1
|
Coplen CP, Jergovic M, Terner EL, Bradshaw CM, Uhrlaub JL, Nikolich JŽ. Virological, innate, and adaptive immune profiles shaped by variation in route and age of host in murine cytomegalovirus infection. J Virol 2024; 98:e0198623. [PMID: 38619272 PMCID: PMC11092346 DOI: 10.1128/jvi.01986-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
Human cytomegalovirus (hCMV) is a ubiquitous facultative pathogen, which establishes a characteristic latent and reactivating lifelong infection in immunocompetent hosts. Murine CMV (mCMV) infection is widely used as an experimental model of hCMV infection, employed to investigate the causal nature and extent of CMV's contribution to inflammatory, immunological, and health disturbances in humans. Therefore, mimicking natural human infection in mice would be advantageous to hCMV research. To assess the role of route and age at infection in modeling hCMV in mice, we infected prepubescent and young sexually mature C57BL/6 (B6) mice intranasally (i.n., a likely physiological route in humans) and intraperitoneally (i.p., a frequently used experimental route, possibly akin to transplant-mediated infection). In our hands, both routes led to comparable early viral loads and tissue spreads. However, they yielded differential profiles of innate and adaptive systemic immune activation. Specifically, the younger, prepubescent mice exhibited the strongest natural killer cell activation in the blood in response to i.p. infection. Further, the i.p. infected animals (particularly those infected at 12 weeks) exhibited larger anti-mCMV IgG and greater expansion of circulating CD8+ T cells specific for both acute (non-inflationary) and latent phase (inflationary) mCMV epitopes. By contrast, tissue immune responses were comparable between i.n. and i.p. groups. Our results illustrate a distinction in the bloodborne immune response profiles across infection routes and ages and are discussed in light of physiological parameters of interaction between CMV, immunity, inflammation, and health over the lifespan. IMPORTANCE The majority of experiments modeling human cytomegalovirus (hCMV) infection in mice have been carried out using intraperitoneal infection in sexually mature adult mice, which stands in contrast to the large number of humans being infected with human CMV at a young age, most likely via bodily fluids through the nasopharyngeal/oral route. This study examined the impact of the choice of age and route of infection in modeling CMV infection in mice. By comparing young, prepubescent to older sexually mature counterparts, infected either via the intranasal or intraperitoneal route, we discovered substantial differences in deployment and response intensity of different arms of the immune system in systemic control of the virus; tissue responses, by contrast, appeared similar between ages and infection routes.
Collapse
Affiliation(s)
- Christopher P. Coplen
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Mladen Jergovic
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Elana L. Terner
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Christine M. Bradshaw
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Jennifer L. Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| | - Janko Ž. Nikolich
- Department of Immunobiology, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine – Tucson, Tucson, Arizona, USA
| |
Collapse
|
2
|
Treating COVID-19: Targeting the Host Response, Not the Virus. Life (Basel) 2023; 13:life13030712. [PMID: 36983871 PMCID: PMC10054780 DOI: 10.3390/life13030712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
In low- and middle-income countries (LMICs), inexpensive generic drugs like statins, ACE inhibitors, and ARBs, especially if used in combination, might be the only practical way to save the lives of patients with severe COVID-19. These drugs will already be available in all countries on the first pandemic day. Because they target the host response to infection instead of the virus, they could be used to save lives during any pandemic. Observational studies show that inpatient statin treatment reduces 28–30-day mortality but randomized controlled trials have failed to show this benefit. Combination treatment has been tested for antivirals and dexamethasone but, with the exception of one observational study in Belgium, not for inexpensive generic drugs. Future pandemic research must include testing combination generic drug treatments that could be used in LMICs.
Collapse
|
3
|
Duran F, Boretto JM, Becker LA, Ibargüengoytía NR. Effects of an immune challenge on the thermal preferences of adult and newborn Liolaemus lizards from Patagonia, Argentina. AN ACAD BRAS CIENC 2023; 95:e20201923. [PMID: 37018837 DOI: 10.1590/0001-3765202320201923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/04/2021] [Indexed: 04/07/2023] Open
Abstract
Body temperature has relevant effects on the immune response. Here, we characterized the thermal biology and health condition of the viviparous lizard Liolaemus kingii from Patagonia (Argentina), by studying field body temperatures, presence of injuries or ectoparasites, body condition (BC), and individual immune response capacity with the phytohemagglutinin (PHA) skin-swelling assay. In addition, we analyzed the effects of injections of a bacterial endotoxin (lipopolysaccharide; LPS) on the preferred temperature (Tp) and BC of adult males and newborns. The PHA treatment caused detectable thickening at 2 and 20 hours post-assay in males, indicating a significant immune response related to an increase in cellular activity. LPS-challenged lizards thermoregulated accurately and at stable body temperatures within the 50% interquartile of Tp (Tset) over the 72-hour period while the control group showed a more variable and lower Tp. Exposure to LPS negatively affected the BC of newborns, whereas it did not affect the BC of adult males. LPS challenges, used as a proxy of pathogen exposures to study lizard behavioral thermoregulation, constitute a practical approach to assess the immunological constraints lizards from high-latitude regions may face due to global warming and anthropogenic disturbances.
Collapse
Affiliation(s)
- Fernando Duran
- Laboratorio de Eco-fisiología e Historia de Vida de Reptiles, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Rio Negro, Argentina
| | - Jorgelina M Boretto
- Laboratorio de Eco-fisiología e Historia de Vida de Reptiles, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Rio Negro, Argentina
| | - Leandro A Becker
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), 9120, Puerto Madryn, Chubut, Argentina
| | - Nora R Ibargüengoytía
- Laboratorio de Eco-fisiología e Historia de Vida de Reptiles, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Rio Negro, Argentina
| |
Collapse
|
4
|
Nguyen L, Castro O, De Dios R, Sandoval J, McKenna S, Wright CJ. Sex-differences in LPS-induced neonatal lung injury. Sci Rep 2019; 9:8514. [PMID: 31186497 PMCID: PMC6560218 DOI: 10.1038/s41598-019-44955-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
Being of the male sex has been identified as a risk factor for multiple morbidities associated with preterm birth, including bronchopulmonary dysplasia (BPD). Exposure to inflammatory stress is a well-recognized risk factor for developing BPD. Whether there is a sex difference in pulmonary innate immune TLR4 signaling, lung injury and subsequent abnormal lung development is unknown. Neonatal (P0) male and female mice (ICR) were exposed to systemic LPS (5 mg/kg, IP) and innate immune signaling, and the transcriptional response were assessed (1 and 5 hours), along with lung development (P7). Male and female mice demonstrated a similar degree of impaired lung development with decreased radial alveolar counts, increased surface area, increased airspace area and increased mean linear intercept. We found no differences between male and female mice in the baseline pulmonary expression of key components of TLR4-NFκB signaling, or in the LPS-induced pulmonary expression of key mediators of neonatal lung injury. Finally, we found no difference in the kinetics of LPS-induced pulmonary NFκB activation between male and female mice. Together, these data support the conclusion that the innate immune response to early postnatal LPS exposure and resulting pulmonary sequelae is similar in male and female mice.
Collapse
Affiliation(s)
- Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Odalis Castro
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jeryl Sandoval
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Joachim RB, Kobzik L. Why are children more resistant to mortality from severe infections? Future Microbiol 2018; 13:1549-1552. [PMID: 30421979 DOI: 10.2217/fmb-2018-0221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Rose B Joachim
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
6
|
Fedson DS. Influenza, evolution, and the next pandemic. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:260-269. [PMID: 30455951 PMCID: PMC6234328 DOI: 10.1093/emph/eoy027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
Mortality rates in influenza appear to have been shaped by evolution. During the 1918 pandemic, mortality rates were lower in children compared with adults. This mortality difference occurs in a wide variety of infectious diseases. It has been replicated in mice and might be due to greater tolerance of infection, not greater resistance. Importantly, combination treatment with inexpensive and widely available generic drugs (e.g. statins and angiotensin receptor blockers) might change the damaging host response in adults to a more tolerant response in children. These drugs might work by modifying endothelial dysfunction, mitochondrial biogenesis and immunometabolism. Treating the host response might be the only practical way to reduce global mortality during the next influenza pandemic. It might also help reduce mortality due to seasonal influenza and other forms of acute critical illness. To realize these benefits, we need laboratory and clinical studies of host response treatment before and after puberty.
Collapse
|
7
|
Joachim RB, Altschuler GM, Hutchinson JN, Wong HR, Hide WA, Kobzik L. The relative resistance of children to sepsis mortality: from pathways to drug candidates. Mol Syst Biol 2018; 14:e7998. [PMID: 29773677 PMCID: PMC5974511 DOI: 10.15252/msb.20177998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Attempts to develop drugs that address sepsis based on leads developed in animal models have failed. We sought to identify leads based on human data by exploiting a natural experiment: the relative resistance of children to mortality from severe infections and sepsis. Using public datasets, we identified key differences in pathway activity (Pathprint) in blood transcriptome profiles of septic adults and children. To find drugs that could promote beneficial (child) pathways or inhibit harmful (adult) ones, we built an in silico pathway drug network (PDN) using expression correlation between drug, disease, and pathway gene signatures across 58,475 microarrays. Specific pathway clusters from children or adults were assessed for correlation with drug‐based signatures. Validation by literature curation and by direct testing in an endotoxemia model of murine sepsis of the most correlated drug candidates demonstrated that the Pathprint‐PDN methodology is more effective at generating positive drug leads than gene‐level methods (e.g., CMap). Pathway‐centric Pathprint‐PDN is a powerful new way to identify drug candidates for intervention against sepsis and provides direct insight into pathways that may determine survival.
Collapse
Affiliation(s)
- Rose B Joachim
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel M Altschuler
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - John N Hutchinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Winston A Hide
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA .,Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| |
Collapse
|