1
|
Li C, Xu C, Guan R, Jiao R, Wang Y, Cui C, Cao S, Chang F, Wei R, Li Z, Liu Z, Gross ND, Li G, Li W, Wei D, Lei D. Spatial transcriptomics reveal tumor microenvironment and SLCO2A1 correlated with tumor suppression in hypopharyngeal squamous cell carcinoma. Int Immunopharmacol 2024; 142:113243. [PMID: 39340989 DOI: 10.1016/j.intimp.2024.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Hypopharyngeal squamous cell carcinoma (HSCC) is a type of head and neck tumor with malignant behavior and poor prognosis. Spatial transcriptomics is a method that spatially analyzes gene expression patterns in tissues and has been used to discover tumor microenvironment and molecular markers in various tumors. However, there are no published reports on spatial transcriptomic analysis of HSCC. METHODS In this study, spatial transcriptomic analysis was performed on tumor tissues in situ, peritumoral tissues, and lymphatic metastatic tissues of four patients with HSCC. Morphological markers, including panCK, SMA, and CD45, were used to identify epithelial, fibroblast, and immune cells, respectively. By analyzing the expression of more than 18, 000 genes within the transcriptome of all ROIs, differentially expressed genes of three cell types in different tissues were identified, and differentially expressed signaling pathways and immune infiltration were analyzed. RESULTS The spatial distribution of cells suggests that fibroblast cells in tumor tissues may be involved in the genesis and development of tumors, and the immune infiltration of lymphatic tumor metastasis is lower than that of tumors in situ. For epithelial cells, SLCO2A1, which is a favorable prognosis marker in head and neck squamous cell carcinoma (HNSCC), was significantly down-regulated in tumor tissues and lymphatic metastatic tissues compared with adjacent normal tissues. For immune cells, KANK3, which is a favorable prognosis markers in HNSCC, was significantly down-regulated in lymphatic metastatic tissues compared with adjacent normal tissues. For fibroblast cells, AQP1, CLEC3B and SLCO2A1, which are favorable prognosis markers in HNSCC, were significantly down-regulated in tumor tissues compared with adjacent normal tissues. ITGA8, which is a favorable prognosis markers in HNSCC, was significantly down-regulated in lymphatic metastatic tissues compared with normal lymphatic tissues. CSRP1, DES, and SLCO2A1 positively correlate with immune infiltration in HNSCC. Moreover, SLCO2A1 overexpression suppressed Fadu cells proliferation and metastasis and significantly correlated with favorable survival overcome in HSCC. CONCLUSIONS We investigated tumor and fibroblast heterogeneity, as well as the immune microenvironment in HSCC by using spatial transcriptomics. SLCO2A1 may be a tumor suppressor gene and correlates with immune infiltration for HSCC and could serve as a potential target for its diagnosis and treatment.
Collapse
Affiliation(s)
- Ce Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Chenyang Xu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Rui Guan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Ruijie Jiao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Yin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Chengfu Cui
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Fen Chang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Ran Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Zinan Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Zhiwei Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Neil D Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China.
| |
Collapse
|
2
|
Zhou Z, Dong D, Yuan Y, Luo J, Liu XD, Chen LY, Wang G, Yin Y. Single cell atlas reveals multilayered metabolic heterogeneity across tumour types. EBioMedicine 2024; 109:105389. [PMID: 39393173 DOI: 10.1016/j.ebiom.2024.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Metabolic reprogramming plays a pivotal role in cancer progression, contributing to substantial intratumour heterogeneity and influencing tumour behaviour. However, a systematic characterization of metabolic heterogeneity across multiple cancer types at the single-cell level remains limited. METHODS We integrated 296 tumour and normal samples spanning six common cancer types to construct a single-cell compendium of metabolic gene expression profiles and identify cell type-specific metabolic properties and reprogramming patterns. A computational approach based on non-negative matrix factorization (NMF) was utilised to identify metabolic meta-programs (MMPs) showing intratumour heterogeneity. In-vitro cell experiments were conducted to confirm the associations between MMPs and chemotherapy resistance, as well as the function of key metabolic regulators. Survival analyses were performed to assess clinical relevance of cellular metabolic properties. FINDINGS Our analysis revealed shared glycolysis upregulation and divergent regulation of citric acid cycle across different cell types. In malignant cells, we identified a colorectal cancer-specific MMP associated with resistance to the cuproptosis inducer elesclomol, validated through in-vitro cell experiments. Furthermore, our findings enabled the stratification of patients into distinct prognostic subtypes based on metabolic properties of specific cell types, such as myeloid cells. INTERPRETATION This study presents a nuanced understanding of multilayered metabolic heterogeneity, offering valuable insights into potential personalized therapies targeting tumour metabolism. FUNDING National Key Research and Development Program of China (2021YFA1300601). National Natural Science Foundation of China (key grants 82030081 and 81874235). The Shenzhen High-level Hospital Construction Fund and Shenzhen Basic Research Key Project (JCYJ20220818102811024). The Lam Chung Nin Foundation for Systems Biomedicine.
Collapse
Affiliation(s)
- Zhe Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre and School of Life Sciences, Peking University, Beijing 100191, China
| | - Di Dong
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre and School of Life Sciences, Peking University, Beijing 100191, China
| | - Yuyao Yuan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre and School of Life Sciences, Peking University, Beijing 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiao-Ding Liu
- Research Centre for Molecular Pathology, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
| | - Long-Yun Chen
- Research Centre for Molecular Pathology, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre and School of Life Sciences, Peking University, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre and School of Life Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Ning DS, Zhou ZQ, Zhou SH, Chen JM. Identification of macrophage differentiation related genes and subtypes linking atherosclerosis plaque processing and metabolic syndrome via integrated bulk and single-cell sequence analysis. Heliyon 2024; 10:e34295. [PMID: 39130409 PMCID: PMC11315131 DOI: 10.1016/j.heliyon.2024.e34295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Metabolic syndrome(MS) is a separate risk factor for the advancement of atherosclerosis(AS) plaque but mechanism behind this remains unclear. There may be a significant role for the immune system in this process. This study aims to identify potential diagnostic genes in MS patients at a higher risk of developing and progressing to AS. Datasets were retrevied from gene expression omnibus(GEO) database and differentially expressed genes were identified. Hub genes, immune cell dysregulation and AS subtypes were identified using a conbination of muliple bioinformatic analysis, machine learning and consensus clustering. Diagnostic value of hub genes was estimated using a nomogram and ROC analysis. Finally, enrichment analysis, competing endogenous RNA(ceRNA) network, single-cell RNA(scRNA) sequencing analysis and drug-protein interaction prediction was constructed to identify the functional roles, potential regulators and distribution for hub genes. Four hub genes and two macrophage-related subtypes were identified. Their strong diagnostic value was validated and functional process were identified. ScRNA analysis identified the macrophage differentiation regulation function of F13A1. CeRNA network and drug-protein binding modes revealed the potential therapeutic method. Four immune-correlated hub genes(F13A1, MMRN1, SLCO2A1 and ZNF521) were identified with their diagnostic value being assesed, which F13A1 was found strong correlated with macrophage differentiation and could be potential diagnostic and therapeutic marker for AS progression in MS patients.
Collapse
Affiliation(s)
- Da-Sheng Ning
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Zi-Qing Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Shu-Heng Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Ji-Mei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| |
Collapse
|
4
|
Mocking TAM, van Oostveen WM, van Veldhoven JPD, Minnee H, Fehres CM, Whitehurst CE, IJzerman AP, Heitman LH. Label-free detection of prostaglandin transporter (SLCO2A1) function and inhibition: insights by wound healing and TRACT assays. Front Pharmacol 2024; 15:1372109. [PMID: 38783936 PMCID: PMC11111933 DOI: 10.3389/fphar.2024.1372109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The prostaglandin transporter (PGT, SLCO2A1) mediates transport of prostanoids (a.o. prostaglandin E2 (PGE2)) into cells and thereby promotes their degradation. Overexpression of PGT leads to low extracellular PGE2 levels and has been linked to impaired wound healing of diabetic foot ulcers. Inhibition of PGT could thus be beneficial, however, no PGT inhibitors are currently on the market and drug discovery efforts are hampered by lack of high-through screening assays for this transporter. Here we report on a label-free impedance-based assay for PGT that measures transport activity through receptor activation (TRACT) utilizing prostaglandin E2 receptor subtype EP3 and EP4 that are activated by PGE2. We found that induction of PGT expression on HEK293-JumpIn-SLCO2A1 cells that also express EP3 and EP4 leads to an over 10-fold reduction in agonistic potency of PGE2. PGE2 potency could be recovered upon inhibition of PGT-mediated PGE2 uptake with PGT inhibitors olmesartan and T26A, the potency of which could be established as well. Moreover, the TRACT assay enabled the assessment of transport function of PGT natural variants. Lastly, HUVEC cells endogenously expressing prostanoid receptors and PGT were exploited to study wound healing properties of PGE2 and T26A in real-time using a novel impedance-based scratch-induced wound healing assay. These novel impedance-based assays will advance PGT drug discovery efforts and pave the way for the development of PGT-based therapies.
Collapse
Affiliation(s)
- Tamara A. M. Mocking
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | | | - Hugo Minnee
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Cynthia M. Fehres
- Department of Rheumatology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Charles E. Whitehurst
- Immunology and Respiratory Diseases, Boehringer-Ingelheim, Ridgefield, CT, United States
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Oncode Institute, Leiden, Netherlands
| |
Collapse
|
5
|
Lin X, Lv X, Li B, Meng Q, Lai H, Gong Q, Tong Z. Heterogeneity of T cells in periapical lesions and in vitro validation of the proangiogenic effect of GZMA on HUVECs. Int Endod J 2023; 56:1254-1269. [PMID: 37400946 DOI: 10.1111/iej.13951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
AIM T cells are key immunomodulatory cells in periapical lesions. This study aimed to explore the roles of T cells in chronic apical periodontitis (CAP) using single-cell RNA sequencing and to further investigate Granzyme A (GZMA) in angiogenesis regulation. METHODOLOGY A total of five CAP samples were collected for single-cell RNA sequencing. We performed subcluster and lineage-tracing analyses for T cells. According to differential gene expression, distinct biological functions enriched in T cells of CAP were presented by gene set enrichment analysis (GSEA) and compared with healthy gingiva (data obtained from the GEO database). CellChat was used to explore potential ligand-receptor interactions between T cells and endothelial cells in CAP. The coculture of primary human umbilical vein endothelial cells (HUVECs) and Jurkat T cells, as well as the addition of GZMA recombinant protein, was used to validate the predicted pair of GZMA and coagulation factor II thrombin receptor (F2R) by RT-PCR, angiogenesis and migration assays. RESULTS A transcriptomic atlas of 44 746 individual cells was constructed from the periapical lesions of five patients with CAP by single-cell RNA-seq, and eight cell types were identified. We identified nine subsets of T cells and deciphered the cellular heterogeneity of T cells in CAP at the functional level by subclustering and GSEA. Lineage tracing revealed a distinct lineage of T cells in CAP and predicted the transition of the T cellular state upon CAP. GSEA revealed multiple biological processes and relevant angiogenesis genes upregulated in CAP T cells. GZMA-F2R pairs were predicted by cell-cell interactions in CAP. High expression of GZMA and F2R was observed in the coculture of HUVECs and Jurkat T cells, and the proangiogenic capacity of the GZMA recombinant protein was emphasized by in vitro experiments. CONCLUSIONS Our study provides novel insights into the heterogeneity of T cells in periapical lesions and reveals the potential role of GZMA in T cells in regulating angiogenesis in HUVECs.
Collapse
Affiliation(s)
- Xinwei Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Baoyu Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qingzhen Meng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongbin Lai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhongchun Tong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Pang H, Lei D, Huang J, Guo Y, Fan C. Elevated PGT promotes proliferation and inhibits cell apoptosis in preeclampsia by Erk signaling pathway. Mol Cell Probes 2023; 67:101896. [PMID: 36731680 DOI: 10.1016/j.mcp.2023.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Prostaglandins participate in maternal recognition of pregnancy, implantation and maintenance of gestation. Prostaglandin transporter (PGT), as a candidate molecule of prostaglandin carriers, might be involved in the pathogenesis of preeclampsia. In preeclampsia (PE) patients' placental tissue, we identified PGT by RNA sequencing, measured its expression pattern by quantitative real-time PCR and Western blot. PGT was found to be upregulated in preeclamptic placental tissue. The expression pattern of PGT in PE was double confirmed by eight Gene Expression Omnibus (GEO) databases. In abortion tissues at 6-8 weeks, we then observed the cellular location of PGT by Immunofluorescence technique (IF) and found PGT located in trophoblast cell of the placenta of early pregnancy. In vitro studies revealed that forced expression of PGT in HTR8/Sveno cell inhibited its apoptosis, but promoted its proliferation by activating Erk signaling. In vivo study, we used reduced uterine perfusion pressure (RUPP) rat model and L-NAME-induced preeclampsia-like rats to study the possible role of PGT in preeclampsia. And PGT was found to be upregulated in both preeclampsia rat models by Immunohistochemical (IHC) staining. Newly identified PGT plays an important role in trophoblast proliferation via Erk signaling, providing new insights for understanding the pathogenesis of PE.
Collapse
Affiliation(s)
- Huiyuan Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jinfa Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Yuping Guo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, PR China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China.
| |
Collapse
|
7
|
Wang W, Zhang J, Fan Y, Zhang L. MiR-1306-5p predicts favorable prognosis and inhibits proliferation, migration, and invasion of colorectal cancer cells via PI3K/AKT/mTOR pathway. Cell Cycle 2022; 21:1491-1501. [PMID: 35416128 PMCID: PMC9278426 DOI: 10.1080/15384101.2022.2054245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the occurrence and progression of colorectal cancer. Our study aims to explore the role of miR-1306-5p in cell malignant phenotypes of colorectal cancer cells. RT-qPCR was performed to assess the expression of miR-1306-5p in colorectal cancer samples and cell lines. The effects of miR-1306-5p on cell proliferation, migration, and invasion were evaluated through the CCK-8 assay, wound healing assay, and transwell invasion assay, respectively. Apoptosis was detected by flow cytometry. Luciferase reporter assay was used to predict the target gene of miR-1306-5p. Western blot was used to detect the expression levels of signal pathway molecules and target proteins. We found that miR-1306-5p was low-expressed in colorectal cancer tissues and cell lines, and its expression was also associated with colorectal cancer development and prognosis. MiR-1306-5p overexpression led to a decrease in colorectal cancer cell proliferation, migration, and invasion, while promoting apoptosis. Moreover, it was discovered that SLCO2A1 was a target of miR-1306-5p. By targeting SLCO2A1, overexpression of miR-1306-5p could inhibit the PI3K/AKT/mTOR signaling pathway. Overexpression of miR-1306-5p inhibited the colorectal cancer cell malignant phenotypes via regulating PI3K/AKT/mTOR signaling pathway regulation by targeting SLCO2A1. Therefore, miR-1306-5p can be a prospective therapeutic target for treating colorectal cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - Jun Zhang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - YunXiu Fan
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - Li Zhang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| |
Collapse
|
8
|
Assessment of hepatic prostaglandin E 2 level in carbamazepine induced liver injury. Endocr Regul 2022; 56:22-30. [PMID: 35180822 DOI: 10.2478/enr-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective. Carbamazepine (CBZ), a widely used antiepileptic drug, is one major cause of the idiosyncratic liver injury along with immune reactions. Conversely, prostaglandin E2 (PGE2) demonstrates a hepatoprotective effect by regulating immune reactions and promoting liver repair in various types of liver injury. However, the amount of hepatic PGE2 during CBZ-induced liver injury remains elusive. In this study, we aimed to evaluate the hepatic PGE2 levels during CBZ-induced liver injury using a mouse model. Methods. Mice were orally administered with CBZ at a dose of 400 mg/kg for 4 days, and 800 mg/kg on the 5th day. Results. Plasma alanine transaminase (ALT) level increased in some of mice 24 h after the last CBZ administration. Although median value of hepatic PGE2 amount in the CBZ-treated mice showed same extent as vehicle-treated control mice, it exhibited significant elevated level in mice with severe liver injury presented by a plasma ALT level >1000 IU/L. According to these results, mice had a plasma ALT level >1000 IU/L were defined as responders and the others as non-responders in this study. Even though, the hepatic PGE2 levels increased in responders, the hepatic expression and enzyme activity related to PGE2 production were not upregulated when compared with vehicle-treated control mice. However, the hepatic 15-hydroxyprostaglandin dehydrogenase (15-PGDH) expression and activity decreased significantly in responders when compared with control mice. Conclusions. These results indicate that elevated hepatic PGE2 levels can be attributed to the downregulation of 15-PGDH expression under CBZ-induced liver injury.
Collapse
|
9
|
Okada Y, Sabirov RZ, Merzlyak PG, Numata T, Sato-Numata K. Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's. Front Physiol 2022; 12:805148. [PMID: 35002778 PMCID: PMC8733619 DOI: 10.3389/fphys.2021.805148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular identification was, at last, successfully accomplished for three types of anion channels that are all implicated in cell volume regulation/dysregulation. LRRC8A plus LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel (Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively. In this review article, we summarize their biophysical and structural properties as well as their physiological roles by comparing with each other on the basis of their molecular insights. We also point out unsolved important issues to be elucidated soon in the future.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
10
|
Song ZB, Yu Y, Zhang GP, Li SQ. Genomic Instability of Mutation-Derived Gene Prognostic Signatures for Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:728574. [PMID: 34676211 PMCID: PMC8523793 DOI: 10.3389/fcell.2021.728574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major cancer-related deaths worldwide. Genomic instability is correlated with the prognosis of cancers. A biomarker associated with genomic instability might be effective to predict the prognosis of HCC. In the present study, data of HCC patients from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases were used. A total of 370 HCC patients from the TCGA database were randomly classified into a training set and a test set. A prognostic signature of the training set based on nine overall survival (OS)–related genomic instability–derived genes (SLCO2A1, RPS6KA2, EPHB6, SLC2A5, PDZD4, CST2, MARVELD1, MAGEA6, and SEMA6A) was constructed, which was validated in the test and TCGA and ICGC sets. This prognostic signature showed more accurate prediction for prognosis of HCC compared with tumor grade, pathological stage, and four published signatures. Cox multivariate analysis revealed that the risk score could be an independent prognostic factor of HCC. A nomogram that combines pathological stage and risk score performed well compared with an ideal model. Ultimately, paired differential expression profiles of genes in the prognostic signature were validated at mRNA and protein level using HCC and paratumor tissues obtained from our institute. Taken together, we constructed and validated a genomic instability–derived gene prognostic signature, which can help to predict the OS of HCC and help us to explore the potential therapeutic targets of HCC.
Collapse
Affiliation(s)
- Ze-Bing Song
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yu
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo-Pei Zhang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shao-Qiang Li
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Liang Y, Wang M, Liu Y, Wang C, Takahashi K, Naruse K. Meta-Analysis-Assisted Detection of Gravity-Sensitive Genes in Human Vascular Endothelial Cells. Front Cell Dev Biol 2021; 9:689662. [PMID: 34422812 PMCID: PMC8371407 DOI: 10.3389/fcell.2021.689662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gravity affects the function and maintenance of organs, such as bones, muscles, and the heart. Several studies have used DNA microarrays to identify genes with altered expressions in response to gravity. However, it is technically challenging to combine the results from various microarray datasets because of their different data structures. We hypothesized that it is possible to identify common changes in gene expression from the DNA microarray datasets obtained under various conditions and methods. In this study, we grouped homologous genes to perform a meta-analysis of multiple vascular endothelial cell and skeletal muscle datasets. According to the t-distributed stochastic neighbor embedding (t-SNE) analysis, the changes in the gene expression pattern in vascular endothelial cells formed specific clusters. We also identified candidate genes in endothelial cells that responded to gravity. Further, we exposed human umbilical vein endothelial cells (HUVEC) to simulated microgravity (SMG) using a clinostat and measured the expression levels of the candidate genes. Gene expression analysis using qRT-PCR revealed that the expression level of the prostaglandin (PG) transporter gene SLCO2A1 decreased in response to microgravity, consistent with the meta-analysis of microarray datasets. Furthermore, the direction of gravity affected the expression level of SLCO2A1, buttressing the finding that its expression was affected by gravity. These results suggest that a meta-analysis of DNA microarray datasets may help identify new target genes previously overlooked in individual microarray analyses.
Collapse
Affiliation(s)
- Yin Liang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mengxue Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yun Liu
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chen Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
12
|
Sabirov RZ, Islam MR, Okada T, Merzlyak PG, Kurbannazarova RS, Tsiferova NA, Okada Y. The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners and Physiological/Pathophysiological Implications. Life (Basel) 2021; 11:life11060509. [PMID: 34073084 PMCID: PMC8229958 DOI: 10.3390/life11060509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large-conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300-400 pS, linear current-to-voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Maxi-Cl channel. Its identification as a complex with SLCO2A1 as a core pore-forming component and two auxiliary regulatory proteins, annexin A2 and S100A10 (p11), explains the activation mechanism as Tyr23 dephosphorylation at ANXA2 in parallel with calcium binding at S100A10. In the resting state, SLCO2A1 functions as a prostaglandin transporter whereas upon activation it turns to an anion channel. As an efficient pathway for chloride, Maxi-Cl is implicated in a number of physiologically and pathophysiologically important processes, such as cell volume regulation, fluid secretion, apoptosis, and charge transfer. Maxi-Cl is permeable for ATP and other small signaling molecules serving as an electrogenic pathway in cell-to-cell signal transduction. Mutations at the SLCO2A1 gene cause inherited bone and gut pathologies and malignancies, signifying the Maxi-Cl channel as a perspective pharmacological target.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| | - Md. Rafiqul Islam
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Toshiaki Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Veneno Technologies Co. Ltd., Tsukuba 305-0031, Japan
| | - Petr G. Merzlyak
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Ranokhon S. Kurbannazarova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Nargiza A. Tsiferova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Yasunobu Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| |
Collapse
|
13
|
Tang M, Tiwari SK, Agrawal K, Tan M, Dang J, Tam T, Tian J, Wan X, Schimelman J, You S, Xia Q, Rana TM, Chen S. Rapid 3D Bioprinting of Glioblastoma Model Mimicking Native Biophysical Heterogeneity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006050. [PMID: 33502104 PMCID: PMC8049977 DOI: 10.1002/smll.202006050] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Indexed: 05/14/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor characterized by high cellular and molecular heterogeneity, hypervascularization, and innate drug resistance. Cellular components and extracellular matrix (ECM) are the two primary sources of heterogeneity in GBM. Here, biomimetic tri-regional GBM models with tumor regions, acellular ECM regions, and an endothelial region with regional stiffnesses patterned corresponding to the GBM stroma, pathological or normal brain parenchyma, and brain capillaries, are developed. Patient-derived GBM cells, human endothelial cells, and hyaluronic acid derivatives are used to generate a species-matched and biochemically relevant microenvironment. This in vitro study demonstrates that biophysical cues are involved in various tumor cell behaviors and angiogenic potentials and promote different molecular subtypes of GBM. The stiff models are enriched in the mesenchymal subtype, exhibit diffuse invasion of tumor cells, and induce protruding angiogenesis and higher drug resistance to temozolomide. Meanwhile, the soft models demonstrate enrichment in the classical subtype and support expansive cell growth. The three-dimensional bioprinting technology utilized in this study enables rapid, flexible, and reproducible patient-specific GBM modeling with biophysical heterogeneity that can be employed by future studies as a tunable system to interrogate GBM disease mechanisms and screen drug compounds.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Kriti Agrawal
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew Tan
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Jason Dang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Trevor Tam
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jing Tian
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Xueyi Wan
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Qinghui Xia
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
14
|
Tang L, Zhu Q, Wang Z, Shanahan CM, Bensen JT, Fontham ETH, Smith GJ, Pop EA, Azabdaftari G, Mohler JL, Wu Y. Differential Associations of SLCO Transporters with Prostate Cancer Aggressiveness between African Americans and European Americans. Cancer Epidemiol Biomarkers Prev 2021; 30:990-999. [PMID: 33619025 DOI: 10.1158/1055-9965.epi-20-1389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Androgen receptor signaling is crucial to prostate cancer aggressiveness. Members of the solute carrier family of the organic anion transporting peptides (SLCO) are potential regulators of androgen availability in prostate tissue. It remains unknown whether genetic variations in SLCOs contribute to the differences in prostate cancer aggressiveness in African Americans (AA) and European Americans (EA). METHODS SNPs in 11 SLCO members were selected, with addition of 139 potentially functional SNPs and 128 ancestry informative markers. A total of 1,045 SNPs were genotyped and analyzed in 993 AAs and 1,057 EAs from the North Carolina-Louisiana Prostate Cancer Project. Expression and cellular localization of SLCOs were examined using qRT-PCR, IHC, and in situ RNA hybridization in independent sets of prostate cancer cases. RESULTS Significant associations with prostate cancer characteristics were found for SNPs in SLCO2A1 and SLCO5A1. The associations differed by race (P interaction < 0.05). SNPs in SLCO2A1 were associated with reduced tumor aggressiveness and low Gleason score in AAs; whereas, SNPs in SLCO5A1 were associated with high clinical stage in EAs. In prostate tissue, SLCO2A1 and SLCO5A1 were the most expressed SLCOs at the mRNA level and were expressed predominantly in prostate endothelial and epithelial cells at the protein level, respectively. CONCLUSIONS SLCO2A1 and SLCO5A1 play important but different roles in prostate cancer aggressiveness in AAs versus EAs. IMPACT The finding calls for consideration of racial differences in biomarker studies of prostate cancer and for investigations on functions of SLCO2A1 and SLCO5A1 in prostate cancer.
Collapse
Affiliation(s)
- Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Zinian Wang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Clayton M Shanahan
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jeannette T Bensen
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Gary J Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elena A Pop
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Gissou Azabdaftari
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yue Wu
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
15
|
Nakanishi T, Nakamura Y, Umeno J. Recent advances in studies of SLCO2A1 as a key regulator of the delivery of prostaglandins to their sites of action. Pharmacol Ther 2021; 223:107803. [PMID: 33465398 DOI: 10.1016/j.pharmthera.2021.107803] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (SLCO2A1, also known as PGT, OATP2A1, PHOAR2, or SLC21A2) is a plasma membrane transporter consisting of 12 transmembrane domains. It is ubiquitously expressed in tissues, and mediates the membrane transport of prostaglandins (PGs, mainly PGE2, PGF2α, PGD2) and thromboxanes (e.g., TxB2). SLCO2A1-mediated transport is electrogenic and is facilitated by an outwardly directed gradient of lactate. PGs imported by SLCO2A1 are rapidly oxidized by cytoplasmic 15-hydroxyprostaglandin dehydrogenase (15-PGDH, encoded by HPGD). Accumulated evidence suggests that SLCO2A1 plays critical roles in many physiological processes in mammals, and it is considered a potential pharmacological target for diabetic foot ulcer treatment, antipyresis, and non-hormonal contraception. Furthermore, whole-exome analyses suggest that recessive inheritance of SLCO2A1 mutations is associated with two refractory diseases, primary hypertrophic osteoarthropathy (PHO) and chronic enteropathy associated with SLCO2A1 (CEAS). Intriguingly, SLCO2A1 is also a key component of the Maxi-Cl channel, which regulates fluxes of inorganic and organic anions, including ATP. Further study of the bimodal function of SLCO2A1 as a transporter and ion channel is expected to throw new light on the complex pathology of human diseases. Here, we review and summarize recent information on the molecular functions of SLCO2A1, and we discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan.
| | - Yoshinobu Nakamura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
Prostaglandin E 2 Pathway Is Dysregulated in Gastric Adenocarcinoma in a Caucasian Population. Int J Mol Sci 2020; 21:ijms21207680. [PMID: 33081378 PMCID: PMC7589882 DOI: 10.3390/ijms21207680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) represents the third leading cause of cancer-related deaths worldwide. The levels of prostaglandin E2, a key player in the hallmarks of cancer, are mainly regulated by prostaglandin-endoperoxide synthase 2 (PTGS2) and ATP-binding cassette subfamily C member 4 (ABCC4), involved in its synthesis and exportation, respectively, and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and solute carrier organic anion transporter family member 2A1 (SLCO2A1), responsible for its inactivation. Even though there are distinct molecular signatures across ethnic populations, most published studies focus on Asian populations. Our main aim was to explore the genetic expression of the aforementioned molecules in a Caucasian population. 94 “Normal” and 89 tumoral formalin-fixed paraffin-embedded (FFPE) samples from GC patients were used to assess the mRNA expression of PTGS2, ABCC4, hydroxyprostaglandin dehydrogenase 15-(NAD) (HPGD), SLCO2A1 by Real-Time PCR. We found an upregulation for the PTGS2 gene mean factor of 2.51 and a downregulation for the HPGD and SLCO2A1 genes (mean factor of 0.10 and 0.37, respectively) in tumorous mucosa in a gender-independent manner. In females, we observed an ABCC4 downregulation and a PTGS2 mRNA upregulation compared to males in tumoral mucosa (mean factor of 0.61 and 1.64, respectively). We reported dysregulation of the inflammation triggered PGE2 pathway in a Caucasian population with an intermediate risk for GC, which might highlight the applicability of aspirin in the treatment of GC patients.
Collapse
|
17
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
18
|
Recapitulation of prostate tissue cell type-specific transcriptomes by an in vivo primary prostate tissue xenograft model. PLoS One 2020; 15:e0233899. [PMID: 32584883 PMCID: PMC7316257 DOI: 10.1371/journal.pone.0233899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Studies of the normal functions and diseases of the prostate request in vivo models that maintain the tissue architecture and the multiple-cell type compartments of human origin in order to recapitulate reliably the interactions of different cell types. Cell type-specific transcriptomes are critical to reveal the roles of each cell type in the functions and diseases of the prostate. A primary prostate tissue xenograft model was developed using fresh human prostate tissue specimens transplanted onto male mice that were castrated surgically and implanted with a device to maintain circulating testosterone levels comparable to adult human males. Endothelial cells and epithelial cells were isolated from 7 fresh human prostate tissue specimens and from primary tissue xenografts established from 9 fresh human prostate tissue specimens, using antibody-conjugated magnetic beads specific to human CD31 and human EpCAM, respectively. Transcriptomes of endothelial, epithelial and stromal cell fractions were obtained using RNA-Seq. Global and function-specific gene expression profiles were compared in inter-cell type and inter-tissue type manners. Gene expression profiles in the individual cell types isolated from xenografts were similar to those of cells isolated from fresh tissue, demonstrating the value of the primary tissue xenograft model for studies of the inter-relationships between prostatic cell types and the role of such inter-relationships in organ development, disease progression, and response to drug treatments.
Collapse
|
19
|
Shimada H, Hashimoto R, Aoki A, Yamada S, Oba KI, Kawase A, Nakanishi T, Iwaki M. The regulatory mechanism involved in the prostaglandin E 2 disposition in carbon tetrachloride-induced liver injury. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102081. [PMID: 32155568 DOI: 10.1016/j.plefa.2020.102081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
Prostaglandin E2 (PGE2) exhibits hepatoprotective effects against various types of liver injury. However, there is little information on the disposition of endogenous PGE2 during liver injury. In the present study, we attempted to elucidate the mechanism involved in regulating PGE2 distribution during liver injury. Carbon tetrachloride (CCl4) was used to establish a liver injury mouse model. PGE2 was measured by LC-MS/MS. The plasma and hepatic PGE2 levels were significantly increased at 6 to 48 h after CCl4 treatment. The ratio of plasma levels of 13,14-dihydro-15-ketoPGE2 (PGEM), a major PGE2 metabolite, to PGE2 decreased significantly after CCl4 treatment. PGE2 synthesis and expression of enzymes related to PGE2 production were not induced, while the activity and mRNA expression of 15-prostaglandin dehydrogenase (15-PGDH/Hpgd), a major enzyme for PGE2 inactivation, decreased significantly in the liver of CCl4-treated mice compared to that of vehicle-treated control. The plasma and hepatic PGE2 levels were negatively correlated with the hepatic mRNA expression levels of Hpgd. Although the mRNA expression of organic anion transporting polypeptide 2A1 (OATP2A1/Slco2a1), a major PGE2 transporter, was upregulated, other hepatic OATPs decreased significantly at 24 h after CCl4 treatment. Immunohistochemical analysis indicated that 15-PGDH was mainly expressed in endothelial cells and that OATP2A1 was expressed at least in endothelial cells and Kupffer cells in the liver. These results suggest that the decreased 15-PGDH expression in hepatic endothelial cells is the principal mechanism for the increase in hepatic and plasma PGE2 levels due to the CCl4-induced liver injury.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Ryota Hashimoto
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Aya Aoki
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Saya Yamada
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Ken-Ichi Oba
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Atsushi Kawase
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan
| | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; Pharmaceutical Research and Technology Institute, Kindai University, Osaka 577-8502, Japan; Antiaging Center, Kindai University, Osaka 577-8502, Japan.
| |
Collapse
|
20
|
Slco2a1 deficiency exacerbates experimental colitis via inflammasome activation in macrophages: a possible mechanism of chronic enteropathy associated with SLCO2A1 gene. Sci Rep 2020; 10:4883. [PMID: 32184453 PMCID: PMC7078201 DOI: 10.1038/s41598-020-61775-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Loss-of-function mutations in the solute carrier organic anion transporter family, member 2a1 gene (SLCO2A1), which encodes a prostaglandin (PG) transporter, have been identified as causes of chronic nonspecific multiple ulcers in the small intestine; however, the underlying mechanisms have not been revealed. We, therefore, evaluated the effects of systemic knockout of Slco2a1 (Slco2a1−/−) and conditional knockout in intestinal epithelial cells (Slco2a1ΔIEC) and macrophages (Slco2a1ΔMP) in mice with dextran sodium sulphate (DSS)-induced acute colitis. Slco2a−/− mice were more susceptible to DSS-induced colitis than wild-type (WT) mice, but did not spontaneously develop enteritis or colitis. The nucleotide-binding domain, leucine-rich repeats containing family, pyrin domain-containing-3 (NLRP3) inflammasome was more strongly upregulated in colon tissues of Slco2a−/− mice administered DSS and in macrophages isolated from Slco2a1−/− mice than in the WT counterparts. Slco2a1ΔMP, but not Slco2a1ΔIEC mice, were more susceptible to DSS-induced colitis than WT mice, partly phenocopying Slco2a−/− mice. Concentrations of PGE2 in colon tissues and macrophages from Slco2a1−/− mice were significantly higher than those of WT mice. Blockade of inflammasome activation suppressed the exacerbation of colitis. These results indicated that Slco2a1-deficiency increases the PGE2 concentration, resulting in NLRP3 inflammasome activation in macrophages, thus exacerbating intestinal inflammation.
Collapse
|
21
|
Wang Y, Ma S, Ruzzo WL. Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities. Sci Rep 2020; 10:3490. [PMID: 32103057 PMCID: PMC7044328 DOI: 10.1038/s41598-020-60384-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/11/2020] [Indexed: 01/24/2023] Open
Abstract
Spatial heterogeneity is a fundamental feature of the tumor microenvironment (TME), and tackling spatial heterogeneity in neoplastic metabolic aberrations is critical for tumor treatment. Genome-scale metabolic network models have been used successfully to simulate cancer metabolic networks. However, most models use bulk gene expression data of entire tumor biopsies, ignoring spatial heterogeneity in the TME. To account for spatial heterogeneity, we performed spatially-resolved metabolic network modeling of the prostate cancer microenvironment. We discovered novel malignant-cell-specific metabolic vulnerabilities targetable by small molecule compounds. We predicted that inhibiting the fatty acid desaturase SCD1 may selectively kill cancer cells based on our discovery of spatial separation of fatty acid synthesis and desaturation. We also uncovered higher prostaglandin metabolic gene expression in the tumor, relative to the surrounding tissue. Therefore, we predicted that inhibiting the prostaglandin transporter SLCO2A1 may selectively kill cancer cells. Importantly, SCD1 and SLCO2A1 have been previously shown to be potently and selectively inhibited by compounds such as CAY10566 and suramin, respectively. We also uncovered cancer-selective metabolic liabilities in central carbon, amino acid, and lipid metabolism. Our novel cancer-specific predictions provide new opportunities to develop selective drug targets for prostate cancer and other cancers where spatial transcriptomics datasets are available.
Collapse
Affiliation(s)
- Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Shuyi Ma
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Walter L Ruzzo
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98102, USA
| |
Collapse
|
22
|
Liu PY, Tee AE, Milazzo G, Hannan KM, Maag J, Mondal S, Atmadibrata B, Bartonicek N, Peng H, Ho N, Mayoh C, Ciaccio R, Sun Y, Henderson MJ, Gao J, Everaert C, Hulme AJ, Wong M, Lan Q, Cheung BB, Shi L, Wang JY, Simon T, Fischer M, Zhang XD, Marshall GM, Norris MD, Haber M, Vandesompele J, Li J, Mestdagh P, Hannan RD, Dinger ME, Perini G, Liu T. The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35. Nat Commun 2019; 10:5026. [PMID: 31690716 PMCID: PMC6831662 DOI: 10.1038/s41467-019-12971-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
The majority of patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein over-expression die of the disease. Here our analyses of RNA sequencing data identify the long noncoding RNA lncNB1 as one of the transcripts most over-expressed in MYCN-amplified, compared with MYCN-non-amplified, human neuroblastoma cells and also the most over-expressed in neuroblastoma compared with all other cancers. lncNB1 binds to the ribosomal protein RPL35 to enhance E2F1 protein synthesis, leading to DEPDC1B gene transcription. The GTPase-activating protein DEPDC1B induces ERK protein phosphorylation and N-Myc protein stabilization. Importantly, lncNB1 knockdown abolishes neuroblastoma cell clonogenic capacity in vitro and leads to neuroblastoma tumor regression in mice, while high levels of lncNB1 and RPL35 in human neuroblastoma tissues predict poor patient prognosis. This study therefore identifies lncNB1 and its binding protein RPL35 as key factors for promoting E2F1 protein synthesis, N-Myc protein stability and N-Myc-driven oncogenesis, and as therapeutic targets. MYCN amplification is common in neuroblastomas. Here, the authors identify a long noncoding RNA, lncNB1 in these cancers and show that it promotes tumorigenesis by binding to ribosomal protein, RPL35 to enhance E2F1 and DEPDC1B protein synthesis, which phosphorylates ERK to stabilise N-Myc.
Collapse
Affiliation(s)
- Pei Y Liu
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Andrew E Tee
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Katherine M Hannan
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jesper Maag
- Garvan Institute of Medical Research, Sydney, Darlinghurst, NSW, 2010, Australia.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sujanna Mondal
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Bernard Atmadibrata
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research, Sydney, Darlinghurst, NSW, 2010, Australia.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hui Peng
- Advanced Analytics Institute, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Nicholas Ho
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Roberto Ciaccio
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Yuting Sun
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Michelle J Henderson
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Jixuan Gao
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Celine Everaert
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Amy J Hulme
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Matthew Wong
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Qing Lan
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, 215004, Suzhou, Jiangsu, P.R. China
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 201203, Shanghai, China
| | - Jenny Y Wang
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, University Hospital, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Hospital, University of Cologne, Cologne, Germany
| | - Xu D Zhang
- School of Medicine and Public Health, Priority Research Centre for Cancer Research, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Jinyan Li
- Advanced Analytics Institute, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Pieter Mestdagh
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Ross D Hannan
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.,School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4067, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, Darlinghurst, NSW, 2010, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia.
| |
Collapse
|
23
|
Risk of Developing Hepatocellular Carcinoma following Depressive Disorder Based on the Expression Level of Oatp2a1 and Oatp2b1. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3617129. [PMID: 31467884 PMCID: PMC6699297 DOI: 10.1155/2019/3617129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/31/2019] [Accepted: 06/09/2019] [Indexed: 11/18/2022]
Abstract
Background Accumulating evidence from prospective epidemiological studies has showed that depression disorder (DD) is a risk factor for cancer. The aim of this study is to explore the association of DD and the overall occurrence risk of hepatocellular carcinoma (HCC) and the mechanism. Methods In this study, 60 mice were randomly divided into four groups: Control group, DD group, HCC group, HCC-DD group. Mice received a chronic dose of reserpine to establish depression model, followed by Diethylnitrosamine and Carbon tetrachloride administration to establish HCC models. Behavioral depression was assessed by sucrose preference test (SPT) and the expression of Serotonin 1A (5-HT1A) receptor in the hippocampal. The expression of Oatp2a1 and Oatp2b1 in the digestive system tissues was detected by PCR and western blotting. Results Reserpine-administrated mice had a reducing sucrose preference at Day 14 compared with blank mice (P<0.05). The expression of 5-HT1A receptor in the hippocampal was decreased in DD mice compared with blank mice. The survival analysis indicated that the HCC mice with DD have poorer survival rate compared with the HCC mice. Compared with HCC mice, the expression of Oatp2a1 and Oatp2b1 was lower in liver and stomach tissue and higher in hepatic carcinoma and colon tissue of HCC-DD mice (P<0.05), and the expression of Oatp2a1 was higher in the spleen tissue of HCC-DD mice while the expression of Oatp2b1 was lower (P<0.05). However, no difference was found in the expression of Oatp2a1 and Oatp2b1 in the small intestine tissue between HCC group and HCC-DD group. Conclusions DD was the adverse factors for the overall occurrence risk of HCC. Mechanistically, be the downregulation of Oatp2a1 and Oatp2b1 in liver tissue induced by DD might be involved.
Collapse
|
24
|
Oswald S. Organic Anion Transporting Polypeptide (OATP) transporter expression, localization and function in the human intestine. Pharmacol Ther 2019; 195:39-53. [DOI: 10.1016/j.pharmthera.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Nakanishi T, Takashima H, Uetoko Y, Komori H, Tamai I. Experimental Evidence for Resecretion of PGE2 across Rat Alveolar Epithelium by OATP2A1/SLCO2A1-Mediated Transcellular Transport. J Pharmacol Exp Ther 2018; 368:317-325. [DOI: 10.1124/jpet.118.249789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022] Open
|
26
|
Nakamura Y, Nakanishi T, Tamai I. Membrane Transporters Contributing to PGE 2 Distribution in Central Nervous System. Biol Pharm Bull 2018; 41:1337-1347. [DOI: 10.1248/bpb.b18-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshinobu Nakamura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
27
|
Prostaglandin Transporter OATP2A1/ SLCO2A1 Is Essential for Body Temperature Regulation during Fever. J Neurosci 2018; 38:5584-5595. [PMID: 29899035 DOI: 10.1523/jneurosci.3276-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023] Open
Abstract
Prostaglandin E2 (PGE2) in the hypothalamus is a principal mediator of the febrile response. However, the role of organic anion transporting polypeptide 2A1 (OATP2A1/SLCO2A1), a prostaglandin transporter, in facilitating this response is unknown. Here, we investigated the effect of Slco2a1 deficiency on the body core temperature (Tc) and on the PGE2 concentration in hypothalamus interstitial fluid (Cisf) and CSF (Ccsf) of lipopolysaccharide (LPS; 100 μg/kg, i.p.)-treated mice of both sexes. Slco2a1-/- mice did not develop a febrile response. Ccsf was increased in Slco2a1+/+ and Slco2a1-/- mice, and Ccsf of Slco2a1-/- mice was well maintained at 5 h after LPS injection (1160 pg/ml) compared with Slco2a1+/+ mice (316 pg/ml). A microdialysis study revealed that Cisf peaked at 2 h after LPS injection in Slco2a1+/+ mice (841 pg/ml), whereas the increase in Cisf was negligible in Slco2a1-/- mice. The PGE2 plasma concentration in Slco2a1-/- mice (201 pg/ml) was significantly higher than that in Slco2a1+/+ mice (54 pg/ml) at 1 h after LPS injection, whereas the two groups showed similar PGE2 concentrations in the hypothalamus. Strong Oatp2a1 immunoreactivity was observed in F4/80-positive microglia and perivascular cells and in brain capillary endothelial cells. The changes in Tc and Cisf seen in LPS-injected Slco2a1+/+ mice were partially attenuated in monocyte-/macrophage-specific Slco2a1-/- (Slco2a1Fl/Fl/LysMCre/+) mice. Thus, OATP2A1 facilitates the LPS-induced febrile response by maintaining a high level of Cisf, possibly by regulating PGE2 secretion from F4/80-positive glial cells and/or facilitating PGE2 transport across the blood-brain barrier. These findings suggest that OATP2A1 is a useful therapeutic target for neuroinflammation.SIGNIFICANCE STATEMENT Fever is a physiological response caused by pyrogen-induced release of prostaglandin E2 (PGE2) in the hypothalamus, which plays a central role in regulating the set-point of body temperature. However, it is unclear whether the prostaglandin transporter OATP2A1/SLCO2A1 is involved in this response. We show here that LPS-induced fever is associated with increased PGE2 concentration in hypothalamus interstitial fluid (Cisf), but not in CSF (Ccsf), by means of a microdialysis study in global Slco2a1-knock-out mice and monocyte-/macrophage-specific Slco2a1-knock-out mice. The results suggest that OATP2A1 serves as a regulator of Cisf in F4/80-positive glial cells. OATP2A1 was detected immunohistochemically in brain capillary endothelial cells and, therefore, may also play a role in PGE2 transport across the blood-brain barrier.
Collapse
|