1
|
Kurokawa M, Goya T, Kohjima M, Tanaka M, Iwabuchi S, Shichino S, Ueha S, Hioki T, Aoyagi T, Takahashi M, Imoto K, Tashiro S, Suzuki H, Kato M, Hashimoto S, Matsuda H, Matsushima K, Ogawa Y. Microcirculatory disturbance in acute liver injury is triggered by IFNγ-CD40 axis. J Inflamm (Lond) 2024; 21:23. [PMID: 38907339 PMCID: PMC11191181 DOI: 10.1186/s12950-024-00387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/15/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a life-threatening disorder that progresses from self-limiting acute liver injury (ALI). Microcirculatory disturbance characterized by sinusoidal hypercoagulation and subsequent massive hypoxic hepatocyte damage have been proposed to be the mechanism by which ALI deteriorates to ALF; however, the precise molecular pathway of the sinusoidal hypercoagulation remains unknown. Here, we analyzed ALI patients and mice models to uncover the pathogenesis of ALI with microcirculatory disturbance. METHODS We conducted a single-center retrospective study for ALI and blood samples and liver tissues were analyzed to evaluate the microcirculatory disturbance in ALI patients (n = 120). Single-cell RNA sequencing analysis (scRNA-seq) was applied to the liver from the concanavalin A (Con A)‑induced mouse model of ALI. Interferon-gamma (IFNγ) and tumor necrosis factor-alpha knockout mice, and primary human liver sinusoidal endothelial cells (LSECs) were used to assess the mechanism of microcirculatory disturbance. RESULTS The serum IFNγ concentrations were significantly higher in ALI patients with microcirculatory disturbance than in patients without microcirculatory disturbance, and the IFNγ was upregulated in the Con A mouse model which presented microcirculatory disturbance. Hepatic IFNγ expression was increased as early as 1 hour after Con A treatment prior to sinusoidal hypercoagulation and hypoxic liver damage. scRNA-seq revealed that IFNγ was upregulated in innate lymphoid cells and stimulated hepatic vascular endothelial cells at the early stage of liver injury. In IFNγ knockout mice treated with Con A, the sinusoidal hypercoagulation and liver damage were remarkably attenuated, concomitant with the complete inhibition of CD40 and tissue factor (TF) upregulation in vascular endothelial cells. By ligand-receptor analysis, CD40-CD40 ligand interaction was identified in vascular endothelial cells. In human LSECs, IFNγ upregulated CD40 expression and TF was further induced by increased CD40-CD40 ligand interaction. Consistent with these findings, hepatic CD40 expression was significantly elevated in human ALI patients with microcirculatory disturbance. CONCLUSION We identified the critical role of the IFNγ-CD40 axis as the molecular mechanism of microcirculatory disturbance in ALI. This finding may provide novel insights into the pathogenesis of ALI and potentially contribute to the emergence of new therapeutic strategies for ALI patients.
Collapse
Affiliation(s)
- Miho Kurokawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Gastroenterology and Hepatology, NHO Fukuokahigashi Medical Center, 1-1-1 Chidori, Koga, 811-3195, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Gastroenterology, NHO Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan.
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, 641-8509, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Tomonobu Hioki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomomi Aoyagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motoi Takahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Imoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shigeki Tashiro
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideo Suzuki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jounan-ku, Fukuoka, 814-0198, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, 641-8509, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita-shi, 565-0871, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Masuda M, Iida K, Iwabuchi S, Tanaka M, Kubota S, Uematsu H, Onuma K, Kukita Y, Kato K, Kamiura S, Nakajima A, Coppo R, Kanda M, Yoshino K, Ueda Y, Morii E, Kimura T, Kondo J, Okada-Hatakeyama M, Hashimoto S, Inoue M. Clonal Origin and Lineage Ambiguity in Mixed Neuroendocrine Carcinoma of the Uterine Cervix. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:415-429. [PMID: 38103888 DOI: 10.1016/j.ajpath.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Small-cell neuroendocrine carcinoma (SCNEC) of the cervix is a rare disease characterized by a high incidence of mixed tumors with other types of cancer. The mechanism underlying this mixed phenotype is not well understood. This study established a panel of organoid lines from patients with SCNEC of the cervix and ultimately focused on one line, which retained a mixed tumor phenotype, both in vitro and in vivo. Histologically, both organoids and xenograft tumors showed distinct differentiation into either SCNEC or adenocarcinoma in some regions and ambiguous differentiation in others. Tracking single cells indicated the existence of cells with bipotential differentiation toward SCNEC and adenocarcinomas. Single-cell transcriptional analysis identified three distinct clusters: SCNEC-like, adenocarcinoma-like, and a cluster lacking specific differentiation markers. The expression of neuroendocrine markers was enriched in the SCNEC-like cluster but not exclusively. Human papillomavirus 18 E6 was enriched in the SCNEC-like cluster, which showed higher proliferation and lower levels of the p53 pathway. After treatment with anticancer drugs, the expression of adenocarcinoma markers increased, whereas that of SCNEC decreased. Using a reporter system for keratin 19 expression, changes in the differentiation of each cell were shown to be associated with the shift in differentiation induced by drug treatment. These data suggest that mixed SCNEC/cervical tumors have a clonal origin and are characterized by an ambiguous and flexible differentiation state.
Collapse
Affiliation(s)
- Masamune Masuda
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keita Iida
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mie Tanaka
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Kubota
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroyuki Uematsu
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoji Kukita
- Department of Molecular and Medical Genetics, Osaka International Cancer Institute, Osaka, Japan
| | - Kikuya Kato
- Department of Molecular and Medical Genetics, Osaka International Cancer Institute, Osaka, Japan
| | - Shoji Kamiura
- Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Aya Nakajima
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan; Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Kanda
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | | | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
3
|
Iwabuchi S, Takahashi K, Kawaguchi K, Nagatsu A, Imafuku T, Shichino S, Matsushima K, Taketomi A, Honda M, Hashimoto S. Phospholipase A2 Group IIA Is Associated with Inflammatory Hepatocellular Adenoma. Cancers (Basel) 2023; 16:159. [PMID: 38201587 PMCID: PMC10778238 DOI: 10.3390/cancers16010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Although benign hepatocellular adenomas (HCA) are very rare, recent observations have shown their occurrence in patients with diabetes mellitus. Consequently, most of these cases are treated by resection due to concerns regarding their potential progression to hepatocarcinoma (HCC). This decision is largely driven by the limited number of studies on HCC subtyping and the lack of molecular and biological insights into the carcinogenic potential of benign tumors. This study aimed to comprehensively investigate the subtype classification of HCA and to compare and analyze gene expression profiling between HCA and HCC tissues. One fresh inflammatory HCA (I-HCA), three non-B non-C HCCs, two hepatitis B virus-HCCs, and one normal liver tissue sample were subjected to single-cell RNA sequencing (scRNA-seq). Comparative analysis of scRNA-seq among different tissues showed that phospholipase A2 group IIA (PLA2G2A) mRNA was specifically expressed in I-HCA, following RNA-seq analysis in formalin-fixed paraffin-embedded tissues from other HCAs. Immunohistochemistry using the PLA2G2A antibody in these tissues indicated that the positive reaction was mainly observed in hepatocytes of I-HCAs and stromal cells surrounding the tumor tissue in HCC were also stained. According to a clinical database, PLA2G2A expression in HCC does not correlate with poor prognosis. This finding may potentially help develop a new definition for I-HCA, resulting in a significant clinical contribution, but it requires validation with other fresh HCA samples.
Collapse
Affiliation(s)
- Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-0011, Japan; (S.I.)
| | - Kenta Takahashi
- Department of Human Pathology, Graduate School of Medicine, Kanazawa University, Ishikawa, Kanazawa 920-0934, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Hospital, Ishikawa, Kanazawa 920-0934, Japan
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido, Sapporo 060-8648, Japan
| | - Tadashi Imafuku
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-0011, Japan; (S.I.)
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Noda 278-8510, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Noda 278-8510, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido, Sapporo 060-8648, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Hospital, Ishikawa, Kanazawa 920-0934, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-0011, Japan; (S.I.)
| |
Collapse
|
4
|
Fonseca Teixeira A, Wu S, Luwor R, Zhu HJ. A New Era of Integration between Multiomics and Spatio-Temporal Analysis for the Translation of EMT towards Clinical Applications in Cancer. Cells 2023; 12:2740. [PMID: 38067168 PMCID: PMC10706093 DOI: 10.3390/cells12232740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is crucial to metastasis by increasing cancer cell migration and invasion. At the cellular level, EMT-related morphological and functional changes are well established. At the molecular level, critical signaling pathways able to drive EMT have been described. Yet, the translation of EMT into efficient diagnostic methods and anti-metastatic therapies is still missing. This highlights a gap in our understanding of the precise mechanisms governing EMT. Here, we discuss evidence suggesting that overcoming this limitation requires the integration of multiple omics, a hitherto neglected strategy in the EMT field. More specifically, this work summarizes results that were independently obtained through epigenomics/transcriptomics while comprehensively reviewing the achievements of proteomics in cancer research. Additionally, we prospect gains to be obtained by applying spatio-temporal multiomics in the investigation of EMT-driven metastasis. Along with the development of more sensitive technologies, the integration of currently available omics, and a look at dynamic alterations that regulate EMT at the subcellular level will lead to a deeper understanding of this process. Further, considering the significance of EMT to cancer progression, this integrative strategy may enable the development of new and improved biomarkers and therapeutics capable of increasing the survival and quality of life of cancer patients.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Siqi Wu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Rodney Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, VIC 3350, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| |
Collapse
|
5
|
Yamaji K, Iwabuchi S, Tokunaga Y, Hashimoto S, Yamane D, Toyama S, Kono R, Kitab B, Tsukiyama-Kohara K, Osawa Y, Hayashi Y, Hishima T, Tateno C, Kimura K, Okanoue T, Kohara M. Molecular insights of a CBP/β-catenin-signaling inhibitor on nonalcoholic steatohepatitis-induced liver fibrosis and disorder. Biomed Pharmacother 2023; 166:115379. [PMID: 37647690 DOI: 10.1016/j.biopha.2023.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive fibrotic disease associated with an increased risk of developing hepatocellular carcinoma; at present, no efficient therapeutic strategy has been established. Herein, we examined the efficacy of PRI-724, a potent inhibitor of CBP/β-catenin signaling, for treating NASH-related liver fibrosis and disorder and characterized its mechanism. Choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice exhibited NASH-induced liver fibrosis that is characterized by steatosis, lobular inflammation, hepatocellular injury and collagen fibrils. To examine the therapeutic effect, CDAHFD-fed mice were administered PRI-724. Serum levels of ALT and pro-fibrotic molecule, i.e. Mac-2 bp, alpha smooth muscle actin, type I and type III collagens, decreased significantly. mRNA levels of the matrix metalloproteinases Mmp8 and Mmp9 in the liver were significantly increased, and increases in the abundance of MMP9-producing neutrophils and macrophages were observed. Marco+Mmp9+Cd68+ Kupffer cells were only observed in the livers of mice treated with PRI-724, and Mmp9 expression in Marco+Cd68+ Kupffer cells increased 4.3-fold. Moreover, hepatic expression of the lipid metabolism regulator, pyruvate dehydrogenase kinase 4 and liver lipid droplets also decreased significantly. PRI-724-treated NASH mice not only recovered from NASH-related liver fibrosis through the effect of PRI-724 down-regulating the expression of pro-fibrotic genes and up-regulating the expression of anti-fibrotic genes, but they also recovered from NASH-induced liver disorder. PRI-724, a selective CBP/β-catenin inhibitor, thus shows a potent therapeutic effect for NASH-related liver fibrosis and for decreasing adipose tissue in the liver.
Collapse
Affiliation(s)
- Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yuko Tokunaga
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daisuke Yamane
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Bouchra Kitab
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Yosuke Osawa
- Department of Gastroenterology, International University of Health and Welfare Hospital, Nasushiobara 324-8501, Japan
| | - Yukiko Hayashi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Chise Tateno
- R&D Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka 564-0013, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
6
|
Doshida Y, Hashimoto S, Iwabuchi S, Takino Y, Ishiwata T, Aigaki T, Ishigami A. Single-cell RNA sequencing to detect age-associated genes that identify senescent cells in the liver of aged mice. Sci Rep 2023; 13:14186. [PMID: 37648885 PMCID: PMC10468526 DOI: 10.1038/s41598-023-41352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Senescent cells are predicted to occur and increase in animal tissues with aging. However, senescent cells in the tissues of aged animals remain to be identified. We refer to the marker genes to identify senescent cells in tissues as "age-associated genes". In this study, we searched for age-associated genes to identify senescent cells in the livers of aged animals. We performed single-cell RNA sequencing (scRNA-seq) to screen candidates for age-associated genes using young and aged rat primary hepatocytes. To remove animal species specificity, gene expression analyses in mouse livers were performed, confirming age-associated increases in the mRNA expression levels of Glipr1, Clec12a, and Phlda3. Moreover, the mRNA expression levels of Glipr1 and Phlda3 were increased by stress-induced premature senescence using doxorubicin in primary hepatocytes and livers of young mice. Transcriptome data of aged rat hepatocytes suggested that Glipr1, Clec12a, and Phlda3 were expressed in almost identical cells. Fluorescence in situ hybridization (FISH) confirmed the presence of cells with abundant Glipr1, Clec12a, and Phlda3 mRNA in 27-month-old mouse primary hepatocytes, which are considered to be senescent cells. This study is the first to identify Glipr1, Clec12a, and Phlda3 as age-associated genes in the mouse liver.
Collapse
Affiliation(s)
- Yuta Doshida
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Yuka Takino
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Toshiyuki Ishiwata
- Aging and Carcinogenesis, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| |
Collapse
|
7
|
Takahashi K, Podyma-Inoue KA, Saito M, Sakakitani S, Sugauchi A, Iida K, Iwabuchi S, Koinuma D, Kurioka K, Konishi T, Tanaka S, Kaida A, Miura M, Hashimoto S, Okada M, Uchihashi T, Miyazono K, Watabe T. TGF-β generates a population of cancer cells residing in G1 phase with high motility and metastatic potential via KRTAP2-3. Cell Rep 2022; 40:111411. [PMID: 36170816 DOI: 10.1016/j.celrep.2022.111411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor β (TGF-β) increases epithelial cancer cell migration and metastasis by inducing epithelial-mesenchymal transition (EMT). TGF-β also inhibits cell proliferation by inducing G1 phase cell-cycle arrest. However, the correlation between these tumor-promoting and -suppressing effects remains unclear. Here, we show that TGF-β confers higher motility and metastatic ability to oral cancer cells in G1 phase. Mechanistically, keratin-associated protein 2-3 (KRTAP2-3) is a regulator of these dual effects of TGF-β, and its expression is correlated with tumor progression in patients with head and neck cancer and migratory and metastatic potentials of oral cancer cells. Furthermore, single-cell RNA sequencing reveals that TGF-β generates two populations of mesenchymal cancer cells with differential cell-cycle status through two distinctive EMT pathways mediated by Slug/HMGA2 and KRTAP2-3. Thus, TGF-β-induced KRTAP2-3 orchestrates cancer cell proliferation and migration by inducing EMT, suggesting motile cancer cells arrested in G1 phase as a target to suppress metastasis.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Maki Saito
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shintaro Sakakitani
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Akinari Sugauchi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kyoko Kurioka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toru Konishi
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Susumu Tanaka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Masahiko Miura
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshihiro Uchihashi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan; Unit of Dentistry, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
8
|
Song H, Weinstein HNW, Allegakoen P, Wadsworth MH, Xie J, Yang H, Castro EA, Lu KL, Stohr BA, Feng FY, Carroll PR, Wang B, Cooperberg MR, Shalek AK, Huang FW. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat Commun 2022; 13:141. [PMID: 35013146 PMCID: PMC8748675 DOI: 10.1038/s41467-021-27322-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men worldwide and consists of a mixture of tumor and non-tumor cell types. To characterize the prostate cancer tumor microenvironment, we perform single-cell RNA-sequencing on prostate biopsies, prostatectomy specimens, and patient-derived organoids from localized prostate cancer patients. We uncover heterogeneous cellular states in prostate epithelial cells marked by high androgen signaling states that are enriched in prostate cancer and identify a population of tumor-associated club cells that may be associated with prostate carcinogenesis. ERG-negative tumor cells, compared to ERG-positive cells, demonstrate shared heterogeneity with surrounding luminal epithelial cells and appear to give rise to common tumor microenvironment responses. Finally, we show that prostate epithelial organoids harbor tumor-associated epithelial cell states and are enriched with distinct cell types and states from their parent tissues. Our results provide diagnostically relevant insights and advance our understanding of the cellular states associated with prostate carcinogenesis.
Collapse
Affiliation(s)
- Hanbing Song
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Hannah N. W. Weinstein
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Paul Allegakoen
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Marc H. Wadsworth
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Jamie Xie
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Heiko Yang
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Ethan A. Castro
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Kevin L. Lu
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bradley A. Stohr
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Felix Y. Feng
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Departments of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Peter R. Carroll
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bruce Wang
- grid.266102.10000 0001 2297 6811Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA 94143 USA
| | - Matthew R. Cooperberg
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| | - Alex K. Shalek
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Franklin W. Huang
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| |
Collapse
|
9
|
Effect of Aberrant Long Noncoding RNA on the Prognosis of Clear Cell Renal Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6533049. [PMID: 34512796 PMCID: PMC8433025 DOI: 10.1155/2021/6533049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a kind of lethal cancer. Although there are mature treatment methods, there is still a lack of rigorous and scientific means for cancer diagnosis. Long noncoding RNAs (lncRNAs) are a kind of noncoding RNA (ncRNA). Recent studies find that alteration of lncRNA expression is related to the occurrence of many cancers. In order to find lncRNAs which can effectively predict the prognosis of ccRCC, RNA-seq count data and clinical information were downloaded from TCGA-KIRC, and gene expression profiles from 530 patients were included. Then, K-means was used for clustering, and the number of clusters was determined to be 5. The R-package "edgeR" was used to perform differential expression analysis. Subsequently, a risk model composed of 10 lncRNA biomarkers significantly related to prognosis was identified via Cox and LASSO regression analyses. Then, patients were divided into two groups according to the model-based risk score, and then, GSEA pathway enrichment was performed. The results showed that metabolism- and mTOR-related pathways were activated while immune-related pathways were inhibited in the high-risk patients. Combined with previous studies, it is believed that these 10 lncRNAs are potential targets for the treatment of ccRCC. In addition, Cox regression analysis was used to verify the independence of the risk model, and as results revealed, the risk model can be used to independently predict the prognosis of patients. In conclusion, our study found 10 lncRNAs related to the prognosis of ccRCC and provided new ideas for clinical diagnosis and drug development.
Collapse
|
10
|
Southern A, El-Bahrawy M. Advances in understanding the molecular pathology of gynecological malignancies: the role and potential of RNA sequencing. Int J Gynecol Cancer 2021; 31:1159-1164. [PMID: 34016704 DOI: 10.1136/ijgc-2021-002509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/03/2022] Open
Abstract
For many years technological limitations restricted the progress of identifying the underlying genetic causes of gynecologicalcancers. However, during the past decade, high-throughput next-generation sequencing technologies have revolutionized cancer research. RNA sequencing has arisen as a very useful technique in expanding our understanding of genome changes in cancer. Cancer is characterized by the accumulation of genetic alterations affecting genes, including substitutions, insertions, deletions, translocations, gene fusions, and alternative splicing. If these aberrant genes become transcribed, aberrations can be detected by RNA sequencing, which will also provide information on the transcript abundance revealing the expression levels of the aberrant genes. RNA sequencing is considered the technique of choice when studying gene expression and identifying new RNA species. This is due to the quantitative and qualitative improvement that it has brought to transcriptome analysis, offering a resolution that allows research into different layers of transcriptome complexity. It has also been successful in identifying biomarkers, fusion genes, tumor suppressors, and uncovering new targets responsible for drug resistance in gynecological cancers. To illustrate that we here review the role of RNA sequencing in studies that enhanced our understanding of the molecular pathology of gynecological cancers.
Collapse
Affiliation(s)
- Alba Southern
- Surgery and Cancer, Imperial College London, London, UK
| | - Mona El-Bahrawy
- Metabolism, Digestion and Reproduction, Imperial College London, London, UK .,Pathology, Alexandria University Faculty of Medicine, Alexandria, Egypt
| |
Collapse
|
11
|
Heremans R, Jan Z, Timmerman D, Vankelecom H. Organoids of the Female Reproductive Tract: Innovative Tools to Study Desired to Unwelcome Processes. Front Cell Dev Biol 2021; 9:661472. [PMID: 33959613 PMCID: PMC8093793 DOI: 10.3389/fcell.2021.661472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
The pelviperineal organs of the female reproductive tract form an essential cornerstone of human procreation. The system comprises the ectodermal external genitalia, the Müllerian upper-vaginal, cervical, endometrial and oviductal derivatives, and the endodermal ovaries. Each of these organs presents with a unique course of biological development as well as of malignant degeneration. For many decades, various preclinical in vitro models have been employed to study female reproductive organ (patho-)biology, however, facing important shortcomings of limited expandability, loss of representativeness and inadequate translatability to the clinic. The recent emergence of 3D organoid models has propelled the field forward by generating powerful research tools that in vitro replicate healthy as well as diseased human tissues and are amenable to state-of-the-art experimental interventions. Here, we in detail review organoid modeling of the different female reproductive organs from healthy and tumorigenic backgrounds, and project perspectives for both scientists and clinicians.
Collapse
Affiliation(s)
- Ruben Heremans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
- Cluster Woman and Child, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals, KU Leuven, Leuven, Belgium
| | - Ziga Jan
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
- Cluster Woman and Child, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Gynecology, Klinikum Klagenfurt, Klagenfurt, Austria
| | - Dirk Timmerman
- Cluster Woman and Child, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals, KU Leuven, Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
12
|
Hashimoto S, Shirasaki T, Yamashita T, Iwabuchi S, Suzuki Y, Takamura Y, Ukita Y, Deshimaru S, Okayama T, Ikeo K, Kuroki K, Kawaguchi K, Mizukoshi E, Matsushima K, Honda M, Kaneko S. DOCK11 and DENND2A play pivotal roles in the maintenance of hepatitis B virus in host cells. PLoS One 2021; 16:e0246313. [PMID: 33539396 PMCID: PMC7861363 DOI: 10.1371/journal.pone.0246313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
Human hepatitis B virus (HBV) infection remains a serious health problem worldwide. However, the mechanism for the maintenance of HBV in a latent state within host cells remains unclear. Here, using single-cell RNA sequencing analysis, we identified four genes linked to the maintenance of HBV in a liver cell line expressing HBV RNA at a low frequency. These genes included DOCK11 and DENND2A, which encode small GTPase regulators. In primary human hepatocytes infected with HBV, knockdown of these two genes decreased the amount of both HBV DNA and covalently closed circular DNA to below the limit of detection. Our findings reveal a role for DOCK11 and DENND2A in the maintenance of HBV.
Collapse
Affiliation(s)
- Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
- * E-mail:
| | - Takayoshi Shirasaki
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuzuru Takamura
- Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - Yoshiaki Ukita
- Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Shungo Deshimaru
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Toshitugu Okayama
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | - Kazuho Ikeo
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | - Kazuyuki Kuroki
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Masao Honda
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
13
|
Sayers NS, Anujan P, Yu HN, Palmer SS, Nautiyal J, Franks S, Hanyaloglu AC. Follicle-Stimulating Hormone Induces Lipid Droplets via Gαi/o and β-Arrestin in an Endometrial Cancer Cell Line. Front Endocrinol (Lausanne) 2021; 12:798866. [PMID: 35185785 PMCID: PMC8850301 DOI: 10.3389/fendo.2021.798866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
Follicle-stimulating hormone (FSH) and its G protein-coupled receptor, FSHR, represents a paradigm for receptor signaling systems that activate multiple and complex pathways. Classically, FSHR activates Gαs to increase intracellular levels of cAMP, but its ability to activate other G proteins, and β-arrestin-mediated signaling is well documented in many different cell systems. The pleiotropic signal capacity of FSHR offers a mechanism for how FSH drives multiple and dynamic downstream functions in both gonadal and non-gonadal cell types, including distinct diseases, and how signal bias may be achieved at a pharmacological and cell system-specific manner. In this study, we identify an additional mechanism of FSH-mediated signaling and downstream function in the endometrial adenocarcinoma Ishikawa cell line. While FSH did not induce increases in cAMP levels, this hormone potently activated pertussis toxin sensitive Gαi/o signaling. A selective allosteric FSHR ligand, B3, also activated Gαi/o signaling in these cells, supporting a role for receptor-mediated activation despite the low levels of FSHR mRNA. The low expression levels may attribute to the lack of Gαs/cAMP signaling as increasing FSHR expression resulted in FSH-mediated activation of the Gαs pathway. Unlike prior reports for FSH-mediated Gαs/cAMP signaling, FSH-mediated Gαi/o signaling was not affected by inhibition of dynamin-dependent receptor internalization. While chronic FSH did not alter cell viability, FSH was able to increase lipid droplet size. The β-arrestins are key adaptor proteins known to regulate FSHR signaling. Indeed, a rapid, FSH-dependent increase in interactions between β-arrestin1 and Gαi1 was observed via NanoBiT complementation in Ishikawa cells. Furthermore, both inhibition of Gαi/o signaling and siRNA knockdown of β-arrestin 1/2 significantly reduced FSH-induced lipid droplet accumulation, implying a role for a Gαi/o/β-arrestin complex in FSH functions in this cell type. As FSH/FSHR has been implicated in distinct hormone-dependent cancers, including endometrial cancer, analysis of the cancer genome database from 575 human endometrial adenocarcinoma tumors revealed that a subpopulation of samples expressed FSHR. Overall, this study highlights a novel mechanism for FSHR signal pleiotropy that may be exploited for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Niamh S. Sayers
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Priyanka Anujan
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Henry N. Yu
- CanWell Pharma Inc., Wellesley, MA, United States
| | - Stephen S. Palmer
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Stephen Franks
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Aylin C. Hanyaloglu
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- *Correspondence: Aylin C. Hanyaloglu,
| |
Collapse
|
14
|
Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 2020; 9:giaa151. [PMID: 33367645 PMCID: PMC7763177 DOI: 10.1093/gigascience/giaa151] [Citation(s) in RCA: 534] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/13/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Droplet-based single-cell RNA sequence analyses assume that all acquired RNAs are endogenous to cells. However, any cell-free RNAs contained within the input solution are also captured by these assays. This sequencing of cell-free RNA constitutes a background contamination that confounds the biological interpretation of single-cell transcriptomic data. RESULTS We demonstrate that contamination from this "soup" of cell-free RNAs is ubiquitous, with experiment-specific variations in composition and magnitude. We present a method, SoupX, for quantifying the extent of the contamination and estimating "background-corrected" cell expression profiles that seamlessly integrate with existing downstream analysis tools. Applying this method to several datasets using multiple droplet sequencing technologies, we demonstrate that its application improves biological interpretation of otherwise misleading data, as well as improving quality control metrics. CONCLUSIONS We present SoupX, a tool for removing ambient RNA contamination from droplet-based single-cell RNA sequencing experiments. This tool has broad applicability, and its application can improve the biological utility of existing and future datasets.
Collapse
Affiliation(s)
- Matthew D Young
- Wellcome Trust Sanger Institute, Cellular Genetics, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sam Behjati
- Wellcome Trust Sanger Institute, Cellular Genetics, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
- University of Cambridge, Department of Paediatrics, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
15
|
Doshida Y, Sano H, Iwabuchi S, Aigaki T, Yoshida M, Hashimoto S, Ishigami A. Age-associated changes in the transcriptomes of non-cultured adipose-derived stem cells from young and old mice assessed via single-cell transcriptome analysis. PLoS One 2020; 15:e0242171. [PMID: 33237970 PMCID: PMC7688117 DOI: 10.1371/journal.pone.0242171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) exhibit self-renewal and pluripotency. The differentiation potency of ASCs has been reported to deteriorate with aging; however, relevant studies used ASCs that were isolated and subcultured several times. It is still unclear whether subcultured ASCs accurately reflect the in vivo state. To address this question, we used freshly isolated stromal vascular fractions (SVFs) and performed comprehensive single-cell transcriptome analysis. In this study, we identified three cell populations as putative ASC candidates in SVFs and three novel ASC-related genes: Adamts7, Snai2, and Tgfbr1, that are reported to be negative regulators of cell differentiation. Moreover, we identified age-associated high gene expression levels of Adamts7, Egfr, and Igfbp4 in the earliest differentiation stage of ASCs. These results suggest that aging may make it impossible to maintain the stringency of the regulation of the expression of some genes related to ASC differentiation.
Collapse
Affiliation(s)
- Yuta Doshida
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruka Sano
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
16
|
Human-Derived Model Systems in Gynecological Cancer Research. Trends Cancer 2020; 6:1031-1043. [PMID: 32855097 DOI: 10.1016/j.trecan.2020.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
The human female reproductive tract (FRT) is a complex system that combines series of organs, including ovaries, fallopian tubes, uterus, cervix, vagina, and vulva; each of which possesses unique cellular characteristics and functions. This versatility, in turn, allows for the development of a wide range of epithelial gynecological cancers with distinct features. Thus, reliable model systems are required to better understand the diverse mechanisms involved in the regional pathogenesis of the reproductive tract and improve treatment strategies. Here, we review the current human-derived model systems available to study the multitude of gynecological cancers, including ovarian, endometrial, cervical, vaginal, and vulvar cancer, and the recent advances in the push towards personalized therapy.
Collapse
|
17
|
Casas-Arozamena C, Abal M. Endometrial Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:215-225. [PMID: 34185295 DOI: 10.1007/978-3-030-59038-3_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endometrial cancer (EC) is the most common gynaecological tumour in developed countries, and its incidence is increasing in part due to the prevalence of obesity and its related hormone dysregulation. As described in this chapter, the tumour microenvironment plays a principal role in unopposed oestrogen stimulation promoting tumour cell proliferation. Factors and cytokines secreted by the different cell types defining the reactive tumour stroma also determine the invasive abilities of the tumour cells. Cancer-associated fibroblasts and tumour-associated macrophages actively participate through SDF-1, TGF-b or HGF to promote epithelial-to-mesenchymal transition or to generate an appropriate tumour niche. Likewise, endothelial cells facilitate lymph node and vascular infiltration through VEGF. Finally, the possibility to balance the immunosuppressive phenotypes in advanced endometrial cancer through the tumour microenvironment will probably represent a main therapeutic strategy in the near future.
Collapse
Affiliation(s)
- Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain. .,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain.
| |
Collapse
|
18
|
Decalf J, Albert ML, Ziai J. New tools for pathology: a user's review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissue. J Pathol 2019; 247:650-661. [PMID: 30570141 DOI: 10.1002/path.5223] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
Abstract
Tumor cell heterogeneity and tumor cell-stromal interactions are being explored as determinants of disease progression and treatment resistance in solid tumor and hematological malignancies. As such, tools simultaneously capable of highly multiplexed profiling of tissues' protein and RNA content, as well as interrogation of rare or single cells, are required to precisely characterize constituent tumor cell populations, infiltrating lymphocytes and stromal elements. Access to spatial relationships will enable more precise characterization of tumors, support patient stratification and may help to identify novel drug targets. Multiple platforms are being developed to address these critical unmet needs. The NanoString digital spatial profiling (DSP) platform enables highly multiplexed, spatial assessment of protein and/or RNA targets in tissues by detecting oligonucleotide barcodes conjugated via a photocleavable linker to primary antibodies or nucleic acid probes. Although this platform enables high-dimensional spatial interrogation of tissue protein and RNA expression, a detailed understanding of its composition, function and chemistry is advisable to guide experimental design and data interpretation. The purpose of this review is to provide an independent, comprehensive description of the DSP technology, including an overview of NanoString's capture and antibody barcode conjugation chemistries, experimental workflow, data output and analysis methods. The DSP technology will be discussed in the context of other highly multiplexed immunohistochemistry methods, including imaging mass cytometry and multiplexed ion beam imaging, to inform potential users of the advantages and limitations of each. Additional issues such as preanalytical variability, sampling and specimen adequacy will be considered with respect to the platforms to inform potential experimental design. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jérémie Decalf
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Matthew L Albert
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - James Ziai
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
19
|
Tabuchi Y, Hirohashi Y, Hashimoto S, Mariya T, Asano T, Ikeo K, Kuroda T, Mizuuchi M, Murai A, Uno S, Kawai N, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Saito T, Torigoe T. Clonal analysis revealed functional heterogeneity in cancer stem-like cell phenotypes in uterine endometrioid adenocarcinoma. Exp Mol Pathol 2019; 106:78-88. [DOI: 10.1016/j.yexmp.2018.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022]
|
20
|
Hashimoto S. Nx1-Seq (Well Based Single-Cell Analysis System). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1129:51-61. [PMID: 30968360 DOI: 10.1007/978-981-13-6037-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Research on the hierarchical nature of cell differentiation and heterogeneity in tissues has been performed by isolating and identifying cells by the use of monoclonal antibodies, cell sorting, microdissection, and functional assays. However, it is difficult to analyze continuous changes in cell differentiation and the identification of cells for which cell markers are unclear. Furthermore, cell populations considered identical were shown to be diverse. Recently, single cell gene expression analysis was performed to help understand the complexity of cell populations. Single-cell analysis can analyze the diversity of individual cell populations as well as the tissue microenvironment, and is extremely useful for research on intercellular interactions in diseases and identifying specific marker genes. Recent advances in technology have made it possible to analyze hundreds of single cells. In this paper, we introduce our newly developed well-based single-cell transcriptome method, which includes other methods.
Collapse
|