1
|
Audoor S, Bilcke G, Pargana K, Belišová D, Thierens S, Van Bel M, Sterck L, Rijsdijk N, Annunziata R, Ferrante MI, Vandepoele K, Vyverman W. Transcriptional chronology reveals conserved genes involved in pennate diatom sexual reproduction. Mol Ecol 2024; 33:e17320. [PMID: 38506152 DOI: 10.1111/mec.17320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Sexual reproduction is a major driver of adaptation and speciation in eukaryotes. In diatoms, siliceous microalgae with a unique cell size reduction-restitution life cycle and among the world's most prolific primary producers, sex also acts as the main mechanism for cell size restoration through the formation of an expanding auxospore. However, the molecular regulators of the different stages of sexual reproduction and size restoration are poorly explored. Here, we combined RNA sequencing with the assembly of a 55 Mbp reference genome for Cylindrotheca closterium to identify patterns of gene expression during different stages of sexual reproduction. These were compared with a corresponding transcriptomic time series of Seminavis robusta to assess the degree of expression conservation. Integrative orthology analysis revealed 138 one-to-one orthologues that are upregulated during sex in both species, among which 56 genes consistently upregulated during cell pairing and gametogenesis, and 11 genes induced when auxospores are present. Several early, sex-specific transcription factors and B-type cyclins were also upregulated during sex in other pennate and centric diatoms, pointing towards a conserved core regulatory machinery for meiosis and gametogenesis across diatoms. Furthermore, we find molecular evidence that the pheromone-induced cell cycle arrest is short-lived in benthic diatoms, which may be linked to their active mode of mate finding through gliding. Finally, we exploit the temporal resolution of our comparative analysis to report the first marker genes for auxospore identity called AAE1-3 ("Auxospore-Associated Expression"). Altogether, we introduce a multi-species model of the transcriptional dynamics during size restoration in diatoms and highlight conserved gene expression dynamics during different stages of sexual reproduction.
Collapse
Affiliation(s)
- Sien Audoor
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| | - Gust Bilcke
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Katerina Pargana
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| | - Darja Belišová
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Sander Thierens
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Michiel Van Bel
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lieven Sterck
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nadine Rijsdijk
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Naples, Italy
- Associate to the National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for AI & Computational Biology, VIB, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Yılmaz E, Witkowski A, Özdelice N, Solak CN, Gastineau R, Durmuş T. Craspedostaurosnazmii sp. nov., a new diatom species (Bacillariophyta) from the Turkish Coast of the Black Sea. PHYTOKEYS 2023; 232:77-88. [PMID: 37732132 PMCID: PMC10507444 DOI: 10.3897/phytokeys.232.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/13/2023] [Indexed: 09/22/2023]
Abstract
Craspedostauros E.J. Cox is a diatom genus comprising 17 taxa reported from various regions of the world. While many species of Craspedostauros are epibiontic, the taxa have variable ecological preferences. In this study we formally describe Craspedostaurosnazmiisp. nov., an epilithic species discovered along the Turkish Black Sea Coast, based on light and scanning electron microscopy. Craspedostaurosnazmiisp. nov. is characterized by valves that are lanceolate to narrowly lanceolate, slightly constricted near the apices with uniseriate, parallel throughout the whole valve, transapical striae and and the presence of an apical silica flap. The areolae are distributed over the valve face and the mantle. The differences and similarities between C.nazmiisp. nov. and established species of Craspedostauros are discussed. Based on shape and morphometrics, the most similar species is Craspedostauroscapensis, but it is easily distinguished from C.nazmiisp. nov. by its lack of an apical silica flap.
Collapse
Affiliation(s)
- Elif Yılmaz
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, Szczecin, PL70–383 PolandKütahya Dumlupınar UniversityKütahyaTurkiye
- Department of Biology, Faculty of Science and Art, Kütahya Dumlupınar University, 43000 Kütahya, TurkiyeUniversity of SzczecinSzczecinPoland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, Szczecin, PL70–383 PolandKütahya Dumlupınar UniversityKütahyaTurkiye
| | - Neslihan Özdelice
- Istanbul University, Faculty of Science, Department of Biology, 34134 Istanbul, TurkiyeIstanbul UniversityIstanbulTurkiye
| | - Cüneyt Nadir Solak
- Department of Biology, Faculty of Science and Art, Kütahya Dumlupınar University, 43000 Kütahya, TurkiyeUniversity of SzczecinSzczecinPoland
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, Szczecin, PL70–383 PolandKütahya Dumlupınar UniversityKütahyaTurkiye
| | - Turgay Durmuş
- Istanbul University, Faculty of Science, Department of Biology, 34134 Istanbul, TurkiyeIstanbul UniversityIstanbulTurkiye
| |
Collapse
|
3
|
Lobban CS, Ashworth MP, Camacho T, Lam DW, Theriot EC. Revision of Ardissoneaceae (Bacillariophyta, Mediophyceae) from Micronesian populations, with descriptions of two new genera, Ardissoneopsis and Grunowago, and new species in Ardissonea, Synedrosphenia and Climacosphenia. PHYTOKEYS 2022; 208:103-184. [PMID: 36761401 PMCID: PMC9848972 DOI: 10.3897/phytokeys.208.89913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/25/2022] [Indexed: 06/18/2023]
Abstract
Ardissonea was resurrected from Synedra in 1986 and was included as a genus by Round, Crawford and Mann ("The Diatoms") in its own Family and Order. They commented that there might be several genera involved since the type species of the genus possesses a double-walled structure and other taxa placed in Ardissonea have only a single-walled structure. Two other genera of "big sticks," Toxarium and Climacosphenia, were placed in their own Families and Orders but share many characters with Ardissoneaceae, especially growth from a bifacial annulus. Eighteen taxa (11 new species) from Micronesia were compared with the literature and remnant material from Grunow's Honduras Sargassum sample to address the concepts of Ardissonea and Ardissoneaceae. Phylogenetic and morphological analyses showed three clades within Ardissonea sensu lato: Ardissonea emend. for the double-walled taxa, Synedrosphenia emend. and Ardissoneopsis gen. nov. for single-walled taxa. New species include Ardissoneadensistriata sp. nov.; Synedrospheniabikarensis sp. nov., S.licmophoropsis sp. nov., S.parva sp. nov., and S.recta sp. nov.; Ardissoneopsisfulgicans sp. nov., A.appressata sp. nov., and A.gracilis sp. nov. Transfers include Synedrospheniacrystallina comb. nov. and S.fulgens comb. nov. Synedraundosa, seen for the first time in SEM in Grunow's material, is transferred to Ardissoneopsisundosa comb. nov. Three more genera have similar structure: Toxarium, Climacosphenia and Grunowago gen. nov., erected for Synedrabacillaris and a lanceolate species, G.pacifica sp. nov. Morphological characters of Toxarium in our region support separation of Toxariumhennedyanum and T.undulatum and suggest additional species here and elsewhere. Climacospheniamoniligera was not found but we clarify its characters based on the literature and distinguish C.soulonalis sp. nov. from it. Climacospheniaelongata and a very long, slender C.elegantissima sp. nov., previously identified as C.elongata, were present along with C.scimiter. Morphological and molecular phylogenetics strongly suggested that all these genera belong in one family and we propose to include them in the Ardissoneacae and to reinstate the Order Ardissoneales Round.
Collapse
Affiliation(s)
| | - Matt P. Ashworth
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Terance Camacho
- Division of Natural Sciences, University of Guam, Mangilao, GU 96923, Guam, USA
| | - Daryl W. Lam
- LSAMP Program, University of Guam, Mangilao, GU 96923, Guam, USA
| | - Edward C. Theriot
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Bulankova P, Sekulić M, Jallet D, Nef C, van Oosterhout C, Delmont TO, Vercauteren I, Osuna-Cruz CM, Vancaester E, Mock T, Sabbe K, Daboussi F, Bowler C, Vyverman W, Vandepoele K, De Veylder L. Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Curr Biol 2021; 31:3221-3232.e9. [PMID: 34102110 DOI: 10.1016/j.cub.2021.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 01/31/2023]
Abstract
Diatoms, an evolutionarily successful group of microalgae, display high levels of intraspecific genetic variability in natural populations. However, the contribution of various mechanisms generating such diversity is unknown. Here we estimated the genetic micro-diversity within a natural diatom population and mapped the genomic changes arising within clonally propagated diatom cell cultures. Through quantification of haplotype diversity by next-generation sequencing and amplicon re-sequencing of selected loci, we documented a rapid accumulation of multiple haplotypes accompanied by the appearance of novel protein variants in cell cultures initiated from a single founder cell. Comparison of the genomic changes between mother and daughter cells revealed copy number variation and copy-neutral loss of heterozygosity leading to the fixation of alleles within individual daughter cells. The loss of heterozygosity can be accomplished by recombination between homologous chromosomes. To test this hypothesis, we established an endogenous readout system and estimated that the frequency of interhomolog mitotic recombination was under standard growth conditions 4.2 events per 100 cell divisions. This frequency is increased under environmental stress conditions, including treatment with hydrogen peroxide and cadmium. These data demonstrate that copy number variation and mitotic recombination between homologous chromosomes underlie clonal variability in diatom populations. We discuss the potential adaptive evolutionary benefits of the plastic response in the interhomolog mitotic recombination rate, and we propose that this may have contributed to the ecological success of diatoms.
Collapse
Affiliation(s)
- Petra Bulankova
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| | - Mirna Sekulić
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Denis Jallet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
| | - Ilse Vercauteren
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Cristina Maria Osuna-Cruz
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Emmelien Vancaester
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Fayza Daboussi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Lieven De Veylder
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
5
|
Kaczmarska I, Ehrman JM. Enlarge or die! An auxospore perspective on diatom diversification. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-020-00476-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Kaczmarska I, Ehrman JM, Davidovich NA, Davidovich OI, Podunay YA. Structure and Development of the Auxospore in Ardissonea crystallina (C. Agardh) Grunow Demonstrates Another Way for a Centric to Look Like a Pennate. Protist 2018; 169:466-483. [PMID: 30025232 DOI: 10.1016/j.protis.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/05/2018] [Accepted: 05/06/2018] [Indexed: 11/16/2022]
Abstract
Reproductive development in Ardissonea crystallina revealed a unique mode of enlargement involving a combination of novel and known structures. In light microscopy, auxospores of this elongated polar centric diatom were superficially similar to the auxospores of pennates. With SEM we found three different components in the auxospore wall. In the youngest, nearly spherical cell-stage, the wall consisted only of a delicate veil containing minute siliceous spherules. Incunabular elements developed underneath this layer. Second, a previously unknown form of specifically modified incunabular scales shaped the subsequent ellipsoidal-capsule auxospore stage. Third, there was a clear contribution of scales to the development of scaly transverse perizonial bands (or scaly bands, for brevity). Such bands, although noted by previous researchers, have not been fully appreciated for the evolutionary information they may convey: possibly common among polar centrics but not pennates. Finally, we propose maintaining the term transverse perizonium to refer to these bands in polar diatoms, but to introduce the differentiation of scaly bands described here from pinnate bands (currently known as typical of pennates). Further research into band types among polar centrics may provide new insights into the relationship between the groups within polar centrics that are currently unresolved by molecular methods.
Collapse
Affiliation(s)
- Irena Kaczmarska
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1G7, Canada.
| | - James M Ehrman
- Digital Microscopy Facility, Mount Allison University, Sackville, New Brunswick E4L 1G7, Canada
| | - Nickolai A Davidovich
- T. I. Vyasemsky Karadag Scientific Station - Nature Reserve, village Kurortnoe, Feodosiya, 298188, Russia
| | - Olga I Davidovich
- T. I. Vyasemsky Karadag Scientific Station - Nature Reserve, village Kurortnoe, Feodosiya, 298188, Russia
| | - Yulia A Podunay
- T. I. Vyasemsky Karadag Scientific Station - Nature Reserve, village Kurortnoe, Feodosiya, 298188, Russia
| |
Collapse
|
7
|
Nakov T, Beaulieu JM, Alverson AJ. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). THE NEW PHYTOLOGIST 2018; 219:462-473. [PMID: 29624698 PMCID: PMC6099383 DOI: 10.1111/nph.15137] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/02/2018] [Indexed: 05/08/2023]
Abstract
Patterns of species richness are commonly linked to life history strategies. In diatoms, an exceptionally diverse lineage of photosynthetic heterokonts important for global photosynthesis and burial of atmospheric carbon, lineages with different locomotory and reproductive traits differ dramatically in species richness, but any potential association between life history strategy and diversification has not been tested in a phylogenetic framework. We constructed a time-calibrated, 11-gene, 1151-taxon phylogeny of diatoms - the most inclusive diatom species tree to date. We used this phylogeny, together with a comprehensive inventory of first-last occurrences of Cenozoic fossil diatoms, to estimate ranges of expected species richness, diversification and its variation through time and across lineages. Diversification rates varied with life history traits. Although anisogamous lineages diversified faster than oogamous ones, this increase was restricted to a nested clade with active motility in the vegetative cells. We propose that the evolution of motility in vegetative cells, following an earlier transition from oogamy to anisogamy, facilitated outcrossing and improved utilization of habitat complexity, ultimately leading to enhanced opportunity for adaptive divergence across a variety of novel habitats. Together, these contributed to a species radiation that gave rise to the majority of present-day diatom diversity.
Collapse
Affiliation(s)
- Teofil Nakov
- University of Arkansas1 University of Arkansas, SCEN 601FayettevilleAR72701‐1201USA
| | - Jeremy M. Beaulieu
- University of Arkansas1 University of Arkansas, SCEN 601FayettevilleAR72701‐1201USA
| | - Andrew J. Alverson
- University of Arkansas1 University of Arkansas, SCEN 601FayettevilleAR72701‐1201USA
| |
Collapse
|