactivity between recoverin and a brain antigen, hippocalcin, so the immunological phenomenon occurring in one immune-privileged organ (e.g. the central nervous system) could affect the environment of another (egg. the eye).
Collapse
Affiliation(s)
- Monica Goldberg-Murow
- Laboratorio de Inmunología Exprimental, Instituto Nacional de Pediatría, CDMX, Mexico.,Centro de Investigación de Ciencias de la Salud, Universidad Anáhuac, Huixquilucan, Mexico
| | - Carlos Cedillo-Peláez
- Laboratorio de Inmunología Exprimental, Instituto Nacional de Pediatría, CDMX, Mexico
| | - Luz Elena Concha-Del-Río
- Clínica de Enfermedades Inflamatorias Oculares, Asociación Para Evitar la Ceguera en México, I.A.P., CDMX, Mexico
| | - Rashel Cheja-Kalb
- Clínica de Enfermedades Inflamatorias Oculares, Asociación Para Evitar la Ceguera en México, I.A.P., CDMX, Mexico
| | - María José Salgar-Henao
- Clínica de Enfermedades Inflamatorias Oculares, Asociación Para Evitar la Ceguera en México, I.A.P., CDMX, Mexico
| | - Eduardo Orozco-Velasco
- Clínica de Enfermedades Inflamatorias Oculares, Asociación Para Evitar la Ceguera en México, I.A.P., CDMX, Mexico
| | - Héctor Luna-Pastén
- Laboratorio de Inmunología Exprimental, Instituto Nacional de Pediatría, CDMX, Mexico
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Exprimental, Instituto Nacional de Pediatría, CDMX, Mexico.,Cátedras CONACyT-Instituto Nacional de Pediatría, CDMX, Mexico.,Departamento de Formación Básica Disciplinaria, ENMyH-IPN, CDMX, Mexico
| | - Antonio Ibarra
- Centro de Investigación de Ciencias de la Salud, Universidad Anáhuac, Huixquilucan, Mexico
| | - Dolores Correa
- Laboratorio de Inmunología Exprimental, Instituto Nacional de Pediatría, CDMX, Mexico
| |
Collapse
|
12
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
13
|
The pathogenesis of age-related macular degeneration is not inflammatory mediated but is instead due to immunosenescence-related failure of tissue repair. Med Hypotheses 2020; 146:110392. [PMID: 33246696 DOI: 10.1016/j.mehy.2020.110392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 01/13/2023]
Abstract
A natural consequence of everyday tissue metabolism is cell injury or stress. This injury activates a canonical immune-mediated inflammatory response in order to achieve tissue repair so that homeostasis is maintained. With aging there is increased tissue injury and therefore increasing demands placed on an immune system, which itself is aging (immunosenescence). Thus, the increased reparative demands are reflected by an increased inflammatory load both locally and systemically. Eventually, if the reparative demands are excessive, the aging immune system is overwhelmed and disease ensues. In the macula this age-related failure in repair gives rise to age-related macular degeneration (AMD). The hypothesis proposed herein is therefore, that AMD is due to age-related failure of tissue repair and the chronic inflammation associated with this failure ('inflammaging') is both a surrogate and biomarker of this reparative failure and not in itself the primary cause of disease. Such a hypothesis can be applied to all the diseases of aging and by extension suggests that effective therapies should be aimed at facilitating repair through immunotherapy, possibly and perhaps controversially, through the promotion of inflammation rather than the current approach of its inhibition (anti-inflammatory strategies), the latter which can ultimately only hinder the repair process and thereby lead to the persistence of disease.
Collapse
|
14
|
Wildner G, Diedrichs-Möhring M. Molecular Mimicry and Uveitis. Front Immunol 2020; 11:580636. [PMID: 33193382 PMCID: PMC7658003 DOI: 10.3389/fimmu.2020.580636] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
Molecular or antigenic mimicry is a term for the similarity of different antigens, which can be confused by the immune system. Antigen recognition by antibodies and T cell receptors is specific, but not restricted to a single antigen. Both types of receptors specifically recognize antigens and are expressed with a very high but still restricted variability compared to the number of different antigens they potentially could bind. T cell receptors only can bind to antigen peptides presented on certain self-MHC-molecules by screening only some amino acid side chains on both the presented peptides and the MHC molecule. The other amino acids of the peptide are not directly perceived by the T cell, offering the opportunity for a single T cell to recognize a variety of different antigens with the same receptor, which significantly increases the immune repertoire. The immune system is usually tolerant to autoantigens, especially to those of immune privileged sites, like the eye. Therefore, autoimmune diseases targeting these organs were hard to explain, unless a T cell is activated by an environmental peptide (e.g. pathogen) that is similar, but not necessarily identical with an autoantigen. Here we describe antigenic mimicry of retinal autoantigens with a variety of non-ocular antigens resulting in the induction of intraocular inflammation. T cells that are activated by mimotopes outside of the eye can pass the blood-retina barrier and enter ocular tissues. When reactivated in the eye by crossreaction with autoantigens they induce uveitis by recruiting inflammatory cells.
Collapse
Affiliation(s)
- Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| |
Collapse
|
15
|
Liu YH, Mölzer C, Makinen K, Kamoi K, Corbett CLC, Klaska IP, Reid DM, Wilson HM, Kuffová L, Cornall RJ, Forrester JV. Treatment With FoxP3+ Antigen-Experienced T Regulatory Cells Arrests Progressive Retinal Damage in a Spontaneous Model of Uveitis. Front Immunol 2020; 11:2071. [PMID: 33013877 PMCID: PMC7498671 DOI: 10.3389/fimmu.2020.02071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023] Open
Abstract
We specify the clinical features of a spontaneous experimental autoimmune uveitis (EAU) model, in which foreign hen-egg lysozyme (HEL) is expressed in the retina, controlled by the promoter for interphotoreceptor retinol binding protein (IRBP). We previously reported 100% P21 (post-partum day) IRBP:HEL single transgenic (sTg) mice, when crossed to transgenic T cell receptor mice (3A9) generating the double transgenic (dTg) genotype, develop EAU despite profound lymphopenia (thymic HEL-specific T cell deletion). In this work, we characterized the immune component of this model and found conventional dTg CD4+ T cells were less anergic than those from 3A9 controls. Furthermore, prior in vitro HEL-activation of 3A9 anergic T cells (Tan) rendered them uveitogenic upon adoptive transfer (Tx) to sTg mice, while antigen-experienced (AgX, dTg), but not naïve (3A9) T cells halted disease in P21 dTg mice. Flow cytometric analysis of the AgX cells elucidated the underlying pathology: FoxP3+CD25hiCD4+ T regulatory cells (Treg) comprised ∼18%, while FR4+CD73+FoxP3-CD25lo/–CD4+ Tan comprised ∼1.2% of total cells. Further Treg-enrichment (∼80%) of the AgX population indicated FoxP3+CD25hiCD4+ Treg played a key role in EAU-suppression while FoxP3-CD25lo/–CD4+ T cells did not. Here we present the novel concept of dual immunological tolerance where spontaneous EAU is due to escape from anergy with consequent failure of Treg induction and subsequent imbalance in the [Treg:Teffector] cell ratio. The reduced numbers of Tan, normally sustaining Treg to prevent autoimmunity, are the trigger for disease, while immune homeostasis can be restored by supplementation with AgX, but not naïve, antigen-specific Treg.
Collapse
Affiliation(s)
- Yi-Hsia Liu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Kimmo Makinen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Koju Kamoi
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Clare L C Corbett
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Izabela P Klaska
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delyth M Reid
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffová
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Richard J Cornall
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
16
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
17
|
Basu S, Elkington P, Rao NA. Pathogenesis of ocular tuberculosis: New observations and future directions. Tuberculosis (Edinb) 2020; 124:101961. [PMID: 33010848 DOI: 10.1016/j.tube.2020.101961] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Ocular tuberculosis (OTB) encompasses all forms of intra- and extra-ocular inflammation associated with Mycobacterium tuberculosis (Mtb) infection. However, the organism is rarely found in ocular fluid samples of diseased eyes, rendering the pathomechanisms of the disease unclear. This confounds clinical decision-making in diagnosis and treatment of OTB. Here, we critically review existing human and animal data related to ocular inflammation and TB pathogenesis to unravel likely pathomechanisms of OTB. Broadly there appear to be two fundamental mechanisms that may underlie the development of TB-associated ocular inflammation: a. inflammatory response to live/replicating Mtb in the eye, and b. immune mediated ocular inflammation induced by non-viable Mtb or its components in the eye. This distinction is significant as in direct Mtb-driven mechanisms, diagnosis and treatment would be aimed at detection of Mtb-infection and its elimination; while indirect mechanisms would primarily require anti-inflammatory therapy with adjunctive anti-TB therapy. Further, we discuss how that most clinical phenotypes of OTB likely represent a combination of both mechanisms, with one being predominant than the other.
Collapse
Affiliation(s)
- Soumyava Basu
- Retina and Uveitis Service, L V Prasad Eye Institute (Mithu Tulsi Chanrai Campus), Bhubaneswar, India.
| | - Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Narsing A Rao
- USC-Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Sharma RK, Sharma J, Khan ZK, Pattekar A, Gupta V, Bansal R, Sharma K, Aggarwal AN, Gupta A, Sachdeva N. Diminished TLR2-TLR9 mediated CD4+ T cell responses are associated with increased inflammation in intraocular tuberculosis. Sci Rep 2018; 8:13812. [PMID: 30218032 PMCID: PMC6138653 DOI: 10.1038/s41598-018-32234-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022] Open
Abstract
Intraocular tuberculosis (IOTB) is amongst the leading causes of uveitis in tropical countries. Despite reports on involvement of proinflammatory cytokines, studies on innate immune responses in disease pathogenesis are lacking. Reports from animal models and patients with pulmonary tuberculosis indicate that defects in toll like receptor (TLR)2 and TLR9 signalling predispose them to tuberculosis. In this context, we investigated the role of TLR2, TLR4 and TLR9 in generation of CD4+ T effector (Teff) cell responses during IOTB. Firstly, the cells in vitreous fluids showed lower expression of TLR2 and TLR9 in IOTB as compared to non-uveitis and non-TB uveitis groups. Next, peripheral CD4+ Teff cells of subjects with IOTB showed decreased proliferative responses and lower induction of Tregs following TLR2 and TLR9 stimulation. Further, TLR9 ligation resulted in increased IFN-γ and IL-17a but decreased expression of IL-10 and TGF-β. Lastly, lower expression of genes involved in TLR9 signalling after direct TLR9 ligation was observed in IOTB. Collectively, our results show that a subdued response to direct TLR2 and TLR9 stimulation in CD4+ T cells is associated with increased proinflammatory responses in IOTB. These findings reveal an important link between innate immune signalling and ensuing adaptive immune responses in IOTB with implications in other forms of extrapulmonary tuberculosis.
Collapse
Affiliation(s)
- Ravi Kumar Sharma
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jyoti Sharma
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Zafar K Khan
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vishali Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Reema Bansal
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kusum Sharma
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh Nath Aggarwal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amod Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
19
|
Forrester JV, Kuffova L, Dick AD. Autoimmunity, Autoinflammation, and Infection in Uveitis. Am J Ophthalmol 2018; 189:77-85. [PMID: 29505775 DOI: 10.1016/j.ajo.2018.02.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To review the pathogenesis of uveitis in light of recent advances in our understanding of innate and adaptive immune responses and their regulation. DESIGN Perspective. METHODS Methods included a review of prevailing views on the pathogenesis of uveitis and an analysis of developments in immunology that impact on its conceptual basis, particularly the concept of immunologic tolerance and its loss in autoimmunity. Importantly, the role of infection in the pathogenesis of uveitis is evaluated. RESULTS The results comprise a reappraisal of the pathogenesis of anterior vs posterior uveitis in the context of the blood-retinal barrier and its relation to autoimmune, autoinflammatory, and infectious uveitis. Autoimmunity is seen as a possible cause of certain forms of uveitis but definitive proof is lacking. Autoinflammatory disease, involving activated innate immune mechanisms, is considered causative in a second set of uveitis conditions. A place for infection in uveitis generally is proposed within a unifying concept for the pathogenesis of uveitis. CONCLUSION Infection may be implicated directly or indirectly in many forms of noninfectious or undifferentiated uveitis. In addition to the growing recognition that foreign antigen, including reactivatable infectious agents, might hide within ocular tissues, the possibility that a dysregulated microbiome might generate T cells that cause immune-mediated ocular inflammation has now been demonstrated experimentally. An uncontrolled, overexuberant host immune response may cause continuing irreversible tissue damage even after the infection has been cleared.
Collapse
Affiliation(s)
- John V Forrester
- Section of Immunology and Infection, Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Science, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom; Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia.
| | - Lucia Kuffova
- Section of Immunology and Infection, Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Science, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom; NHS Grampian, Aberdeen, Scotland, United Kingdom
| | - Andrew D Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom; University College London, Institute of Ophthalmology, and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
20
|
Liu YH, Corbett C, Klaska IP, Makinen K, Nickerson JM, Cornall RJ, Kuffova L, Forrester JV. Partial retinal photoreceptor loss in a transgenic mouse model associated with reduced levels of interphotoreceptor retinol binding protein (IRBP, RBP3). Exp Eye Res 2018; 172:54-65. [PMID: 29571629 DOI: 10.1016/j.exer.2018.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Organ-specific transgenic membrane expression of hen egg lysozyme (HEL) as a "neo-self antigen" has been used in several models to study immunological tolerance. In this study we report the changes which occur in the B10.BR mouse retina when membrane-bound HEL is expressed in photoreceptors under the control of the promoter for interphotoreceptor retinoid binding protein (IRBP, RBP3). On direct clinical examination of the single transgenic (sTg-IRBP:HEL) mouse fundus, a low-level increase in retinal degeneration compared to non-transgenic controls was observed, presenting as drusenoid deposits and occasional small patches of atrophy. On histological examination, there was an overall shortening of outer segments and loss of photoreceptor nuclei in sTg-IRBP:HEL mice, which was more pronounced in the retinal periphery, particularly inferiorly. The fundoscopically observed lesions did not correlate with the photoreceptor shortening/loss but appeared to be located at the level of the retinal pigment epithelium/choriocapillaris layer and were an exaggeration in size and number of similar age-related changes found in wild type (WT) mice. In addition, neither the atrophic lesions nor the photoreceptor shortening were associated with common retinal degeneration genes, nor were they caused by exposure to light damage since mice housed at both high and low ambient light levels had similar degrees of retinal degeneration. Instead, sTg-IRBP:HEL mice expressed reduced levels of soluble retinal IRBP compared to WT mice which were present from postnatal day16 (P16) and preceded development of photoreceptor shortening (onset P21). We propose that insertion of the HEL transgene in the photoreceptor membrane disrupted normal photoreceptor function and led to reduced levels of soluble IRBP and retinal thinning. A similar phenotype has been observed in IRBP deficient mice. Despite the retinal thinning, the amount of HEL expressed in the retina was sufficient to act as an autoantigenic target when the mice were crossed to the HEL T cell receptor Tg mouse, since double transgenic (dTg-IRBP:HEL) mice spontaneously developed a severe uveoretinitis with onset at weaning. We suggest that, although membrane expression of foreign transgene products is likely to modify the structure and function of tissues and cells, the technology provides useful models to investigate mechanisms of antigen-specific immunological tolerance.
Collapse
Affiliation(s)
- Yi-Hsia Liu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Clare Corbett
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Izabela P Klaska
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Institute of Ophthalmology, University College London, London, UK
| | - Kimmo Makinen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Human Health, Novozymes A/S, Bagsvaerd, Denmark
| | | | | | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Department of Ophthalmology, NHS Grampian, Aberdeen, UK
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; University of Western Australia, Lions Eye Institute, Perth, Western Australia, Australia.
| |
Collapse
|