1
|
Lee IHT, Nong W, So WL, Cheung CKH, Xie Y, Baril T, Yip HY, Swale T, Chan SKF, Wei Y, Lo N, Hayward A, Chan TF, Lam HM, Hui JHL. The genome and sex-dependent responses to temperature in the common yellow butterfly, Eurema hecabe. BMC Biol 2023; 21:200. [PMID: 37749565 PMCID: PMC10521528 DOI: 10.1186/s12915-023-01703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Lepidoptera (butterflies and moths) is one of the most geographically widespread insect orders in the world, and its species play important and diverse ecological and applied roles. Climate change is one of the biggest challenges to biodiversity this century, and lepidopterans are vulnerable to climate change. Temperature-dependent gene expression differences are of relevance under the ongoing climate crisis. However, little is known about how climate affects gene expression in lepidopterans and the ecological consequences of this, particularly with respect to genes with biased expression in one of the sexes. The common yellow butterfly, Eurema hecabe (Family Pieridae), is one of the most geographically widespread lepidopterans that can be found in Asia, Africa, and Australia. Nevertheless, what temperature-dependent effects there may be and whether the effects differ between the sexes remain largely unexplored. RESULTS Here, we generated high-quality genomic resources for E. hecabe along with transcriptomes from eight developmental stages. Male and female butterflies were subjected to varying temperatures to assess sex-specific gene expression responses through mRNA and microRNA transcriptomics. We find that there are more temperature-dependent sex-biased genes in females than males, including genes that are involved in a range of biologically important functions, highlighting potential ecological impacts of increased temperatures. Further, by considering available butterfly data on sex-biased gene expression in a comparative genomic framework, we find that the pattern of sex-biased gene expression identified in E. hecabe is highly species-specific, rather than conserved across butterfly species, suggesting that sex-biased gene expression responses to climate change are complex in butterflies. CONCLUSIONS Our study lays the foundation for further understanding of differential responses to environmental stress in a widespread lepidopteran model and demonstrates the potential complexity of sex-specific responses of lepidopterans to climate change.
Collapse
Affiliation(s)
- Ivy H T Lee
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris K H Cheung
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Yichun Xie
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Simon K F Chan
- Agriculture, Fisheries and Conservation Department, Hong Kong, China
| | - Yingying Wei
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Kumar R, Das J, Rode S, Kaur H, Shah V, Verma P, Sharma AK. Farnesol dehydrogenase from Helicoverpa armigera (Hübner) as a promising target for pest management: molecular docking, in vitro and insect bioassay studies using geranylgeraniol as potential inhibitor. 3 Biotech 2023; 13:175. [PMID: 37188291 PMCID: PMC10175528 DOI: 10.1007/s13205-023-03598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Juvenile hormone (JH) plays pivotal roles in several critical developmental processes in insects, including metamorphosis and reproduction. JH-biosynthetic pathway enzymes are considered highly promising targets for discovering novel insecticides. The oxidation of farnesol to farnesal, catalysed by farnesol dehydrogenase (FDL), represents a rate-limiting step in JH biosynthesis. Here, we report farnesol dehydrogenase (HaFDL) from H. armigera as a promising insecticidal target. The inhibitory potential of natural substrate analogue geranylgeraniol (GGol) was tested in vitro, wherein it showed a high binding affinity (kd 595 µM) for HaFDL in isothermal titration calorimetry (ITC) and subsequently exhibited dose-dependent enzyme inhibition in GC-MS coupled qualitative enzyme inhibition assay. Moreover, the experimentally determined inhibitory activity of GGol was augmented by the in silico molecular docking simulation which showed that GGol formed a stable complex with HaFDL, occupied the active site pocket and interacted with key active site residues (Ser147 and Tyr162) as well as other residues that are crucial in determining the active site architecture. Further, the diet-incorporated oral feeding of GGol caused detrimental effects on larval growth and development, exhibiting a significantly reduced rate of larval weight gain (P < 0.01), aberrant pupal and adult morphogenesis, and a cumulative mortality of ~ 63%. To the best of our knowledge, the study presents the first report on evaluating GGol as a potential inhibitor for HaFDL. Overall, the findings revealed the suitability of HaFDL as a potential insecticidal target for the management H. armigera.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra India
| | - Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
| | - Vivek Shah
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra India
| | - Pooja Verma
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand India
| |
Collapse
|
3
|
Haas E, Kim Y, Stanley D. Why can insects not biosynthesize cholesterol? ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21983. [PMID: 36372906 DOI: 10.1002/arch.21983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Two aspects of insect lipid biochemistry differ from the mammalian background. In one aspect, nearly a hundred years ago scientists demonstrated that the polyunsaturated fatty acid (PUFAs), linoleic acid (LA; 18:2n-6) is an essential nutrient in the diets of all mammals that have been studied in that regard. An unknown number of insect species are able to biosynthesize LA de novo. Some species take the biosynthesized LA into fatty acid elongation/desaturation pathways to produce other PUFAs, 18:3n-6, 20:3n-6 and 20:4n-6. A couple of species use the de novo produced LA to biosynthesize prostaglandins and other eicosanoids, short-lived signal moieties that mediate important physiological actions in immunity and reproduction. Insects differ from mammals, also, in their lack of genes that encode enzymes acting in biosynthesis of cholesterol. Insects require dietary cholesterol to meet their cellular, physiological, developmental, and reproductive needs. Looking at a broader view of invertebrate biochemistry, most protostomes lost all or most genes involved in cholesterol biosynthesis. The massive gene loss occurred during the Ediacaran Period, which lasted 96 million years, from the end of the Cryogenian Period (635 million years ago; MYA) to the beginning of the Cambrian Period (538.6 MYA). The key point here is that the inability to biosynthesize cholesterol is not limited to insects; it occured in most protostomes. We address the protostome need and benefits of acquiring exogenous sterols.
Collapse
Affiliation(s)
- Eric Haas
- Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska, USA
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Republic of Korea
| | - David Stanley
- Biological Control of Insect Research Laboratory, USDA-Agricultural Research Service, Columbia, Missouri, USA
| |
Collapse
|
4
|
Identification and Evolution Analysis of the Complete Methyl Farnesoate Biosynthesis and Related Pathway Genes in the Mud Crab, Scylla paramamosain. Int J Mol Sci 2022; 23:ijms23169451. [PMID: 36012717 PMCID: PMC9409210 DOI: 10.3390/ijms23169451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The sesquiterpenoid hormone methyl farnesoate (MF) plays a vital role during crustacean development, which is mainly evidenced by its varied titers during different developmental stages. However, the biosynthesis pathways of MF remain obscure to some extent. In this study, we identified the complete MF biosynthesis and related pathway genes in Scylla paramamosain, including three involved in acetyl-CoA metabolism, eight in the mevalonate pathway, five in the sesquiterpenoids synthesis pathway, and five in the methionine cycle pathway. Bioinformatics, genomic structure, and phylogenetic analysis indicated that the JH biosynthesis genes might have experienced evolution after species differentiation. The mRNA tissue distribution analysis revealed that almost all genes involving in or relating to MF syntheses were highly expressed in the mandibular organ (MO), among which juvenile hormone acid methyltransferase was exclusively expressed in the MO, suggesting that most of these genes might mainly function in MF biosynthesis and that the methionine cycle pathway genes might play a crucial regulatory role during MF synthesis. In addition, the phylogenetic and tissue distribution analysis of the cytochrome P450 CYP15-like gene suggested that the epoxidized JHs might exist in crustaceans, but are mainly synthesized in hepatopancreas rather than the MO. Finally, we also found that betaine-homocysteine S-methyltransferase genes were lost in insects while methionine synthase was probably lost in most insects except Folsomia candida, indicating a regulatory discrepancy in the methionine cycle between crustaceans and insects. This study might increase our understanding of synthetic metabolism tailored for sesquiterpenoid hormones in S. paramamosain and other closely related species.
Collapse
|
5
|
Ramakrishnan R, Hradecký J, Roy A, Kalinová B, Mendezes RC, Synek J, Bláha J, Svatoš A, Jirošová A. Metabolomics and transcriptomics of pheromone biosynthesis in an aggressive forest pest Ips typographus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103680. [PMID: 34808354 DOI: 10.1016/j.ibmb.2021.103680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Eurasian spruce bark beetle, Ips typographus, is a destructive pest in spruce forests. The ability of I. typographus to colonise host trees depends on its massive aggregation behaviour mediated by aggregation pheromones, consisting of 2-methyl-3-buten-2-ol and cis-verbenol. Other biologically active compounds such as ipsdienol and verbenone have also been detected in the beetle. Biosynthesis of 2-methyl-3-buten-2-ol and ipsdienol de novo from mevalonate and that of cis-verbenol from α-pinene sequestrated from the host have been reported in preliminary studies. However, knowledge on the molecular mechanisms underlying pheromone biosynthesis in this pest is currently limited. In this study, we performed metabolomic and differential gene expression (DGE) analysis for the pheromone-producing life stages of I. typographus. The highest amounts of 2-methyl-3-buten-2-ol (238 ng/gut) and cis-verbenol (23 ng/gut) were found in the fed male gut (colonisation stage) and the immature male gut (early stage), respectively. We also determined the amount of verbenyl oleate (the possible storage form of cis-verbenol), a monoterpenyl fatty acid ester, to be approximately 1604 ng/mg in the immature stage in the beetle body. DGE analysis revealed possible candidate genes involved in the biosynthesis of the quantified pheromones and related compounds. A novel hemiterpene-synthesising candidate isoprenyl-di-phosphate synthase Ityp09271 gene proposed for 2-methyl-3-buten-2-ol synthesis was found to be highly expressed only in the fed male beetle gut. Putative cytochrome P450 genes involved in cis/trans-verbenol synthesis and an esterase gene Ityp11977, which could regulate verbenyl oleate synthesis, were identified in the immature male gut. Our findings from the molecular analysis of pheromone-producing gene families are the first such results reported for I. typographus. With further characterisation of the identified genes, we can develop novel strategies to disrupt the aggregation behaviour of I. typographus and thereby prevent vegetation loss.
Collapse
Affiliation(s)
- Rajarajan Ramakrishnan
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Blanka Kalinová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Rya C Mendezes
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jiri Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Jaromír Bláha
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Jena, Germany; Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Jirošová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic.
| |
Collapse
|
6
|
Yusoff N, Abd Ghani I, Othman NW, Aizat WM, Hassan M. Toxicity and Sublethal Effect of Farnesyl Acetate on Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). INSECTS 2021; 12:109. [PMID: 33513706 PMCID: PMC7910910 DOI: 10.3390/insects12020109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the most important pest of cruciferous vegetables worldwide. In this study, we evaluated the properties of selected farnesyl derivative compounds against P. xylostella. The toxicity and sublethal concentration (LC50) of farnesyl acetate, farnesyl acetone, farnesyl bromide, farnesyl chloride, and hexahydrofarnesyl acetone were investigated for 96 h. The leaf-dip bioassays showed that farnesyl acetate had a high level of toxicity against P. xylostella compared to other tested farnesyl derivatives. The LC50 value was 56.41 mg/L on the second-instar larvae of P. xylostella. Then, the sublethal effects of farnesyl acetate on biological parameters of P. xylostella were assessed. Compared to the control group, the sublethal concentration of farnesyl acetate decreased pupation and emergence rates, pupal weight, fecundity, egg hatching rate, female ratio, and oviposition period. Furthermore, the developmental time of P. xylostella was extended after being exposed to farnesyl acetate. Moreover, the application of farnesyl acetate on P. xylostella induced morphogenetic abnormalities in larval-pupal intermediates, adults that emerged with twisted wings, or complete adults that could not emerge from the cocoon. These results suggested that farnesyl acetate was highly effective against P. xylostella. The sublethal concentration of farnesyl acetate could reduce the population of P. xylostella by increasing abnormal pupal and adults, and by delaying its development period.
Collapse
Affiliation(s)
- Norazila Yusoff
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.Y.); (W.M.A.)
| | - Idris Abd Ghani
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (I.A.G.); (N.W.O.)
| | - Nurul Wahida Othman
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (I.A.G.); (N.W.O.)
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.Y.); (W.M.A.)
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia; (N.Y.); (W.M.A.)
| |
Collapse
|
7
|
Fang SM. Genome-wide identification and analysis of the thiolase family in insects. PeerJ 2020; 8:e10393. [PMID: 33240678 PMCID: PMC7682436 DOI: 10.7717/peerj.10393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022] Open
Abstract
Thiolases are important enzymes involved in lipid metabolism in both prokaryotes and eukaryotes, and are essential for a range of metabolic pathways, while, little is known for this important family in insects. To shed light on the evolutionary models and functional diversities of the thiolase family, 137 thiolase genes were identified in 20 representative insect genomes. They were mainly classified into five classes, namely cytosolic thiolase (CT-thiolase), T1-thiolase, T2-thiolase, trifunctional enzyme thiolase (TFE-thiolase), and sterol carrier protein 2 thiolase (SCP2-thiolase). The intron number and exon/intron structures of the thiolase genes reserve large diversification. Subcellular localization prediction indicated that all the thiolase proteins were mitochondrial, cytosolic, or peroxisomal enzymes. Four highly conserved sequence fingerprints were found in the insect thiolase proteins, including CxS-, NEAF-, GHP-, and CxGGGxG-motifs. Homology modeling indicated that insect thiolases share similar 3D structures with mammals, fishes, and microorganisms. In Bombyx mori, microarray data and reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested that some thiolases might be involved in steroid metabolism, juvenile hormone (JH), and sex pheromone biosynthesis pathways. In general, sequence and structural characteristics were relatively conserved among insects, bacteria and vertebrates, while different classes of thiolases might have differentiation in specific functions and physiological processes. These results will provide an important foundation for future functional validation of insect thiolases.
Collapse
Affiliation(s)
- Shou-Min Fang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.,College of Life Science, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
8
|
Leyria J, Orchard I, Lange AB. What happens after a blood meal? A transcriptome analysis of the main tissues involved in egg production in Rhodnius prolixus, an insect vector of Chagas disease. PLoS Negl Trop Dis 2020; 14:e0008516. [PMID: 33057354 PMCID: PMC7591069 DOI: 10.1371/journal.pntd.0008516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/27/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The blood-sucking hemipteran Rhodnius prolixus is a vector of Chagas disease, one of the most neglected tropical diseases affecting several million people, mostly in Latin America. The blood meal is an event with a high epidemiological impact since adult mated females feed several times, with each meal resulting in a bout of egg laying, and thereby the production of hundreds of offspring. By means of RNA-Sequencing (RNA-Seq) we have examined how a blood meal influences mRNA expression in the central nervous system (CNS), fat body and ovaries in order to promote egg production, focusing on tissue-specific responses under controlled nutritional conditions. We illustrate the cross talk between reproduction and a) lipids, proteins and trehalose metabolism, b) neuropeptide and neurohormonal signaling, and c) the immune system. Overall, our molecular evaluation confirms and supports previous studies and provides an invaluable molecular resource for future investigations on different tissues involved in successful reproductive events. These analyses serve as a starting point for new investigations, increasing the chances of developing novel strategies for vector population control by translational research, with less impact on the environment and more specificity for a particular organism.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
9
|
Lyu Z, Li Z, Cheng J, Wang C, Chen J, Lin T. Suppression of Gene Juvenile Hormone Diol Kinase Delays Pupation in Heortia vitessoides Moore. INSECTS 2019; 10:insects10090278. [PMID: 31480643 PMCID: PMC6780227 DOI: 10.3390/insects10090278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
Juvenile hormone diol kinase (JHDK) is a critical enzyme involved in juvenile hormone degradation in insects. In this study, HvJHDK in the Heortia vitessoides Moore (Lepidoptera: Crambidae) transcriptional library was cloned. Stage-specific expression patterns of HvJHDK, HvJHEH, and HvJHE as well as juvenile hormone titers were determined. The three tested enzymes participated in juvenile hormone degradation. Moreover, juvenile hormone titers peaked after larval–larval molts, consistent with a role for juvenile hormone in inhibition of metamorphosis. HvJHDK was subsequently suppressed using RNA interference (RNAi) to reveal its functions. Different concentrations of dsJHDK elicited the optimal interference efficiency at different life stages of H. vitessoides. Suppression of HvJHDK decreased HvJHDK content and increased the juvenile hormone titer, thereby resulting in reduced triglyceride content, sharply declined survival rate, clearly lethal phenotypes, and extended larval growth. Moreover, suppression of HvJHDK upregulated HvJHEH and HvJHE expression levels, suggesting that there is feedback regulation in the juvenile hormone metabolic pathway. Taken together, our findings provide molecular references for the selection of novel insecticidal targets.
Collapse
Affiliation(s)
- Zihao Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhixing Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jie Cheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Chunyan Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jingxiang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Tong Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Cheng YJ, Li ZX. Spatiotemporal expression profiling of the farnesyl diphosphate synthase genes in aphids and analysis of their associations with the biosynthesis of alarm pheromone. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:398-407. [PMID: 30269691 DOI: 10.1017/s0007485318000706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The alarm behavior plays a key role in the ecology of aphids, but the site and molecular mechanism for the biosynthesis of aphid alarm pheromone are largely unknown. Farnesyl diphosphate synthase (FPPS) catalyzes the synthesis of FPP, providing the precursor for the alarm pheromone (E)-β-farnesene (EβF), and we speculate that FPPS is closely associated with the biosynthetic pathway of EβF. We firstly analyzed the spatiotemporal expression of FPPS genes by using quantitative reverse transcription-polymerase chain reaction, showing that they were expressed uninterruptedly from the embryonic stage to adult stage, with an obvious increasing trend from embryo to 4th-instar in the green peach aphid Myzus persicae, but FPPS1 had an overall significantly higher expression level than FPPS2; both FPPS1 and FPPS2 exhibited the highest expression in the cornicle area. This expression pattern was verified in Acyrthosiphon pisum, suggesting that FPPS1 may play a more important role in aphids and the cornicle area is most likely the site for EβF biosynthesis. We thus conducted a quantitative measurement of EβF in M. persicae by gas chromatography-mass spectrometry. The data obtained were used to perform an association analysis with the expression data, revealing that the content of EβF per aphid was significantly correlated with the mean weight per aphid (r = 0.8534, P = 0.0307) and the expression level of FPPS1 (r = 0.9134, P = 0.0109), but not with that of FPPS2 (r = 0.4113, P = 0.4179); the concentration of EβF per milligram of aphid was not correlated with the mean weight per aphid or the expression level of FPPS genes. These data suggest that FPPS1 may play a key role in the biosynthesis of aphid alarm pheromone.
Collapse
Affiliation(s)
- Y-J Cheng
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests,College of Plant Protection, China Agricultural University,Beijing 100193,China
| | - Z-X Li
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests,College of Plant Protection, China Agricultural University,Beijing 100193,China
| |
Collapse
|
11
|
Zhang W, Liang G, Ma L, Jiang T, Xiao H. Dissecting the Role of Juvenile Hormone Binding Protein in Response to Hormone and Starvation in the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1411-1417. [PMID: 30789202 DOI: 10.1093/jee/toz027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Juvenile hormone (JH) regulates many physiological processes in insect development, diapause, and reproduction. Juvenile hormone binding protein (JHBP), the carrier partner protein of JH, is essential for the balance of JH titer to regulate the metamorphosis and development of insect. In this study, two JHBP genes were identified from Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), namely HaJHBP1 and HaJHBP2. The tissue and temporal expression pattern revealed that both HaJHBP1 and HaJHBP2 were dominantly expressed in larval fat body, and their high transcription stages were detected in fourth and fifth instars. The ingestion of methoprene, a JH analogue, significantly induced the expression of HaJHBP1 and HaJHBP2. However, both HaJHBP1 and HaJHBP2 mRNA levels were significantly downregulated after treated with a JH antagonist, precocene. When subject to starvation, larvae showed a marked suppressive effect in the expression of HaJHBP1 and HaJHBP2. These results indicate that JHBP plays a part in the JH-regulated metabolism, growth, or development in reaction to different nutritional conditions.
Collapse
Affiliation(s)
- Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Ma
- College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Ting Jiang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Haijun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
12
|
Ma L, Zhang W, Liu C, Chen L, Xu Y, Xiao H, Liang G. Methoprene-Tolerant (Met) Is Indispensable for Larval Metamorphosis and Female Reproduction in the Cotton Bollworm Helicoverpa armigera. Front Physiol 2018; 9:1601. [PMID: 30498452 PMCID: PMC6249418 DOI: 10.3389/fphys.2018.01601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Juvenile hormone (JH) represses larval metamorphosis and induces adult reproduction in insects. Methoprene-tolerant (Met) is identified as an intranuclear receptor that mediates JH actions. In the present study, we characterized a Met from the severe agricultural pest, Helicoverpa armigera, namely HaMet. In the larval stage, HaMet is predominantly expressed in the epidermis and midgut, and is upregulated before each molting, whereas in adults HaMet is maximally expressed in the ovary, testis, and fat body. The immunofluorescence assay revealed that HaMet was distributed in the longitudinal and circular muscle layers of midgut in larvae, whereas in the ovary of female adults, HaMet was localized in the nucleus of the oolemma. Knockdown of HaMet in final-instar larvae shortened the time of pupation, induced abnormal pupation, and dampened pupation rate. In female adults, HaMet depletion severely suppressed the transcription of Vitellogenin (Vg) and Vitellogenin Receptor (VgR), disrupted the Vg accumulation in fat body and the yolk protein uptake in oocytes, and finally led to an impaired fecundity. Our findings therefore confirmed that HaMet acted as a nuclear receptor of JH and played an essential role in larval metamorphosis, vitellogenesis, and oocyte maturation.
Collapse
Affiliation(s)
- Long Ma
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Xu
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Haijun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang WN, Ma L, Liu C, Chen L, Xiao HJ, Liang GM. Dissecting the role of Krüppel homolog 1 in the metamorphosis and female reproduction of the cotton bollworm, Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2018; 27:492-504. [PMID: 29719076 DOI: 10.1111/imb.12389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In insects, metamorphosis and reproduction are controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Krüppel homolog 1 (Kr-h1), a transcription factor, is regarded as a JH-early inducible gene responsible for the repression of metamorphosis. However, the role of Kr-h1 in reproduction of holometabolic insects is relatively less understood. In this study, we studied the role of Kr-h1 in larvae-pupae transition and female reproduction in the major agricultural pest Helicoverpa armigera. Two HaKr-h1 isoforms (HaKr-h1α and HaKr-h1ß) were identified, with HaKr-h1α predominant in the cotton bollworm. In larvae, HaKr-h1 was predominately expressed in the epidermis and markedly up-regulated during the moult stage, whereas in adults HaKr-h1 was mainly expressed in females and the highest transcription was detected in the ovaries. Considering the function of hormones in larval metamorphosis, we examined the modulation of gene expression in response to hormones, which showed that HaKr-h1 was significantly induced by both JH analogue (JHA) and 20E. Knockdown of HaKr-h1 in fifth-instar larvae resulted in precocious metamorphosis from larvae to pupae. Moreover, a fluorescence immunoassay coupled with heterologous expression revealed that HaKr-h1 was localized in the nucleus of oocyte membrane. In female adults, depletion of HaKr-h1 severely repressed the transcription of vitellogenin, disrupted oocyte maturation and reduced the number of eggs laid, suggesting that HaKr-h1 is required for vitellogenesis and egg production in H. armigera. The present study provides insight into the roles of HaKr-h1 in JH-mediated reproduction and highlights HaKr-h1 as a target for suppression of lepidopteran pests.
Collapse
Affiliation(s)
- W-N Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Ma
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, China
| | - C Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - H-J Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - G-M Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|