1
|
Idbella M, Iacomino G, Abd‐ElGawad AM, Bonanomi G. Soil Microbial Co-Occurrence Networks Across Climate and Land Use Gradient in Southern Italy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70093. [PMID: 40210220 PMCID: PMC11985101 DOI: 10.1111/1758-2229.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/17/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
Despite extensive research on microbiota across land use gradients, it remains unclear if microbial co-occurrence relationships exhibit consistent patterns. Here, we assessed microbial co-occurrence networks of seven natural ecosystems-Quercus ilex forest, Fagus sylvatica forest, Abies alba forest, Mediterranean and mountain grasslands, and subalpine and Mediterranean shrublands-and five agroecosystems, including vineyards, horticulture, greenhouse, a polluted agricultural system, and an arid greenhouse. Soil chemistry, such as pH, organic carbon and total nitrogen, was characterised, and soil microbiota were profiled using high-throughput sequencing from 242 soil samples. Our results revealed that mountain grasslands had the highest organic carbon (86.4 g/kg), while the arid greenhouse had the lowest (6.1 g/kg). Mediterranean grasslands had the lowest pH of 5.79, and vineyards had the highest electrical conductivity of 0.901 dS/m. Notably, natural ecosystem networks exhibited greater modularity, with protected horticulture showing exceptionally the highest (0.937), while intensive agriculture within agroecosystems had a significantly lower modularity of 0.282. Modularity and the number of modules were positively correlated with soil P2O5, while network diameter, path length and clustering coefficient were correlated with soil pH. Additionally, edges and nodes number, average degree and microbial diversity were positively associated with organic carbon and total nitrogen. These findings highlight that natural ecosystems foster more complex and resilient microbial networks, underscoring sustainable land management's importance to preserve soil health and microbial diversity.
Collapse
Affiliation(s)
- Mohamed Idbella
- AgroBioSciences (AgBS) Program, College of Agriculture and Environmental SciencesMohammed VI Polytechnic UniversityBen GuerirMorocco
| | - Giuseppina Iacomino
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Ahmed M. Abd‐ElGawad
- Plant Production DepartmentCollege of Food & Agriculture Sciences, King Saud UniversityRiyadhSaudi Arabia
| | - Giuliano Bonanomi
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
2
|
Camuy-Vélez LA, Banerjee S, Sedivec K. Grazing intensity alters network complexity and predator-prey relationships in the soil microbiome. Appl Environ Microbiol 2024; 90:e0042524. [PMID: 39235241 PMCID: PMC11497777 DOI: 10.1128/aem.00425-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Grasslands are recognized as important reservoirs of soil biodiversity. Livestock grazing is implemented as a grassland management strategy to improve soil quality and enhance plant diversity. Soil microbial communities play a pivotal role in grassland ecosystems, so it is important to examine whether grazing practices affect the soil microbiome. Previous studies on grazing have primarily focused on bacteria and fungi, overlooking an important group-protists. Protists are vital in soil microbiomes as they drive nutrient availability and trophic interactions. Determining the impact of grazing on protists and their relationships with bacterial and fungal communities is important for understanding soil microbiome dynamics in grazed ecosystems. In this study, we investigated soil bacterial, fungal, and protist communities under four grazing levels: no grazing, moderate-use grazing, full-use grazing, and heavy-use grazing. Our results showed that heavy grazing led to a greater diversity of protists with specific groups, such as Discoba and Conosa, increasing in abundance. We also found strong associations between protist and bacterial/fungal members, indicating their intricate relationships within the soil microbiome. For example, the abundance of predatory protists increased under grazing while arbuscular mycorrhizal fungi decreased. Notably, arbuscular mycorrhizae were negatively associated with predatory groups. Furthermore, we observed that microbial network complexity increased with grazing intensity, with fungal members playing an important role in the network. Overall, our study reports the impact of temporal grazing intensity on soil microbial dynamics and highlights the importance of considering protist ecology when evaluating the effects of grazing on belowground communities in grassland ecosystems. IMPORTANCE The significance of this study lies in its exploration of the effects of temporal grazing intensity on the dynamics of the soil microbiome, specifically focusing on the often-neglected role of protists. Our findings provide insights into the complex relationships between protists, bacteria, and fungi, emphasizing their impact on trophic interactions in the soil. Gaining a better understanding of these dynamics is essential for developing effective strategies for grassland management and conservation, underscoring the importance of incorporating protist ecology into microbiome studies in grasslands.
Collapse
Affiliation(s)
| | - Samiran Banerjee
- Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Kevin Sedivec
- School of Natural Resource Science, North Dakota State University, Fargo, North Dakota, USA
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, North Dakota, USA
| |
Collapse
|
3
|
Schrama M, Quist CW, Arjen de Groot G, Cieraad E, Ashworth D, Laros I, Hansen LH, Leff J, Fierer N, Bardgett RD. Cessation of grazing causes biodiversity loss and homogenization of soil food webs. Proc Biol Sci 2023; 290:20231345. [PMID: 37964526 PMCID: PMC10646472 DOI: 10.1098/rspb.2023.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
There is widespread concern that cessation of grazing in historically grazed ecosystems is causing biotic homogenization and biodiversity loss. We used 12 montane grassland sites along an 800 km north-south gradient across the UK, to test whether cessation of grazing affects local α- and β-diversity of below-ground food webs. We show cessation of grazing leads to strongly decreased α-diversity of most groups of soil microbes and fauna, particularly of relatively rare taxa. By contrast, the β-diversity varied between groups of soil organisms. While most soil microbial communities exhibited increased homogenization after cessation of grazing, we observed decreased homogenization for soil fauna after cessation of grazing. Overall, our results indicate that exclusion of domesticated herbivores from historically grazed montane grasslands has far-ranging negative consequences for diversity of below-ground food webs. This underscores the importance of grazers for maintaining the diversity of below-ground communities, which play a central role in ecosystem functioning.
Collapse
Affiliation(s)
- Maarten Schrama
- Institute of Environmental Sciences, Leiden Universiteit, Einsteinweg 2, 2333CC Leiden, The Netherlands
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Casper W. Quist
- Biosystematics group, Wageningen UR, Droevendaalse steeg 1, 6708PB Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen UR, Droevendaalse steeg 1, 6708PB Wageningen, The Netherlands
| | - G. Arjen de Groot
- Wageningen Environmental Research (Alterra), Wageningen UR, Wageningen, The Netherlands
| | - Ellen Cieraad
- Institute of Environmental Sciences, Leiden Universiteit, Einsteinweg 2, 2333CC Leiden, The Netherlands
- Te Pukenga–Nelson Marlborough Institute of Technology, 322 Hardy Street, Nelson 7010, New Zealand
| | - Deborah Ashworth
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ivo Laros
- Wageningen Environmental Research (Alterra), Wageningen UR, Wageningen, The Netherlands
| | - Lars Hestbjerg Hansen
- Environmental Microbiology and Biotechnology, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Jonathan Leff
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Richard D. Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
4
|
Ma CH, Hao XH, He FC, Baoyin TG, Yang JJ, Dong SK. Effects of seasonal grazing on plant and soil microbial diversity of typical temperate grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:1040377. [PMID: 36407621 PMCID: PMC9670318 DOI: 10.3389/fpls.2022.1040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Biodiversity is the decisive factor of grassland ecological function and process. As the most important human use of grassland, grazing inevitably affects the grassland biodiversity. However, comprehensive studies of seasonal grazing on plant and soil bacterial, archaeal and fungal diversity of typical temperate grassland are still lacking. We examined the impact of seasonal grazing, including no-grazing (NG), continuous grazing (CG), grazing in May and July (G57), grazing in June and August (G68), and grazing in July and September (G79) on grassland plant and soil microbial diversity based on a long-term field grazing experiment. The results showed that the aboveground plant biomass (AGB) of the seasonal grazing plots was significantly higher than that of the CG plots. Compared with NG, CG increased significantly the Margalef richness index of plant community, while did not significantly change the Shannon, Simpson and Pielou evenness of plant community. Grazing changed the composition and biomass of dominant vegetation. Long-term grazing decreased the proportion of Leymus chinensis (Trin.) Tzvel. and increased the proportion of Cleistogenes squarrosa (Trin.) Keng. There was no significant change in the Shannoneven, Shannon and Coverage indices of soil bacteria, archaea and fungi between NG and the grazing plots. But the Chao index of soil fungi in G57, G68 and G79 and archaea in G57, G79 was significantly higher than that in CG. The results of correlation analysis showed that the plant diversity in the CG plots was significantly negatively correlated with the soil bacterial diversity. The plant richness in the G57 and G68 plots was significantly positively correlated with the soil archaea richness. Our study showed that seasonal grazing was a sustainable grazing management strategy for maintaining typical grassland plant and soil microbial diversity in northern of China.
Collapse
Affiliation(s)
- Chun-Hui Ma
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xing-Hai Hao
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Feng-Cai He
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Tao-Getao Baoyin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jue-Jie Yang
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Shi-Kui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Van Syoc E, Albeke SE, Scasta JD, van Diepen LT. Quantifying the immediate response of the soil microbial community to different grazing intensities on irrigated pastures. AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 2022; 326:107805. [PMID: 35068628 PMCID: PMC8782393 DOI: 10.1016/j.agee.2021.107805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Grazing is known to affect soil microbial communities, nutrient cycling, and forage quantity and quality over time. However, a paucity of information exists for the immediate changes in the soil physicochemical and microbial environment in response to different grazing strategies. Soil microbes drive nutrient cycling and are involved in plant-soil-microbe relationships, making them potentially vulnerable to plant-driven changes in the soil environment caused by grazing. To test the hypothesis that variable grazing intensities modulate immediate effects on the soil microbial community, we conducted a grazing trial of three management approaches; high-intensity, short-duration grazing (HDG), low-intensity, medium-duration grazing (LDG), and no grazing (NG). Soil and vegetation samples were collected before grazing and 24 hours, 1 week, and 4 weeks after HDG grazing ended. Soil labile carbon (C) and nitrogen (N) pools, vegetation biomass, and soil microbial diversity and functional traits were determined, including extracellular enzymatic assays and high-throughput sequencing of the bacterial 16S rRNA and fungal ITS2 regions. We found that labile soil C and inorganic N increased following the LDG grazing while C-cycling extracellular enzymatic activities increased in response to HDG grazing but both total extracellular enzymatic activity profiles and soil abiotic profiles were mostly affected by temporal fluxes. The soil fungal community composition was strongly affected by the interaction of sampling time and grazing treatment, while the soil bacterial community composition was largely affected by sampling time with a lesser impact from grazing treatment. We identified several key fungal taxa that may influence immediate responses to grazing and modulate plant-soil-microbe interactions. There was strong evidence of temporal influences on soil biogeochemical variables and the soil microbiome, even within our narrow sampling scheme. Our results indicate that the soil ecosystem is dynamic and responsive to different grazing strategies within very short time scales, showing the need for further research to understand plant-soil-microbe interactions and how these feedback mechanisms can inform sustainable land management.
Collapse
Affiliation(s)
- Emily Van Syoc
- Department of Ecosystem Science and Management, University of Wyoming, Wyoming, USA
- Integrative & Biomedical Physiology and Clinical & Translational Sciences Dual-Title Ph.D. Program, The Pennsylvania State University, Pennsylvania, USA
| | - Shannon E. Albeke
- Wyoming Geographic Information Science Center, University of Wyoming, Wyoming, USA
| | - John Derek Scasta
- Department of Ecosystem Science and Management, University of Wyoming, Wyoming, USA
| | | |
Collapse
|
6
|
Yin R, Siebert J, Eisenhauer N, Schädler M. Climate change and intensive land use reduce soil animal biomass via dissimilar pathways. eLife 2020; 9:54749. [PMID: 32718434 PMCID: PMC7386910 DOI: 10.7554/elife.54749] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/11/2020] [Indexed: 01/19/2023] Open
Abstract
Global change drivers, such as climate change and land use, may profoundly influence body size, density, and biomass of soil organisms. However, it is still unclear how these concurrent drivers interact in affecting ecological communities. Here, we present the results of an experimental field study assessing the interactive effects of climate change and land-use intensification on body size, density, and biomass of soil microarthropods. We found that the projected climate change and intensive land use decreased their total biomass. Strikingly, this reduction was realized via two dissimilar pathways: climate change reduced mean body size and intensive land use decreased density. These findings highlight that two of the most pervasive global change drivers operate via different pathways when decreasing soil animal biomass. These shifts in soil communities may threaten essential ecosystem functions like organic matter turnover and nutrient cycling in future ecosystems.
Collapse
Affiliation(s)
- Rui Yin
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, Leipzig University, Leipzig, Germany
| | - Julia Siebert
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, Leipzig University, Leipzig, Germany
| | - Martin Schädler
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Nguyen LTT, Sanchez-Mahecha O, Almadrones-Reyes KJ, Redeña-Santos JC, Dagamac NHA. Occurrence of leaf litter inhabiting myxomycetes from lowland forest patches of Northern and Central Vietnam. Trop Ecol 2020. [DOI: 10.1007/s42965-020-00059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractDuring the last years, much of the diversity studies of myxomycetes (plasmodial slime molds) have been concentrated mostly in the Southern region of Vietnam. Moreover, information on leaf litter inhabiting myxomycetes for the country is still in scarcity. Hence, this study aims to assess the occurrence and distribution of leaf litter inhabiting myxomycetes in different forest types in the subtropical northern and coastal tropical monsoon central part of the country. Samples of aerial and ground leaf litter that were used to prepare moist chamber cultures in the laboratory were collected in (1) Ba Vi National Park, Ha Noi, (2) Ho Nui Coc, Thai Nguyen, and (3) coastal forest patches in Da Nang. A total of 24 species belonging to 10 genera, wherein the majority of these myxomycete species appeared abundantly (11 species) is reported for this study. Based on species richness, Ha Noi harbored the highest number of myxomycete species. Leaf litter inhabiting myxomycete communities between aerial and ground substrates shared a high level of similarity based on their species composition and relative abundance. Highest level of similarity of leaf litter inhabiting myxomycete asssemblages is also reported between Ha Noi and Da Nang (CC = 0.78, PS = 0.56). This research study is the first step in understanding the complex myxomycete ecology of leaf inhabiting myxomycetes and would help filling now the large gap in one of the unexplored tropical areas of the world.
Collapse
|
8
|
Bacher MG, Fenton O, Bondi G, Creamer RE, Karmarkar M, Schmidt O. The impact of cattle dung pats on earthworm distribution in grazed pastures. BMC Ecol 2018; 18:59. [PMID: 30567522 PMCID: PMC6299995 DOI: 10.1186/s12898-018-0216-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background Grazed grassland management regimes can have various effects on soil fauna. For example, effects on earthworms can be negative through compaction induced by grazing animals, or positive mediated by increases in sward productivity and cattle dung pats providing a food source. Knowledge gaps exist in relation to the behaviour of different earthworm species i.e. their movement towards and aggregation under dung pats, the legacy effects of pats and the spatial area of recruitment. The present study addressed these knowledge gaps in field experiments, over 2 years, using natural and simulated dung pats on two permanent, intensively grazed pastures in Ireland. Results Dung pats strongly affected spatial earthworm distribution, with up to four times more earthworms aggregating beneath pats, than in the control locations away from pats. In these earthworm communities comprising 11 species, temporally different aggregation and dispersal patterns were observed, including absence of individual species from control locations, but no clear successional responses. Epigeic species in general, but also certain species of the anecic and endogeic groups were aggregating under dung. Sampling after complete dung pat disappearance (27 weeks after application) suggested an absence of a dung pat legacy effect on earthworm communities. Based on species distributions, the maximum size of the recruitment area from which earthworms moved to pats was estimated to be 3.8 m2 per dung pat. Since actual grazing over 6 weeks would result in the deposition of about 300 dung pats per ha, it is estimated that a surface area of 1140 m2 or about 11% of the total grazing area can be influenced by dung pats in a given grazing period. Conclusions This study showed that the presence of dung pats in pastures creates temporary hot spots in spatial earthworm species distribution, which changes over time. The findings highlight the importance of considering dung pats, temporally and spatially, when sampling earthworms in grazed pastures. Published comparisons of grazed and cut grasslands probably reached incorrect conclusions by ignoring or deliberately avoiding dung pats. Furthermore, the observed intense aggregation of earthworms beneath dung pats suggests that earthworm functions need to be assessed separately at these hot spots. Electronic supplementary material The online version of this article (10.1186/s12898-018-0216-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M G Bacher
- Teagasc, Environment Research Centre, Wexford, Ireland. .,UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| | - O Fenton
- Teagasc, Environment Research Centre, Wexford, Ireland
| | - G Bondi
- Teagasc, Environment Research Centre, Wexford, Ireland
| | - R E Creamer
- Soil Biology Group, Wageningen University, Wageningen, The Netherlands
| | - M Karmarkar
- Teagasc, Environment Research Centre, Wexford, Ireland
| | - O Schmidt
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.,UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|