1
|
Li YT, Lee HJ, Lin FH. Functional magnetic resonance imaging signal has sub-second temporal accuracy. J Cereb Blood Flow Metab 2024; 44:1643-1654. [PMID: 39234985 PMCID: PMC11418691 DOI: 10.1177/0271678x241241136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 09/06/2024]
Abstract
Neuronal activation sequence information is essential for understanding brain functions. Extracting such timing information from blood-oxygenation-level-dependent functional magnetic resonance imaging (fMRI) signals is confounded by local cerebral vascular reactivity (CVR), which varies across brain locations. Thus, detecting neuronal synchrony as well as inferring inter-regional causal modulation using fMRI signals can be biased. Here we used fast fMRI measurements sampled at 10 Hz to measure the fMRI latency difference between visual and sensorimotor areas when participants engaged in a visuomotor task. The regional fMRI timing was calibrated by subtracting the CVR latency measured by a breath-holding task. After CVR calibration, the fMRI signal at the lateral geniculate nucleus (LGN) preceded that at the visual cortex by 496 ms, followed by the fMRI signal at the sensorimotor cortex with a latency of 464 ms. Sequential LGN, visual, and sensorimotor cortex activations were found in each participant after the CVR calibration. These inter-regional fMRI timing differences across and within participants were more closely related to the reaction time after the CVR calibration. Our results suggested the feasibility of mapping brain activity using fMRI with accuracy in hundreds of milliseconds.
Collapse
Affiliation(s)
- Yi-Tien Li
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ju Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Li J, Liu Y, Wang Y, Wang N, Ji Y, Wei T, Bi H, Yang Y. Functional brain networks underlying the interaction between central and peripheral processes involved in Chinese handwriting in children and adults. Hum Brain Mapp 2023; 44:142-155. [PMID: 36005850 PMCID: PMC9783426 DOI: 10.1002/hbm.26055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
The neural mechanisms that support handwriting, an important mode of human communication, are thought to be controlled by a central process (responsible for spelling) and a peripheral process (responsible for motor output). However, the relationship between central and peripheral processes has been debated. Using functional magnetic resonance imaging, this study examined the neural mechanisms underlying this relationship in Chinese handwriting in 36 children (mean age = 10.40 years) and 56 adults (mean age = 22.36 years) by manipulating character frequency (a central variable). Brain network analysis showed that character frequency reconfigured functional brain networks known to underlie motor processes, including the somatomotor and cerebellar network, in both children and adults, indicating that central processing cascades into peripheral processing. Furthermore, the network analysis characterized the interaction profiles between motor networks and linguistic-cognitive networks, fully mapping the neural architecture that supports the interaction of central and peripheral processes involved in handwriting. Taken together, these results reveal the neural interface underlying the interaction between central and peripheral processes involved in handwriting in a logographic writing system, advancing our understanding of the neural basis of handwriting.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning DifficultiesInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Ying Liu
- School of Medical HumanitiesCapital Medical UniversityBeijingChina
| | - Yi Wang
- School of Mechanical and Materials EngineeringNorth China University of TechnologyBeijingChina
| | - Nizhuan Wang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
- Artificial Intelligence and Neuro‐Informatics Engineering (ARINE) LaboratorySchool of Computer Engineering, Jiangsu Ocean UniversityLianyungangChina
| | - Yuzhu Ji
- Department of Psychology, College of EducationZhejiang University of TechnologyHangzhouChina
| | - Tongqi Wei
- Pan Shuh LibraryInstitute of Psychology, Chinese Academy of SciencesBeijingChina
| | - Hong‐Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning DifficultiesInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning DifficultiesInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Sundermann B, Billebaut B, Bauer J, Iacoban CG, Alykova O, Schülke C, Gerdes M, Kugel H, Neduvakkattu S, Bösenberg H, Mathys C. Practical Aspects of novel MRI Techniques in Neuroradiology: Part 2 - Acceleration Methods and Implications for Individual Regions. ROFO-FORTSCHR RONTG 2022; 194:1195-1203. [PMID: 35798335 DOI: 10.1055/a-1800-8789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Recently introduced MRI techniques facilitate accelerated examinations or increased resolution with the same duration. Further techniques offer homogeneous image quality in regions with anatomical transitions. The question arises whether and how these techniques can be adopted for routine diagnostic imaging. METHODS Narrative review with an educational focus based on current literature research and practical experiences of different professions involved (physicians, MRI technologists/radiographers, physics/biomedical engineering). Different hardware manufacturers are considered. RESULTS AND CONCLUSIONS Compressed sensing and simultaneous multi-slice imaging are novel acceleration techniques with different yet complimentary applications. They do not suffer from classical signal-to-noise-ratio penalties. Combining 3 D and acceleration techniques facilitates new broader examination protocols, particularly for clinical brain imaging. In further regions of the nervous systems mainly specific applications appear to benefit from recent technological improvements. KEY POINTS · New acceleration techniques allow for faster or higher resolution examinations.. · New brain imaging approaches have evolved, including more universal examination protocols.. · Other regions of the nervous system are dominated by targeted applications of recently introduced MRI techniques.. CITATION FORMAT · Sundermann B, Billebaut B, Bauer J et al. Practical Aspects of novel MRI Techniques in Neuroradiology: Part 2 - Acceleration Methods and Implications for Individual Regions. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1800-8789.
Collapse
Affiliation(s)
- Benedikt Sundermann
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Germany.,Clinic for Radiology, University Hospital Münster, Germany
| | - Benoit Billebaut
- Clinic for Radiology, University Hospital Münster, Germany.,School for Radiologic Technologists, University Hospital Münster, Germany
| | - Jochen Bauer
- Clinic for Radiology, University Hospital Münster, Germany
| | - Catalin George Iacoban
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | - Olga Alykova
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | | | - Maike Gerdes
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | - Harald Kugel
- Clinic for Radiology, University Hospital Münster, Germany
| | | | - Holger Bösenberg
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Germany.,Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Germany
| |
Collapse
|
4
|
Lee H, Graham SJ, Kuo W, Lin F. Ballistocardiogram suppression in concurrent EEG-MRI by dynamic modeling of heartbeats. Hum Brain Mapp 2022; 43:4444-4457. [PMID: 35695703 PMCID: PMC9435020 DOI: 10.1002/hbm.25965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
The ballistocardiogram (BCG), the induced electric potentials by the head motion originating from heartbeats, is a prominent source of noise in electroencephalography (EEG) data during magnetic resonance imaging (MRI). Although methods have been proposed to suppress the BCG artifact, more work considering the variability of cardiac cycles and head motion across time and subjects is needed to provide highly robust correction. Here, a method called "dynamic modeling of heartbeats" (DMH) is proposed to reduce BCG artifacts in EEG data recorded inside an MRI system. The DMH method models BCG artifacts by combining EEG points at time instants with similar dynamics. The modeled BCG artifact is then subtracted from the EEG recording to suppress the BCG artifact. Performance of DMH was tested and specifically compared with the Optimal Basis Set (OBS) method on EEG data recorded inside a 3T MRI system with either no MRI acquisition (Inside-MRI), echo-planar imaging (EPI-EEG), or fast MRI acquisition using simultaneous multi-slice and inverse imaging methods (SMS-InI-EEG). In a steady-state visual evoked response (SSVEP) paradigm, the 15-Hz oscillatory neuronal activity at the visual cortex after DMH processing was about 130% of that achieved by OBS processing for Inside-MRI, SMS-InI-EEG, and EPI-EEG conditions. The DMH method is computationally efficient for suppressing BCG artifacts and in the future may help to improve the quality of EEG data recorded in high-field MRI systems for neuroscientific and clinical applications.
Collapse
Affiliation(s)
- Hsin‐Ju Lee
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada,Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Simon J. Graham
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada,Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Wen‐Jui Kuo
- Institute of NeuroscienceNational Yang Ming Chiao‐Tung UniversityTaipeiTaiwan,Brain Research CenterNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan
| | - Fa‐Hsuan Lin
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada,Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Hakonen M, Ikäheimonen A, Hultèn A, Kauttonen J, Koskinen M, Lin FH, Lowe A, Sams M, Jääskeläinen IP. Processing of an Audiobook in the Human Brain Is Shaped by Cultural Family Background. Brain Sci 2022; 12:brainsci12050649. [PMID: 35625035 PMCID: PMC9139798 DOI: 10.3390/brainsci12050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Perception of the same narrative can vary between individuals depending on a listener’s previous experiences. We studied whether and how cultural family background may shape the processing of an audiobook in the human brain. During functional magnetic resonance imaging (fMRI), 48 healthy volunteers from two different cultural family backgrounds listened to an audiobook depicting the intercultural social life of young adults with the respective cultural backgrounds. Shared cultural family background increased inter-subject correlation of hemodynamic activity in the left-hemispheric Heschl’s gyrus, insula, superior temporal gyrus, lingual gyrus and middle temporal gyrus, in the right-hemispheric lateral occipital and posterior cingulate cortices as well as in the bilateral middle temporal gyrus, middle occipital gyrus and precuneus. Thus, cultural family background is reflected in multiple areas of speech processing in the brain and may also modulate visual imagery. After neuroimaging, the participants listened to the narrative again and, after each passage, produced a list of words that had been on their minds when they heard the audiobook during neuroimaging. Cultural family background was reflected as semantic differences in these word lists as quantified by a word2vec-generated semantic model. Our findings may depict enhanced mutual understanding between persons who share similar cultural family backgrounds.
Collapse
Affiliation(s)
- Maria Hakonen
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 Espoo, Finland; (A.I.); (A.L.); (M.S.); (I.P.J.)
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
- Advanced Magnetic Imaging Centre, School of Science, Aalto University, 00076 Espoo, Finland
- Correspondence:
| | - Arsi Ikäheimonen
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 Espoo, Finland; (A.I.); (A.L.); (M.S.); (I.P.J.)
| | - Annika Hultèn
- Imaging Language, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Janne Kauttonen
- Digital Business, Haaga-Helia University of Applied Sciences, 00520 Helsinki, Finland;
| | - Miika Koskinen
- Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Fa-Hsuan Lin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anastasia Lowe
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 Espoo, Finland; (A.I.); (A.L.); (M.S.); (I.P.J.)
| | - Mikko Sams
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 Espoo, Finland; (A.I.); (A.L.); (M.S.); (I.P.J.)
- MAGICS Infrastructure, Aalto Studios, Aalto University, 02150 Espoo, Finland
| | - Iiro P. Jääskeläinen
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 Espoo, Finland; (A.I.); (A.L.); (M.S.); (I.P.J.)
- International Social Neuroscience Laboratory, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
6
|
Biswas D, Hippe DS, Wang Y, DelPriore MR, Zečević M, Scheel JR, Rahbar H, Partridge SC. Accelerated Breast Diffusion-weighted Imaging Using Multiband Sensitivity Encoding with the CAIPIRINHA Method: Clinical Experience at 3 T. Radiol Imaging Cancer 2022; 4:e210063. [PMID: 35029517 PMCID: PMC8830507 DOI: 10.1148/rycan.210063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 06/07/2023]
Abstract
Purpose To examine the clinical value of multiband (MB) sensitivity encoding (SENSE)-accelerated diffusion-weighted imaging (DWI) for breast imaging by performing quantitative and qualitative comparisons with conventional diffusion-weighted echo-planar imaging, or conventional DWI (cDWI). Materials and Methods In this prospective study (ClinicalTrials.gov identifier NCT03607552), women with breast cancer were recruited from July 2018 to July 2019 to undergo additional MB SENSE DWI during clinical 3-T breast MRI examinations. The cDWI and MB SENSE DWI acquisitions were assessed both quantitatively and qualitatively. Regions of interest were defined for tumorous and normal tissue, and the tumor apparent diffusion coefficient (ADC), contrast-to-noise ratio (CNR), and signal index (SI) were calculated for both DWI methods. Three readers independently reviewed the two acquisitions side by side and provided relative image quality scores. Tumor ADC, CNR, and SI measures were compared between cDWI and MB SENSE DWI acquisitions by using a paired t test, and reader preferences were evaluated by using the sign test. Results The study included 38 women (median age, 48 years; range, 28-83 years). Overall agreement was good between cDWI and MB SENSE DWI tumor ADC measures (intraclass correlation coefficient, 0.87 [95% CI: 0.75, 0.94]), and no differences were evident in the ADC (median, 0.93 × 10-3 mm2/sec vs 0.87 ×10-3 mm2/sec; P = .50), CNR (2.2 vs 2.3; P = .17), or SI (9.2 vs 9.2; P = .23) measurements. The image quality of cDWI and MB SENSE DWI acquisitions were considered equal for 51% of images (58 of 114), whereas MB SENSE DWI was preferred more often than cDWI (37% [42 of 114] vs 12% [14 of 114]; P < .001). The preference for MB SENSE DWI was most often attributed to better fat suppression. Conclusion MB SENSE can be used to accelerate breast DWI acquisition times without compromising the image quality or the fidelity of quantitative ADC measurements. Keywords: MR-Diffusion-weighted Imaging, Breast, Comparative Studies, Technology Assessment Clinical trial registration no. NCT03607552 © RSNA, 2022.
Collapse
|
7
|
Cheng PW, Chiueh TD, Chen JH. A high temporal/spatial resolution neuro-architecture study of rodent brain by wideband echo planar imaging. Sci Rep 2021; 11:20243. [PMID: 34642349 PMCID: PMC8511014 DOI: 10.1038/s41598-021-98132-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Latest simultaneous multi-slice (SMS) methods greatly benefit MR efficiency for recent studies using parallel imaging technique. However, these methods are limited by the requirement of array coils. The proposed Coherent Wideband method, which employs an extended field of view to separate multiple excited slices, can be applied to any existing MRI instrument, even those without array coils. In this study, the Coherent Wideband echo-planar imaging method was implemented on 7 T animal MRI to exhibit comprehensive enhancements in neuro-architecture, including diffusion tensor imaging (DTI) and functional MR studies (fMRI). Under the same scan time, the time-saving effect can be manipulated to increase the number of averages for DTI SNR improvement, reducing fractional anisotropy difference by 56.9% (from 0.072 to 0.041) and the deviation angle by 64% (from 25.3° to 16.2°). In summary, Coherent Wideband Echo Planar Imaging (EPI) will provide faster, higher resolution, thinner slice, or higher SNR imaging for precision neuro-architecture studies.
Collapse
Affiliation(s)
- Po-Wei Cheng
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Tzi-Dar Chiueh
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Jyh-Horng Chen
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, Interdisciplinary MRI/MRS Lab, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Pei Y, Xie S, Li W, Peng X, Qin Q, Ye Q, Li M, Hu J, Hou J, Li G, Hu S. Evaluation of simultaneous-multislice diffusion-weighted imaging of liver at 3.0 T with different breathing schemes. Abdom Radiol (NY) 2020; 45:3716-3729. [PMID: 32356004 DOI: 10.1007/s00261-020-02538-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To obtain the optimal simultaneous-multislice (SMS)-accelerated diffusion-weighted imaging (DWI) of the liver at 3.0 T MRI by systematically estimating the repeatability of apparent diffusion coefficient (ADC), signal-to-noise ratio (SNR) and image quality of different breathing schemes in comparison to standard DWI (STD) and other SMS sequences. METHODS In this institutional review board-approved prospective study, hepatic DWIs (b = 50, 300, 600 s/mm2) were performed in 23 volunteers on 3.0 T MRI using SMS and STD with breath-hold (BH-SMS, BH-STD), free-breathing (FB-SMS, FB-STD) and respiratory-triggered (RT-SMS, RT-STD). Reduction of scan time with SMS-acceleration was calculated. ADC and SNR were measured in nine anatomic locations and image quality was assessed on all SMS and STD sequences. An optimal SMS-DWI was decided by systematically comparing the ADC repeatability, SNR and image quality among above DWIs. RESULTS SMS-DWI reduced scan time significantly by comparison with corresponding STD-DWI (27 vs. 42 s for BH, 54 vs. 78 s for FB and 42 vs. 97 s for RT). In all DWIs, BH-SMS had the greatest intraobserver agreement (intraclass correlation coefficient (ICC): 0.920-0.944) and good interobserver agreement (ICC: 0.831-0.886) for ADC measurements, and had the best ADC repeatability (mean ADC absolute differences: 0.046-0.058 × 10-3mm2/s, limits of agreement (LOA): 0.010-0.013 × 10-3mm2/s) in nine locations. BH-SMS had the highest SNR in three representative sections except for RT-STD. There were no significant differences in image quality between BH-SMS and other DWI sequences (median BH-SMS: 4.75, other DWI: 4.5-5.0; P > 0.0.5). CONCLUSION BH-SMS provides considerable scan time reduction with good image quality, sufficient SNR and highest ADC repeatability on 3.0 T MRI, which is thus recommended as the optimal hepatic DWI sequence for those subjects with adequate breath-holding capability.
Collapse
|
9
|
Hennig J, Kiviniemi V, Riemenschneider B, Barghoorn A, Akin B, Wang F, LeVan P. 15 Years MR-encephalography. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:85-108. [PMID: 33079327 PMCID: PMC7910380 DOI: 10.1007/s10334-020-00891-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Objective This review article gives an account of the development of the MR-encephalography (MREG) method, which started as a mere ‘Gedankenexperiment’ in 2005 and gradually developed into a method for ultrafast measurement of physiological activities in the brain. After going through different approaches covering k-space with radial, rosette, and concentric shell trajectories we have settled on a stack-of-spiral trajectory, which allows full brain coverage with (nominal) 3 mm isotropic resolution in 100 ms. The very high acceleration factor is facilitated by the near-isotropic k-space coverage, which allows high acceleration in all three spatial dimensions. Methods The methodological section covers the basic sequence design as well as recent advances in image reconstruction including the targeted reconstruction, which allows real-time feedback applications, and—most recently—the time-domain principal component reconstruction (tPCR), which applies a principal component analysis of the acquired time domain data as a sparsifying transformation to improve reconstruction speed as well as quality. Applications Although the BOLD-response is rather slow, the high speed acquisition of MREG allows separation of BOLD-effects from cardiac and breathing related pulsatility. The increased sensitivity enables direct detection of the dynamic variability of resting state networks as well as localization of single interictal events in epilepsy patients. A separate and highly intriguing application is aimed at the investigation of the glymphatic system by assessment of the spatiotemporal patterns of cardiac and breathing related pulsatility. Discussion MREG has been developed to push the speed limits of fMRI. Compared to multiband-EPI this allows considerably faster acquisition at the cost of reduced image quality and spatial resolution.
Collapse
Affiliation(s)
- Juergen Hennig
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Bruno Riemenschneider
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Antonia Barghoorn
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burak Akin
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fei Wang
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre LeVan
- Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Gomez DE, Llera A, Marques JPF, Beckmann CF, Norris DG. Single-subject Single-session Temporally-Independent Functional Modes of Brain Activity. Neuroimage 2020; 218:116783. [DOI: 10.1016/j.neuroimage.2020.116783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
|
11
|
Lee HJ, Huang SY, Kuo WJ, Graham SJ, Chu YH, Stenroos M, Lin FH. Concurrent electrophysiological and hemodynamic measurements of evoked neural oscillations in human visual cortex using sparsely interleaved fast fMRI and EEG. Neuroimage 2020; 217:116910. [PMID: 32389729 DOI: 10.1016/j.neuroimage.2020.116910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022] Open
Abstract
Electroencephalography (EEG) concurrently collected with functional magnetic resonance imaging (fMRI) is heavily distorted by the repetitive gradient coil switching during the fMRI acquisition. The performance of the typical template-based gradient artifact suppression method can be suboptimal because the artifact changes over time. Gradient artifact residuals also impede the subsequent suppression of ballistocardiography artifacts. Here we propose recording continuous EEG with temporally sparse fast fMRI (fast fMRI-EEG) to minimize the EEG artifacts caused by MRI gradient coil switching without significantly compromising the field-of-view and spatiotemporal resolution of fMRI. Using simultaneous multi-slice inverse imaging to achieve whole-brain fMRI with isotropic 5-mm resolution in 0.1 s, and performing these acquisitions once every 2 s, we have 95% of the duty cycle available to record EEG with substantially less gradient artifact. We found that the standard deviation of EEG signals over the entire acquisition period in fast fMRI-EEG was reduced to 54% of that in conventional concurrent echo-planar imaging (EPI) and EEG recordings (EPI-EEG) across participants. When measuring 15-Hz steady-state visual evoked potentials (SSVEPs), the baseline-normalized oscillatory neural response in fast fMRI-EEG was 2.5-fold of that in EPI-EEG. The functional MRI responses associated with the SSVEP delineated by EPI and fast fMRI were similar in the spatial distribution, the elicited waveform, and detection power. Sparsely interleaved fast fMRI-EEG provides high-quality EEG without substantially compromising the quality of fMRI in evoked response measurements, and has the potential utility for applications where the onset of the target stimulus cannot be precisely determined, such as epilepsy.
Collapse
Affiliation(s)
- Hsin-Ju Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Shu-Yu Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ying-Hua Chu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| |
Collapse
|
12
|
Jiang JS, Zhu LN, Wu Q, Sun Y, Liu W, Xu XQ, Wu FY. Feasibility study of using simultaneous multi-slice RESOLVE diffusion weighted imaging to assess parotid gland tumors: comparison with conventional RESOLVE diffusion weighted imaging. BMC Med Imaging 2020; 20:93. [PMID: 32762734 PMCID: PMC7412638 DOI: 10.1186/s12880-020-00492-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Background To evaluate the feasibility of using simultaneous multi-slice (SMS) readout segmentation of long variable echo-trains (RESOLVE) diffusion-weighted imaging (DWI) to assess parotid gland tumors, compared with conventional RESOLVE DWI. Methods From September 2018 to December 2018, 20 consecutive patients with parotid tumors who underwent MRI scan for pre-surgery evaluation were enrolled. SMS-RESOLVE DWI and conventional RESOLVE DWI were scanned with matched imaging parameters, respectively. The scan time of two DWI sequences was recorded. Qualitative (anatomical structure differentiation, lesion display, artifact, and overall image quality) and quantitative (apparent diffusion coefficient, ADC; ratio of signal-to-noise ratio, SNR ratio; ratio of contrast-to-noise ratio, CNR ratio) assessments of image quality were performed, and compared between SMS-RESOLVE DWI and conventional RESOLVE DWI by using Paired t-test. Two-sided P value less than 0.05 indicated significant difference. Results The scan time was 3 min and 41 s for SMS-RESOLVE DWI, and 5 min and 46 s for conventional RESOLVE DWI. SMS-RESOLVE DWI produced similar qualitative image quality with RESOLVE DWI (anatomical structure differentiation, P = 0.164; lesion display, P = 0.193; artifact, P = 0.330; overall image quality, P = 0.083). Meanwhile, there were no significant difference on ADCLesion (P = 0.298), ADCMasseter (P = 0.122), SNR ratio (P = 0.584) and CNR ratio (P = 0.217) between two DWI sequences. Conclusion Compared with conventional RESOLVE DWI, SMS-RESOLVE DWI could provide comparable image quality using markedly reduced scan time. SMS could increase the clinical usability of RESOLVE technique for DWI of parotid gland.
Collapse
Affiliation(s)
- Jia-Suo Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Nanjing, China
| | - Liu-Ning Zhu
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Nanjing, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Nanjing, China.
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Nanjing, China.
| |
Collapse
|
13
|
The potential of MR-Encephalography for BCI/Neurofeedback applications with high temporal resolution. Neuroimage 2019; 194:228-243. [PMID: 30910728 DOI: 10.1016/j.neuroimage.2019.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
Real-time functional magnetic resonance imaging (rt-fMRI) enables the update of various brain-activity measures during an ongoing experiment as soon as a new brain volume is acquired. However, the recorded Blood-oxygen-level dependent (BOLD) signal also contains physiological artifacts such as breathing and heartbeat, which potentially cause misleading false positive effects especially problematic in brain-computer interface (BCI) and neurofeedback (NF) setups. The low temporal resolution of echo planar imaging (EPI) sequences (which is in the range of seconds) prevents a proper separation of these artifacts from the BOLD signal. MR-Encephalography (MREG) has been shown to provide the high temporal resolution required to unalias and correct for physiological fluctuations and leads to increased specificity and sensitivity for mapping task-based activation and functional connectivity as well as for detecting dynamic changes in connectivity over time. By comparing a simultaneous multislice echo planar imaging (SMS-EPI) sequence and an MREG sequence using the same nominal spatial resolution in an offline analysis for three different experimental fMRI paradigms (perception of house and face stimuli, motor imagery, Stroop task), the potential of this novel technique for future BCI and NF applications was investigated. First, adapted general linear model pre-whitening which accounts for the high temporal resolution in MREG was implemented to calculate proper statistical results and be able to compare these with the SMS-EPI sequence. Furthermore, the respiration- and cardiac pulsation-related signals were successfully separated from the MREG signal using independent component analysis which were then included as regressors for a GLM analysis. Only the MREG sequence allowed to clearly separate cardiac pulsation and respiration components from the signal time course. It could be shown that these components highly correlate with the recorded respiration and cardiac pulsation signals using a respiratory belt and fingertip pulse plethysmograph. Temporal signal-to-noise ratios of SMS-EPI and MREG were comparable. Functional connectivity analysis using partial correlation showed a reduced standard error in MREG compared to SMS-EPI. Also, direct time course comparisons by down-sampling the MREG signal to the SMS-EPI temporal resolution showed lower variance in MREG. In general, we show that the higher temporal resolution is beneficial for fMRI time course modeling and this aspect can be exploited in offline application but also, is especially attractive, for real-time BCI and NF applications.
Collapse
|
14
|
Rettenmeier C, Stenger VA. Radiofrequency phase encoded half-pulses in simultaneous multislice ultrashort echo time imaging. Magn Reson Med 2019; 81:3720-3733. [PMID: 30756426 DOI: 10.1002/mrm.27693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/06/2022]
Abstract
PURPOSE To describe a simultaneous multislice (SMS) ultrashort echo time (UTE) imaging method using radiofrequency phase encoded half-pulses in combination with power independent of number of slices (PINS) inversion recovery (IR) pulses to generate multiple-slice images with short T2 * contrasts in less than 3 min with close to an eightfold acceleration compared with a standard 2D approach. THEORY AND METHODS Radiofrequency phase encoding is applied in an SMS (NSMS = 4) excitation scheme using "sinc" half-pulses. With the use of coil sensitivity encoding (SENSE) and controlled aliasing in parallel imaging (CAIPI) in combination with a gradient echo 2D spiral readout trajectory and IR PINS pulses for contrast enhancement a fast UTE sequence is developed. Images are obtained using a model-based reconstruction method. Sequence details and performance tests on phantoms as well as the heads of healthy volunteers at 3T are presented. RESULTS An SMS UTE sequence with an undersampling factor of 4 is developed using radiofrequency phase encoded half-pulses and PINS IR pulses which enables the acquisition of 8 slices at 0.862 mm2 resolution in less than 3-min scan time. UTE images of the head are obtained showing highlighted signal of cortical bone. Image quality and T2 contrast are comparable to the one obtained by corresponding single slice acquisitions with only minor deviations. CONCLUSIONS The method combining radiofrequency phase encoded SMS half-pulses and PINS IR pulses presents a suitable approach to SMS UTE imaging. The usage of coil sensitivity information and increased sampling density by means of interleaved slice group acquisitions allows to reduce the total scan time by a factor close to 8.
Collapse
Affiliation(s)
- Christoph Rettenmeier
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - V Andrew Stenger
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|