1
|
Liao X, Chen J, Luo D, Luo B, Huang W, Xie W. Prognostic value of long non-coding RNA MALAT1 in hepatocellular carcinoma: A study based on multi-omics analysis and RT-PCR validation. Pathol Oncol Res 2023; 28:1610808. [PMID: 36685103 PMCID: PMC9845286 DOI: 10.3389/pore.2022.1610808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Background: This study aimed to explore the relationship between MALAT1 and the prognosis of patients with hepatocellular carcinoma (HCC). Methods: We constructed a MALAT1 protein-protein interaction network using the STRING database and a network of competing endogenous RNAs (ceRNAs) using the StarBase database. Using data from the GEPIA2 database, we studied the association between genes in these networks and survival of patients with HCC. The potential mechanisms underlying the relationship between MALAT1 and HCC prognosis were studied using combined data from RNA sequencing, DNA methylation, and somatic mutation data from The Cancer Genome Atlas (TCGA) liver cancer cohort. Tumor tissues and 19 paired adjacent non-tumor tissues (PANTs) from HCC patients who underwent radical resection were analyzed for MALAT1 mRNA levels using real-time PCR, and associations of MALAT1 expression with clinicopathological features or prognosis of patients were analyzed using log-rank test and Gehan-Breslow-Wilcoxon test. Results: Five interacting proteins and five target genes of MALAT1 in the ceRNA network significantly correlated with poor survival of patients with HCC (p < 0.05). High MALAT1 expression was associated with mutations in two genes leading to poor prognosis and may upregulate some prognostic risk genes through methylation. MALAT1 was significantly co-expressed with various signatures of genes involved in HCC progression, including the cell cycle, DNA damage repair, mismatch repair, homologous recombination, molecular cancer m6A, exosome, ferroptosis, infiltration of lymphocyte (p < 0.05). The expression of MALAT1 was markedly upregulated in HCC tissues compared with PANTs. In Kaplan-Meier analysis, patients with high MALAT1 expression had significantly shorter progression-free survival (PFS) (p = 0.033) and overall survival (OS) (p = 0.023) than those with low MALAT1 expression. Median PFS was 19.2 months for patients with high MALAT1 expression and 52.8 months for patients with low expression, while the corresponding median OS was 40.5 and 78.3 months. In subgroup analysis of patients with vascular invasion, cirrhosis, and HBsAg positive or AFP positive, MALAT1 overexpression was significantly associated with shorter PFS and OS. Models for predicting PFS and OS constructed based on MALAT1 expression and clinicopathological features had moderate predictive power, with areas under the receiver operating characteristic curves of 0.661-0.731. Additionally, MALAT1 expression level was significantly associated with liver cirrhosis, vascular invasion, and tumor capsular infiltration (p < 0.05 for all). Conclusion: MALAT1 is overexpressed in HCC, and higher expression is associated with worse prognosis. MALAT1 mRNA level may serve as a prognostic marker for patients with HCC after hepatectomy.
Collapse
Affiliation(s)
- Xiaoli Liao
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junming Chen
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - DongCheng Luo
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Baohua Luo
- Department of Gastroenterology, Jiangbin Hospital, Nanning, China
| | - Wenfeng Huang
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Wenfeng Huang, ; Weimin Xie,
| | - Weimin Xie
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China,*Correspondence: Wenfeng Huang, ; Weimin Xie,
| |
Collapse
|
2
|
Han Y, Jiang W, Wang Y, Zhao M, Li Y, Ren L. Serum long non-coding RNA SCARNA10 serves as a potential diagnostic biomarker for hepatocellular carcinoma. BMC Cancer 2022; 22:431. [PMID: 35443674 PMCID: PMC9022341 DOI: 10.1186/s12885-022-09530-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circulating long non-coding RNAs (lncRNAs) have been demonstrated to serve as diagnostic or prognosis biomarkers for various disease. We aimed to elucidate the diagnostic efficacy of serum lncRNA SCARNA10 for the hepatocellular carcinoma (HCC). METHODS In this study, a total of 182 patients with HCC, 105 patients with benign liver disease (BLD), and 149 healthy controls (HC) were enrolled. According to different classifications, the levels of serum SCARNA10 were assessed by quantitative real-time polymerase chain reaction (qPCR). The correlations between serum SCARNA10 and clinicopathological characteristics were further analyzed. The receiver operating characteristic (ROC) curve and area under curve (AUC) were utilized to estimate the diagnostic capacity of serum SCARNA10 and its combination with AFP for HCC. RESULTS The results demonstrated that the levels of serum SCARNA10 were significantly higher in HCC patients than in patients with BLD and healthy controls, and significantly increased in HCC patients with hepatitis B or C infection, or with liver cirrhosis. Furthermore, positive correlations were noted between serum SCARNA10 level and some clinicopathological characteristics, including tumor size, differentiation degrees, tumor stage, vascular invasion, tumor metastasis and complications. ROC analysis revealed that SCARNA10 had a significantly predictive value for HCC (Sensitivity = 0.70, Specificity = 0.77, and AUC = 0.82), the combination of SCARNA10 and AFP gained the higher sensitivity (AUCSCARNA10 + AFP = 0.92 vs AUCAFP = 0.83, p < 0.01). SCARNA10 retained significant diagnosis capabilities for AFP-negative HCC patients. CONCLUSIONS In summary, lncRNA SCARNA10 may serve as a novel and non-invasive biomarker with relatively high sensitivity and specificity for HCC diagnosis.
Collapse
Affiliation(s)
- Yawei Han
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Yu Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.,College of Inspection, Tianjin Medical University, Tianjin, China
| | - Meng Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Yueguo Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
3
|
Li D, Wang R, Wu N, Yu Y. LncRNA HULC as a potential predictor of prognosis and clinicopathological features in patients with digestive system tumors: a meta-analysis. Aging (Albany NY) 2022; 14:1797-1811. [PMID: 35183058 PMCID: PMC8908940 DOI: 10.18632/aging.203903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Objective: This meta-analysis aimed to evaluate the correlation between lncRNA HULC, prognosis and clinicopathological characteristics in patients with digestive system tumors. Methods: The relevant literatures were collected through PubMed, Web of Science and Embase up to February 2021. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to assess the prognostic value of HULC in patients with digestive system tumors. The clinicopathological characteristics of HULC in patients were estimated by odds ratios (ORs). Results: A total of 14 studies involving 1312 patients were included. The up-regulated expression level of HULC was associated with poorer overall survival (OS) in patients with digestive system tumors (HR = 1.83, 95% CI: 1.05-3.19, P = 0.033). Subgroup analysis showed that cancer type (pancreatic cancer or gastric cancer), residence region (China, Japan or Korea), and specimen (serum) significantly associated between HULC and OS. In addition, high HULC expression significantly increased the risk of high TNM stage (OR = 2.51, 95%CI: 1.36-4.62, P < 0.05), poor differentiation (OR = 1.38, 95%CI: 1.02-1.87, P < 0.05) and lymphatic node metastasis (LNM, OR = 4.93, 95% CI: 3.47-6.99, P < 0.05). Conclusions: High expression level of HULC is related to OS, TNM stage, differentiation and LNM. Therefore, HULC can be used as a new potential predictor for prognosis and clinicopathological features of patients with digestive system tumors.
Collapse
Affiliation(s)
- Duo Li
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Rui Wang
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Na Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yongqiang Yu
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
4
|
Khashkhashi Moghadam S, Bakhshinejad B, Khalafizadeh A, Mahmud Hussen B, Babashah S. Non-coding RNA-associated competitive endogenous RNA regulatory networks: Novel diagnostic and therapeutic opportunities for hepatocellular carcinoma. J Cell Mol Med 2021; 26:287-305. [PMID: 34907642 PMCID: PMC8743668 DOI: 10.1111/jcmm.17126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), as the most prevalent liver malignancy, is annually diagnosed in more than half a million people worldwide. HCC is strongly associated with hepatitis B and C viral infections as well as alcohol abuse. Obesity and nonalcoholic fatty liver disease (NAFLD) also significantly enhance the risk of liver cancer. Despite recent improvements in therapeutic approaches, patients diagnosed in advanced stages show poor prognosis. Accumulating evidence provides support for the regulatory role of non-coding RNAs (ncRNAs) in cancer. There are a variety of reports indicating the regulatory role of microRNAs (miRNAs) in different stages of HCC. Long non-coding RNAs (LncRNAs) exert their effects by sponging miRNAs and controlling the expression of miRNA-targeted genes. Circular RNAs (circRNAs) perform their biological functions by acting as transcriptional regulators, miRNA sponges and protein templates. Diverse studies have illustrated that dysregulation of competing endogenous RNA networks (ceRNETs) is remarkably correlated with HCC-causing diseases such as chronic viral infections, nonalcoholic steatohepatitis and liver fibrosis/cirrhosis. The aim of the current article was to provide an overview of the role and molecular mechanisms underlying the function of ceRNETs that modulate the characteristics of HCC such as uncontrolled cell proliferation, resistance to cell death, metabolic reprogramming, immune escape, angiogenesis and metastasis. The current knowledge highlights the potential of these regulatory RNA molecules as novel diagnostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sadegh Babashah
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.,Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 2021; 145:112421. [PMID: 34798473 DOI: 10.1016/j.biopha.2021.112421] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are the novel class of transcripts involved in transcriptional, post-transcriptional, translational, and post-translational regulation of physiology and the pathology of diseases. Studies have evidenced that the impairment of endothelium is a critical event in the pathogenesis of atherosclerosis and its complications. Endothelial dysfunction is characterized by an imbalance in vasodilation and vasoconstriction, oxidative stress, proinflammatory factors, and nitric oxide bioavailability. Disruption of the endothelial barrier permeability, the first step in developing atherosclerotic lesions is a consequence of endothelial dysfunction. Though several factors interfere with the normal functioning of the endothelium, intrinsic epigenetic mechanisms governing endothelial function are regulated by lncRNAs and perturbations contribute to the pathogenesis of the disease. This review comprehensively addresses the biogenesis of lncRNA and molecular mechanisms underlying and regulation in endothelial function. An insight correlating lncRNAs and endothelial dysfunction-associated diseases can positively impact the development of novel biomarkers and therapeutic targets in endothelial dysfunction-associated diseases and treatment strategies.
Collapse
|
6
|
Daulatabad SV, Srivastava R, Janga SC. Lantern: an integrative repository of functional annotations for lncRNAs in the human genome. BMC Bioinformatics 2021; 22:279. [PMID: 34039271 PMCID: PMC8157669 DOI: 10.1186/s12859-021-04207-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND With advancements in omics technologies, the range of biological processes where long non-coding RNAs (lncRNAs) are involved, is expanding extensively, thereby generating the need to develop lncRNA annotation resources. Although, there are a plethora of resources for annotating genes, despite the extensive corpus of lncRNA literature, the available resources with lncRNA ontology annotations are rare. RESULTS We present a lncRNA annotation extractor and repository (Lantern), developed using PubMed's abstract retrieval engine and NCBO's recommender annotation system. Lantern's annotations were benchmarked against lncRNAdb's manually curated free text. Benchmarking analysis suggested that Lantern has a recall of 0.62 against lncRNAdb for 182 lncRNAs and precision of 0.8. Additionally, we also annotated lncRNAs with multiple omics annotations, including predicted cis-regulatory TFs, interactions with RBPs, tissue-specific expression profiles, protein co-expression networks, coding potential, sub-cellular localization, and SNPs for ~ 11,000 lncRNAs in the human genome, providing a one-stop dynamic visualization platform. CONCLUSIONS Lantern integrates a novel, accurate semi-automatic ontology annotation engine derived annotations combined with a variety of multi-omics annotations for lncRNAs, to provide a central web resource for dissecting the functional dynamics of long non-coding RNAs and to facilitate future hypothesis-driven experiments. The annotation pipeline and a web resource with current annotations for human lncRNAs are freely available on sysbio.lab.iupui.edu/lantern.
Collapse
Affiliation(s)
- Swapna Vidhur Daulatabad
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Informatics and Communications Technology Complex, 535 W Michigan St., IT 475H, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Informatics and Communications Technology Complex, 535 W Michigan St., IT 475H, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Medical Research and Library Building, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN, 46202, USA.
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
LINC00978 promotes hepatocellular carcinoma carcinogenesis partly via activating the MAPK/ERK pathway. Biosci Rep 2021; 40:222177. [PMID: 32077915 PMCID: PMC7064789 DOI: 10.1042/bsr20192790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Objective: To study the role of long non-coding RNA (lncRNA) LINC00978 in hepatocellular carcinoma (HCC) carcinogenesis. Materials and methods: LINC00978 expression level was measured by reverse transcription quantitative real-time PCR (RT-qPCR) in HCC tissues and adjacent healthy liver tissues from 49 HCC patients. MTT assay, colony forming assay, and flow cytometry were performed to evaluate the effects of shRNA-mediated LINC00978 knockdown on HCC cell proliferation, cell cycle progression, and apoptosis in vitro. Xenograft tumor model was performed to determine the effects of LINC00978 knockdown on HCC tumor growth in vivo. Western blot was used to assess the activation of signaling molecules in the apoptosis and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Results: LINC00978 expression was significantly up-regulated in human HCC tissue relative to adjacent normal tissue, and LINC00978 high expression was correlated with poor HCC overall survival. LINC00978 was up-regulated in HCC cell lines. ShRNA-mediated LINC00978 knockdown significantly decreased HCC cell proliferation, and induced HCC cell cycle arrest and apoptosis in vitro. LINC00978 knockdown led to significant decrease in tumor xenograft size in vivo. Western blots revealed LINC00978 inhibition decreased ERK, p38, and c-Jun N-terminal kinase (JNK) phosphorylation in HCC cells. Conclusions: LINC00978 is highly expressed in human HCC tissue and correlates with poor HCC prognosis. LINC00978 promotes HCC cell proliferation, cell cycle progression, and survival, partially by activating the MAPK/ERK pathway. Our findings partially elucidated the roles of LINC00978 in HCC carcinogenesis, and identified a therapeutic target for HCC.
Collapse
|
8
|
Giovannini C, Fornari F, Piscaglia F, Gramantieri L. Notch Signaling Regulation in HCC: From Hepatitis Virus to Non-Coding RNAs. Cells 2021; 10:cells10030521. [PMID: 33804511 PMCID: PMC8000248 DOI: 10.3390/cells10030521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch family includes evolutionary conserved genes that encode for single-pass transmembrane receptors involved in stem cell maintenance, development and cell fate determination of many cell lineages. Upon activation by different ligands, and depending on the cell type, Notch signaling plays pleomorphic roles in hepatocellular carcinoma (HCC) affecting neoplastic growth, invasion capability and stem like properties. A specific knowledge of the deregulated expression of each Notch receptor and ligand, coupled with resultant phenotypic changes, is still lacking in HCC. Therefore, while interfering with Notch signaling might represent a promising therapeutic approach, the complexity of Notch/ligands interactions and the variable consequences of their modulations raises concerns when performed in undefined molecular background. The gamma-secretase inhibitors (GSIs), representing the most utilized approach for Notch inhibition in clinical trials, are characterized by important adverse effects due to the non-specific nature of GSIs themselves and to the lack of molecular criteria guiding patient selection. In this review, we briefly summarize the mechanisms involved in Notch pathway activation in HCC supporting the development of alternatives to the γ-secretase pan-inhibitor for HCC therapy.
Collapse
Affiliation(s)
- Catia Giovannini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-2144903; Fax: +39-051-2143902
| | - Francesca Fornari
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
| |
Collapse
|
9
|
Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res 2020; 149:63-101. [PMID: 33579428 DOI: 10.1016/bs.acr.2020.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the recent introduction of new effective systemic agents, the survival of patients with hepatocellular carcinoma (HCC) at advanced stages remains dismal. This underscores the need for new therapies, which has spurred extensive research on the identification of the main drivers of pathway de-regulation as a source of novel therapeutic targets. Frequently altered pathways in HCC involve growth factor receptors (e.g., VEGFR, FGFR, TGFA, EGFR, IGFR) and/or its cytoplasmic intermediates (e.g., PI3K-AKT-mTOR, RAF/ERK/MAPK) as well as key pathways in cell differentiation (e.g., Wnt/β-catenin, JAK/STAT, Hippo, Hedgehog, Notch). Somatic mutations, chromosomal aberrations and epigenetic changes are common mechanisms for pathway deregulation in HCC. Aberrant pathway activation has also been explored as a biomarker to predict response to specific therapies, but currently, these strategies are not implemented when deciding systemic therapies in HCC patients. Beyond the well-established molecular cascades, there are numerous emerging signaling pathways also deregulated in HCC (e.g., tumor microenvironment, non-coding RNA, intestinal microbiota), which have opened new avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Luis Lopez-Canovas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
10
|
Burenina OY, Lazarevich NL, Kustova IF, Shavochkina DA, Moroz EA, Kudashkin NE, Patyutko YI, Metelin AV, Kim EF, Skvortsov DA, Zatsepin TS, Rubtsova MP, Dontsova OA. Panel of potential lncRNA biomarkers can distinguish various types of liver malignant and benign tumors. J Cancer Res Clin Oncol 2020; 147:49-59. [PMID: 32918630 DOI: 10.1007/s00432-020-03378-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Liver cancers are among the deadliest malignancies due to a limited efficacy of early diagnostics, the lack of appropriate biomarkers and insufficient discrimination of different types of tumors by classic and molecular methods. In this study, we searched for novel long non-coding RNA (lncRNA) as well as validated several known candidates suitable as probable biomarkers for primary liver tumors of various etiology. METHODS We described a novel lncRNA HELIS (aka "HEalthy LIver Specific") and estimated its expression by RT-qPCR in 82 paired tissue samples from patients with hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), combined HCC-CCA, pediatric hepatoblastoma (HBL) and non-malignant hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH). Additionally, we examined expression of cancer-associated lncRNAs HULC, MALAT1, UCA1, CYTOR, LINC01093 and H19, which were previously studied mainly in HCC. RESULTS We demonstrated that down-regulation of HELIS strongly correlates with carcinogenesis; whereas in tumors with non-hepatocyte origin (HBL, CCA) or in a number of poorly differentiated HCC, this lncRNA is not expressed. We showed that recently discovered LINC01093 is dramatically down-regulated in all malignant liver cancers; while in benign tumors LINC01093 expression is just twice decreased in comparison to adjacent samples. CONCLUSION Our study revealed that among all measured biomarkers only down-regulated HELIS and LINC01093, up-regulated CYTOR and dysregulated HULC are perspective for differential diagnostics of liver cancers; whereas others demonstrated discordant results and cannot be considered as potential universal biomarkers for this purpose.
Collapse
Affiliation(s)
- Olga Y Burenina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026.
| | - Natalia L Lazarevich
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
- Biology Department, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Inna F Kustova
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Daria A Shavochkina
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Ekaterina A Moroz
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Nikolay E Kudashkin
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Yuriy I Patyutko
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Alexey V Metelin
- Petrovsky National Research Centre of Surgery, Moscow, Russia, 119991
| | - Eduard F Kim
- Petrovsky National Research Centre of Surgery, Moscow, Russia, 119991
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia, 101000
| | - Timofei S Zatsepin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| | - Maria P Rubtsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| |
Collapse
|
11
|
Kitabayashi J, Shirasaki T, Shimakami T, Nishiyama T, Welsch C, Funaki M, Murai K, Sumiyadorj A, Takatori H, Kitamura K, Kawaguchi K, Arai K, Yamashita T, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Kaneko S. Upregulation of the Long Non-Coding RNA HULC by Hepatitis C Virus and its Regulation of Viral Replication. J Infect Dis 2020; 226:407-419. [PMID: 32515477 PMCID: PMC9417122 DOI: 10.1093/infdis/jiaa325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Many long noncoding RNAs (lncRNAs) have important roles in biological processes. The lncRNA HULC was found to be upregulated in human hepatoma tissues. HULC is thought to be involved in multiple steps of hepatoma development and progression; however, the relationship between HULC and hepatitis C virus (HCV) infection, which is a leading cause of hepatoma, remains unclear. Methods We examined the effect of HCV replication on HULC expression and the underlying mechanism using cell culture systems. Subsequently, we tested the effect of HULC suppression and overexpression on HCV replication. Finally, we examined the impact of HCV eradication on HULC expression using human liver tissue and blood samples. Results HCV replication increased HULC expression in cell cultures. A promoter assay showed that an HCV nonstructural protein, NS5A, increased HULC transcription. HULC suppression inhibited HCV replication; conversely, its overexpression enhanced HCV replication. These effects on HCV replication seemed to occur by the modification of HCV translation. Measurements from human liver and blood samples showed that HCV eradication significantly reduced HULC levels in the liver and blood. Conclusions HCV infection increases HULC expression in vitro and in vivo. HULC modulates HCV replication through an HCV internal ribosome entry site–directed translation step.
Collapse
Affiliation(s)
- Juria Kitabayashi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, Japan
| | - Christoph Welsch
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Germany
| | - Masaya Funaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kazuhisa Murai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Ariunaa Sumiyadorj
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kazuya Kitamura
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | | |
Collapse
|
12
|
Unfried JP, Fortes P. LncRNAs in HCV Infection and HCV-Related Liver Disease. Int J Mol Sci 2020; 21:ijms21062255. [PMID: 32214045 PMCID: PMC7139329 DOI: 10.3390/ijms21062255] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with poor coding capacity that may interact with proteins, DNA, or other RNAs to perform structural and regulatory functions. The lncRNA transcriptome changes significantly in most diseases, including cancer and viral infections. In this review, we summarize the functional implications of lncRNA-deregulation after infection with hepatitis C virus (HCV). HCV leads to chronic infection in many patients that may progress to liver cirrhosis and hepatocellular carcinoma (HCC). Most lncRNAs deregulated in infected cells that have been described function to potentiate or block the antiviral response and, therefore, they have a great impact on HCV viral replication. In addition, several lncRNAs upregulated by the infection contribute to viral release. Finally, many lncRNAs have been described as deregulated in HCV-related HCC that function to enhance cell survival, proliferation, and tumor progression by different mechanisms. Interestingly, some HCV-related HCC lncRNAs can be detected in bodily fluids, and there is great hope that they could be used as biomarkers to predict cancer initiation, progression, tumor burden, response to treatment, resistance to therapy, or tumor recurrence. Finally, there is high confidence that lncRNAs could also be used to improve the suboptimal long-term outcomes of current HCC treatment options.
Collapse
Affiliation(s)
| | - P. Fortes
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
13
|
Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells 2020; 9:cells9030721. [PMID: 32183400 PMCID: PMC7140677 DOI: 10.3390/cells9030721] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) comprises a group of heterogeneous biliary cancers with dismal prognosis. The etiologies of most CCAs are unknown, but primary sclerosing cholangitis (PSC) is a risk factor. Non-invasive diagnosis of CCA is challenging and accurate biomarkers are lacking. We aimed to characterize the transcriptomic profile of serum and urine extracellular vesicles (EVs) from patients with CCA, PSC, ulcerative colitis (UC), and healthy individuals. Serum and urine EVs were isolated by serial ultracentrifugations and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. EVs transcriptome was determined by Illumina gene expression array [messenger RNAs (mRNA) and non-coding RNAs (ncRNAs)]. Differential RNA profiles were found in serum and urine EVs from patients with CCA compared to control groups (disease and healthy), showing high diagnostic capacity. The comparison of the mRNA profiles of serum or urine EVs from patients with CCA with the transcriptome of tumor tissues from two cohorts of patients, CCA cells in vitro, and CCA cells-derived EVs, identified 105 and 39 commonly-altered transcripts, respectively. Gene ontology analysis indicated that most commonly-altered mRNAs participate in carcinogenic steps. Overall, patients with CCA present specific RNA profiles in EVs mirroring the tumor, and constituting novel promising liquid biopsy biomarkers.
Collapse
|
14
|
Wang D, Chen F, Zeng T, Tang Q, Chen B, Chen L, Dong Y, Li X. Comprehensive biological function analysis of lncRNAs in hepatocellular carcinoma. Genes Dis 2020; 8:157-167. [PMID: 33997162 PMCID: PMC8099694 DOI: 10.1016/j.gendis.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Thousands of long non-coding RNAs (lncRNAs) have been discovered in human genomes by gene chip, next-generation sequencing, and/or other methods in recent years, which represent a significant subset of the universal genes involved in a wide range of biological functions. An abnormal expression of lncRNAs is associated with the growth, invasion, and metastasis of various types of human cancers, including hepatocellular carcinoma (HCC), which is an aggressive, highly malignant, and invasive tumor, and a poor prognosis in China. With a more in-depth understanding of lncRNA research for HCC and the emergence of new molecular-targeted therapies, the diagnosis, treatment, and prognosis of HCC will be considerably improved. Therefore, this review is expected to provide recommendations and directions for future lncRNA research for HCC.
Collapse
Affiliation(s)
- Dan Wang
- Department of Clinical Laboratory, People's Hospital of Rongchang District, Chongqing, Rongchang 402460, PR China.,Key Laboratory of Molecular Biology of Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fengjiao Chen
- Key Laboratory of Molecular Biology of Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, PR China
| | - Tao Zeng
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Province, Chengdu, 611731, PR China
| | - Qingxia Tang
- Department of Clinical Laboratory, People's Hospital of Rongchang District, Chongqing, Rongchang 402460, PR China
| | - Bing Chen
- Department of Clinical Laboratory, People's Hospital of Rongchang District, Chongqing, Rongchang 402460, PR China
| | - Ling Chen
- Key Laboratory of Molecular Biology of Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yan Dong
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
15
|
Zhang H, Chen X, Zhang J, Wang X, Chen H, Liu L, Liu S. Long non‑coding RNAs in HBV‑related hepatocellular carcinoma (Review). Int J Oncol 2019; 56:18-32. [PMID: 31746420 DOI: 10.3892/ijo.2019.4909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatitis B virus (HBV)‑related hepatocellular carcinoma (HCC) is a global health problem that accounts for more than half of total liver cancer cases in developing countries. Despite the growing number of researches conducted, the molecular mechanism underlying the development of HCC remains elusive. Long non‑coding RNAs (lncRNAs), which are non‑coding RNAs >200 nt in length that were previously considered to be transcriptional noise, have been found to be dysregulated in HBV‑related HCC with the help of high‑throughput omics techniques. Subsequent investigations revealed that aberrant expression of lncRNAs may affect the risk of HBV‑related HCC through diverse mechanisms, including epigenetic silencing of transcriptional activation, alternative splicing, molecular sponging, modulating protein stability, and by serving as precursors of miRNAs. Although the sensitivity and specificity of lncRNAs must be further validated, a number of circulating lncRNAs have been identified as useful biomarkers for HBV‑related HCC. In addition to these findings, recent studies also unveiled that certain genetic polymorphisms in lncRNAs may affect the occurrence and prognosis of HBV‑related HCC. The aim of the present review was to provide an overview of the mechanisms underlying the involvement of lncRNAs in HBV‑related HCC. Subsequently, lncRNAs found to be dysregulated in HBV‑related HCC were focused on and current findings on circulating lncRNAs and their genetic polymorphisms were discussed.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Sichuan 610000, P.R. China
| | - Xuebing Chen
- Department of Infectious Diseases, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Jian Zhang
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Xianwei Wang
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Huijuan Chen
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Lin Liu
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Shanling Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Sichuan 610000, P.R. China
| |
Collapse
|
16
|
Li Z, Jiang X, Huang L, Li J, Ji D, Xu Y, Leng K, Cui Y. Up-regulation of ZFAS1 indicates dismal prognosis for cholangiocarcinoma and promotes proliferation and metastasis by modulating USF1 via miR-296-5p. J Cell Mol Med 2019; 23:8258-8268. [PMID: 31565837 PMCID: PMC6850950 DOI: 10.1111/jcmm.14698] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/09/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
LncRNAs has been demonstrated to modulate neoplastic development by modulating downstream miRNAs and functional genes. In this study, we aimed to detect the interaction among lncRNA ZFAS1 miR‐296‐5p and USF1. We explored the proliferation, migration and invasion of cholangiocarcinoma. The differentially expressed ZFAS1 was discovered in both tissues and cell lines by qRT‐PCR. The targeting relationship between miR‐296‐5p and ZFAS1 or USF1 was validated by dual‐luciferase assay. The impact of ZFAS1 on CCA cell proliferation was observed by CCK‐8 assay. The protein expression of USF1 was determined by Western blot. The effects of ZFAS1, miR‐296‐5p and USF1 on tumour growth were further confirmed using xenograft model. LncRNA ZFAS1 expression was relatively up‐regulated in tumour tissues and cells while miR‐296‐5p was significantly down‐regulated. Knockdown of ZFAS1 significantly suppressed tumour proliferation, migration, invasion and USF1 expression. Overexpressed miR‐296‐5p suppressed cell proliferation and metastasis. Knockdown of USF1 inhibited cell proliferation and metastasis and xenograft tumour growth. In conclusion, ZFAS1 might promote cholangiocarcinoma proliferation and metastasis by modulating USF1 via miR‐296‐5p.
Collapse
Affiliation(s)
- Zhenglong Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lining Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinglin Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daolin Ji
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaiming Leng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Xie X, Xu X, Sun C, Yu Z. Long intergenic noncoding RNA SNHG16 interacts with miR-195 to promote proliferation, invasion and tumorigenesis in hepatocellular carcinoma. Exp Cell Res 2019; 383:111501. [PMID: 31306653 DOI: 10.1016/j.yexcr.2019.111501] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been confirmed crucial regulators in tumorgenesis. Small nucleolar RNA host gene 16 (SNHG16) has been recently shown to be dysregulated, which uncovered to be a potential oncogene in some cancers. However, the biological function and potential mechanism of SNHG16 in hepatocellular carcinoma (HCC) remain unclear. In our study, our observations showed that the expression level of SNHG16 in HCC tissues and cell lines was upregulated compared with adjacent noncancerous tissues and normal cells. In vitro, loss-of-function experiments revealed that SNHG16 knockdown suppressed the proliferation and weakened invasion of SMMC7721 and HepG2 cells. miR-195 expression was significantly decreased in HCC tissues and negatively correlated with SNHG16 expression. Furthermore, RIP and dual luciferase reporter assays showed that SNHG16 acted as an endogenous sponge by directly binding to miR-195 and downregulated its expression. SNHG16 overexpression inverted the inhibitory effect of miR-195 on proliferation and invasion of SMMC7721 and HepG2 cells. Additionally, SNHG16 depletion resulted in lower tumor growth and weight loss, in vivo. In conclusion, our findings reported that the oncogenic role of SNHG16 in HCC tumorigenesis through a novel SNHG16-miR-195 axis, which provided a novel insight for HCC and helped to probe a potential therapeutic target for the deadly disease.
Collapse
Affiliation(s)
- Xuhua Xie
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xiaopei Xu
- Department of Physical Examination, The Third People's Hospital of Henan Province, Zhengzhou, 450006, PR China
| | - Changyu Sun
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zujiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
18
|
Li G, Shi H, Wang X, Wang B, Qu Q, Geng H, Sun H. Identification of diagnostic long non‑coding RNA biomarkers in patients with hepatocellular carcinoma. Mol Med Rep 2019; 20:1121-1130. [PMID: 31173205 PMCID: PMC6625424 DOI: 10.3892/mmr.2019.10307] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Liver cancer is a leading cause of cancer-associated mortality worldwide. Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer. The aim of the present study was to identify long non-coding RNA (lncRNAs) as diagnostic biomarkers for HCC. The lncRNA and mRNA expression profiles of a large group of patients with HCC were obtained from The Cancer Genome Atlas. The differentially expressed lncRNAs (DElncRNAs) and the differentially expressed mRNAs (DEmRNAs) were identified by bioinformatics analysis. Using feature selection procedure and a classification model, the optimal diagnostic lncRNA biomarkers for HCC were identified. Classification models, including random forests, decision tree and support vector machine (SVM), were established to distinguish between HCC and normal tissues. DEmRNAs co-expressed with the lncRNAs were considered as targets of DElncRNAs. Functional annotation of DEmRNAs co-expressed with these lncRNAs biomarkers was performed. Receiver operating characteristic curve analysis of lncRNAs biomarkers was conducted. A total of 3,177 lncRNAs and 15,183 mRNAs between HCC and normal tissues were obtained. RP11-486O12.2, RP11-863K10.7, LINC01093 and RP11-273G15.2 were identified as optimal diagnostic lncRNA biomarkers for HCC that were co-expressed with 273, 69, 76 and 1 DEmRNAs, respectively. The area under the curve values of the random forest model, decision tree model and SVM model were 0.992, 0.927 and 0.992, and the specificity and sensitivity of the three models were 100.0 and 95.6, 92.0 and 98.3 and 98.0 and 97.2%, respectively. ‘PPAR signaling pathway’ and ‘retinol metabolism’ were two significantly enriched target pathways of DElncRNAs. The present study identified four DElncRNAs, including RP11-486O12.2, RP11-863K10.7, LINC01093 and RP11-273G15.2, as potential diagnostic biomarkers of HCC. Functional annotation of target DEmRNAs provided novel evidence for examining the precise roles of lncRNA in HCC.
Collapse
Affiliation(s)
- Gang Li
- Department of Medical Imaging, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hao Shi
- Department of Medical Imaging, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xinyi Wang
- Department of Medical Imaging, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Bei Wang
- Department of Medical Imaging, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qianqian Qu
- Department of Medical Imaging, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Haiyang Geng
- Department of Medical Imaging, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hongjun Sun
- Department of Medical Imaging, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
19
|
Meng B, Xing Y, Li H, Gao F, Liu YC. Knockdown of Long Noncoding RNA POU5F1B Promotes Radiosensitivity in Esophageal Carcinoma. Med Sci Monit 2019; 25:1214-1219. [PMID: 30763293 PMCID: PMC6383439 DOI: 10.12659/msm.913066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND POU5F1B, serving as a carcinogen, participates in radiosensitivity of several tumors. However, in esophageal cancer, its potential mechanism and function in regulating radiosensitivity remain unclear. MATERIAL AND METHODS The expression level of POU5F1B was detected in plasma of esophageal tumor patients and cancer cell lines. The effect of POU5F1B knockdown on cell proliferation and colony formation was determined using CCK-8 assay and colony formation assay. Cell apoptosis rate was detected by flow cytometry. RESULTS POU5F1B expression level declined after radiotherapy in the plasma of esophageal cancer patients (p=0.025). Compared with HEEPIC, the level of POU5F1B was upregulated in ECA109 (p<0.01), ECA9706 (p<0.01), KYSE410 (p<0.01), and KYSE510 (p=0.036). The silencing of POU5F1B played a role in inhibiting colony formation. After radiotherapy, the apoptosis rates in the ECA109 with 4Gy si-POU5F1B group and 4Gy si-NC group were 39.1±0.1% and 35.3±0.1%, respectively (p=0.0193). The rate was 21.00±0.1 and 29.1±0.1% (p<0.0072) in the si-NC group and si-POU5F1B group, respectively. For proliferation rate, 4Gy si-POU5F1B ECA109 performed better than 4Gy si-NC. CONCLUSIONS Radiotherapy contributed to the decline in the expression level of POU5F1B in plasma, which was upregulated in ECA109, ECA9706, KYSE410, and KYSE510, but not in HEEPIC. The knockdown of POU5F1B increased the radiosensitivity of esophageal cancer cell lines.
Collapse
Affiliation(s)
- Bi Meng
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yao Xing
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Hao Li
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Fei Gao
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yang Chen Liu
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
20
|
Klec C, Gutschner T, Panzitt K, Pichler M. Involvement of long non-coding RNA HULC (highly up-regulated in liver cancer) in pathogenesis and implications for therapeutic intervention. Expert Opin Ther Targets 2019; 23:177-186. [PMID: 30678498 DOI: 10.1080/14728222.2019.1570499] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION HULC (highly upregulated in liver cancer) is a long non-coding RNA (lncRNA) which is, as its name suggests, highly upregulated in hepatocellular carcinoma and in several other cancers. Increased HULC expression levels are strongly associated with clinicopathologic features such as tumor stages and overall survival and is a driver of tumor proliferation, migration, and invasion. Areas covered: This review addresses the discovery of HULC and discusses the consequences of HULC deregulation in cancer, the underlying molecular mechanisms and the potential of HULC as a biomarker and therapeutic target. Expert opinion: HULC is a promising candidate as a therapeutic target in cancer; however, more studies are necessary to further elucidate the underlying molecular mechanism(s), especially in cancer types other than hepatocellular carcinomas. Future studies that focus on an optimized HULC-targeting approach are necessary to clarify the best strategy to target this lncRNA in vivo and in patients.
Collapse
Affiliation(s)
- Christiane Klec
- a Division of Oncology, Department of Internal Medicine , Medical University of Graz (MUG) , Graz , Austria.,b Research Unit for Non-coding RNAs and Genome Editing , Medical University of Graz (MUG) , Graz , Austria
| | - Tony Gutschner
- c Faculty of Medicine , Martin-Luther-University Halle-Wittenberg , Halle , Germany
| | - Katrin Panzitt
- d Department of Hepatology and Gastroenterology , Medical University of Graz (MUG) , Graz , Austria
| | - Martin Pichler
- a Division of Oncology, Department of Internal Medicine , Medical University of Graz (MUG) , Graz , Austria.,b Research Unit for Non-coding RNAs and Genome Editing , Medical University of Graz (MUG) , Graz , Austria.,e Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
21
|
Li J, Cui Z, Li H, Lv X, Gao M, Yang Z, Bi Y, Zhang Z, Wang S, Zhou B, Yin Z. Clinicopathological and prognostic significance of long noncoding RNA MALAT1 in human cancers: a review and meta-analysis. Cancer Cell Int 2018; 18:109. [PMID: 30093838 PMCID: PMC6080354 DOI: 10.1186/s12935-018-0606-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Background The aberrant regulation of MALAT1 has been indicated to be involved in various carcinogenic pathways contributing to the tumourigenesis and progression of cancers. The current meta-analysis summarized the research advances of MALAT1 functions and analyzed its prognostic value among multiple types of cancers. Methods Eligible studies were identified through retrieving the PubMed, Web of Science, and CNKI databases, up to Mar 1, 2018. 28 studies of 5436 patients and 36 studies of 3325 patients were enrolled in the meta-analysis to evaluate the association of MALAT1 expression with survival outcomes and clinical parameters. Results The results demonstrated that over-expression of MALAT1 may predict lymph node metastasis (pooled OR = 2.335, 95% CI 1.606–3.395, P = 0.000) and distant metastasis (pooled OR = 2.456, 95% CI 1.407–4.286, P = 0.002). Moreover, MALAT1 was also related with tumour size (pooled OR = 1.875, 95% CI 1.257–2.795, P = 0.002) and TNM stage (pooled OR = 2.034, 95% CI 1.111–3.724, P = 0.021). Additionally, elevated MALAT1 expression could predict poor OS (pooled HR = 2.298, 95% CI 1.953–2.704, P = 0.000), DFS (pooled HR = 2.036, 95% CI 1.240–3.342, P = 0.005), RFS (pooled HR = 2.491, 95% CI 1.505–4.123, P = 0.000), DSS (pooled HR = 2.098, 95% CI 1.372–3.211, P = 0.001) and PFS (pooled HR = 1.842, 95% CI 1.138–2.983, P = 0.013) in multivariate model. Importantly, subgroup analyses disclosed that increased MALAT1 expression had a poor OS among different cancer types (Estrogen-dependent cancer: pooled HR = 2.656, 95% CI 1.560–4.523; urological cancer: pooled HR = 1.952, 95% CI 1.189–3.204; glioma: pooled HR = 2.315, 95% CI 1.643–3.263; digestive cancer: pooled HR = 2.451, 95% CI 1.862–3.227). Conclusions The present findings demonstrated that MALAT1 may be a novel biomarker for predicting survival outcome, lymph node metastasis and distant metastasis. Electronic supplementary material The online version of this article (10.1186/s12935-018-0606-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Li
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Zhigang Cui
- 3School of Nursing, China Medical University, Shenyang, 110122 China
| | - Hang Li
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Xiaoting Lv
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Min Gao
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Zitai Yang
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Yanhong Bi
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Ziwei Zhang
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Shengli Wang
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Baosen Zhou
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Zhihua Yin
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| |
Collapse
|