1
|
Wang X, Zhu J, Wang H, Deng W, Jiao S, Wang Y, He M, Zhang F, Liu T, Hao Y, Ye D, Sun Y. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat Commun 2023; 14:7918. [PMID: 38097571 PMCID: PMC10721796 DOI: 10.1038/s41467-023-43587-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of genome editing and primordial germ cell (PGC) transplantation has enormous significance in the study of developmental biology and genetic breeding, despite its low efficiency due to limited number of donor PGCs. Here, we employ a combination of germplasm factors to convert blastoderm cells into induced PGCs (iPGCs) in zebrafish and obtain functional gametes either through iPGC transplantation or via the single blastomere overexpression of germplasm factors. Zebrafish-derived germplasm factors convert blastula cells of Gobiocypris rarus into iPGCs, and Gobiocypris rarus spermatozoa can be produced by iPGC-transplanted zebrafish. Moreover, the combination of genome knock-in and iPGC transplantation perfectly resolves the contradiction between high knock-in efficiency and early lethality during embryonic stages and greatly improves the efficiency of genome knock-in. Together, we present an efficient method for generating PGCs in a teleost, a technique that will have a strong impact in basic research and aquaculture.
Collapse
Affiliation(s)
- Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junwen Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenqi Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongkang Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
2
|
Mousavi SE, Purser GJ, Patil JG. Embryonic Onset of Sexually Dimorphic Heart Rates in the Viviparous Fish, Gambusia holbrooki. Biomedicines 2021; 9:165. [PMID: 33567532 PMCID: PMC7915484 DOI: 10.3390/biomedicines9020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
In fish, little is known about sex-specific differences in physiology and performance of the heart and whether these differences manifest during development. Here for the first time, the sex-specific heart rates during embryogenesis of Gambusia holbrooki, from the onset of the heart rates (HRs) to just prior to parturition, was investigated using light cardiogram. The genetic sex of the embryos was post-verified using a sex-specific genetic marker. Results reveal that heart rates and resting time significantly increase (p < 0.05) with progressive embryonic development. Furthermore, both ventricular and atrial frequencies of female embryos were significantly higher (p < 0.05) than those of their male sibs at the corresponding developmental stages and remained so at all later developmental stages (p < 0.05). In concurrence, the heart rate and ventricular size of the adult females were also significantly (p < 0.05) higher and larger respectively than those of males. Collectively, the results suggest that the cardiac sex-dimorphism manifests as early as late-organogenesis and persists through adulthood in this species. These findings suggest that the cardiac measurements can be employed to non-invasively sex the developing embryos, well in advance of when their phenotypic sex is discernible. In addition, G. holbrooki could serve as a better model to study comparative vertebrate cardiovascular development as well as to investigate anthropogenic and climatic impacts on heart physiology of this species, that may be sex influenced.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - G. John Purser
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - Jawahar G. Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
- Inland Fisheries Service, New Norfolk, TAS 7140, Australia
| |
Collapse
|
3
|
Machikhin AS, Volkov MV, Burlakov AB, Khokhlov DD, Potemkin AV. Blood Vessel Imaging at Pre-Larval Stages of Zebrafish Embryonic Development. Diagnostics (Basel) 2020; 10:diagnostics10110886. [PMID: 33143148 PMCID: PMC7692510 DOI: 10.3390/diagnostics10110886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
The zebrafish (Danio rerio) is an increasingly popular animal model biological system. In cardiovascular research, it has been used to model specific cardiac phenomena as well as to identify novel therapies for human cardiovascular disease. While the zebrafish cardiovascular system functioning is well examined at larval stages, the mechanisms by which vessel activity is initiated remain a subject of intense investigation. In this research, we report on an in vivo stain-free blood vessel imaging technique at pre-larval stages of zebrafish embryonic development. We have developed the algorithm for the enhancement, alignment and spatiotemporal analysis of bright-field microscopy images of zebrafish embryos. It enables the detection, mapping and quantitative characterization of cardiac activity across the whole specimen. To validate the proposed approach, we have analyzed multiple data cubes, calculated vessel images and evaluated blood flow velocity and heart rate dynamics in the absence of any anesthesia. This non-invasive technique may shed light on the mechanism of vessel activity initiation and stabilization as well as the cardiovascular system’s susceptibility to environmental stressors at early developmental stages.
Collapse
Affiliation(s)
- Alexander S. Machikhin
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia;
| | - Mikhail V. Volkov
- Department of Applied Optics, University ITMO, 190000 Saint Petersburg, Russia; (M.V.V.); (A.V.P.)
| | - Alexander B. Burlakov
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Demid D. Khokhlov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia;
- Correspondence:
| | - Andrey V. Potemkin
- Department of Applied Optics, University ITMO, 190000 Saint Petersburg, Russia; (M.V.V.); (A.V.P.)
| |
Collapse
|
4
|
Mir TA, Iwanaga S, Kurooka T, Toda H, Sakai S, Nakamura M. Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: A Perspective. Int J Bioprint 2018; 5:153. [PMID: 32596529 PMCID: PMC7294687 DOI: 10.18063/ijb.v5i1.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/26/2022] Open
Abstract
Biofabrication is an emerging multidisciplinary field that makes a revolutionary impact on the researches on life science, biomedical engineering, and both basic and clinical medicine, has progressed tremendously over the past few years. Recently, there has been a big boom in three-dimensional (3D) printing or additive manufacturing (AM) research worldwide, and there is a significant increase not only in the number of researchers turning their attention to AM but also publications demonstrating the potential applications of 3D printing techniques in multiple fields. Biofabrication and bioprinting hold great promise for the innovation of engineering-based organ replacing medicine. In this mini review, various challenges in the field of tissue engineering are focused from the point of view of the biofabrication - strategies to bridge the gap between organ shortage and mission of medical innovation research seek to achieve organ-specific treatments or regenerative therapies. Four major challenges are discussed including (i) challenge of producing organs by AM, (ii) digitalization of tissue engineering and regenerative medicine, (iii) rapid production of organs beyond the biological natural course, and (iv) extracorporeal organ engineering.
Collapse
Affiliation(s)
- Tanveer Ahmad Mir
- Graduate School of Science and Engineering for Research (Engineering), University of Toyama, Toyama 930-8555, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
- Laboratory of Biosensors, BioMEMS and Bionanotechnology, Alfaisal University Riyadh 11533, Kingdom of Saudi Arabia
| | - Shintaroh Iwanaga
- Graduate School of Science and Engineering for Research (Engineering), University of Toyama, Toyama 930-8555, Japan
| | - Taketoshi Kurooka
- Graduate School of Science and Engineering for Research (Engineering), University of Toyama, Toyama 930-8555, Japan
| | - Hideki Toda
- Graduate School of Science and Engineering for Research (Engineering), University of Toyama, Toyama 930-8555, Japan
| | - Shinji Sakai
- Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama-Cho, Toyonaka City, Osaka 560-8531, Japan
| | - Makoto Nakamura
- Graduate School of Science and Engineering for Research (Engineering), University of Toyama, Toyama 930-8555, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
| |
Collapse
|
5
|
Shibata E, Liu Z, Kawasaki T, Sakai N, Kawakami A. Robust and local positional information within a fin ray directs fin length during zebrafish regeneration. Dev Growth Differ 2018; 60:354-364. [PMID: 29992536 DOI: 10.1111/dgd.12558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
It has been proposed that cells are regulated to form specific morphologies and sizes according to positional information. However, the entity and nature of positional information have not been fully understood yet. The zebrafish caudal fin has a characteristic V-shape; dorsal and ventral fin rays are longer than the central ones. This fin shape regenerates irrespective of the sites or shape of fin amputation. It is thought that reformation of tissue occurs according to positional information. In this study, we developed a novel transplantation procedure for grafting a whole fin ray to an ectopic position and examined whether the information that specifies fin length exists within each fin ray. Intriguingly, when long and short fin rays were swapped, they regenerated to form longer or shorter fin rays than the adjacent host fin rays, respectively. Further, the abnormal fin ray lengths were maintained for a long time, more than 5 months, and after further re-amputation. In contrast to intra-fin grafting, when fin ray grafting was performed between fish, cells in the grafts disappeared due to immune rejection, and the grafted fin rays adapted to the host position to form a normal fin. Together, our data suggest that the information that directs fin length does exist in cells within a single fin ray and that it has a robust property-it is stable for a long time and is hard to rewrite. Our study highlighted a novel positional information mechanism for directing regenerating fin length.
Collapse
Affiliation(s)
- Eri Shibata
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Zhengcheng Liu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshihiro Kawasaki
- Genetic Strains Research Center, National Institute of Genetics, and Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Noriyuki Sakai
- Genetic Strains Research Center, National Institute of Genetics, and Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|