1
|
Mani Giri P, Banerjee A, Ghosal A, Salu P, Reindl K, Layek B. Mesenchymal stem cell-delivered paclitaxel nanoparticles exhibit enhanced efficacy against a syngeneic orthotopic mouse model of pancreatic cancer. Int J Pharm 2024; 666:124753. [PMID: 39321899 DOI: 10.1016/j.ijpharm.2024.124753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic cancer is considered the deadliest among various solid tumors, with a five-year survival rate of 13 %. One of the major challenges in the management of advanced pancreatic cancer is the inefficient delivery of chemotherapeutics to the tumor site. Even though nanocarriers have been developed to improve tumoral delivery of chemotherapeutics, less than 1 % of the drugs reach tumors, rendering inadequate concentration for effective inhibition of tumors. As a potential alternative, mesenchymal stem cells (MSCs) can effectively deliver their cargo to tumor sites because of their resistance to chemotherapeutics and inherent tumor tropism. In this study, we used MSCs for the delivery of dibenzocyclooctyne (DBCO)-functionalized paclitaxel (PTX)-loaded poly(lactide-co-glycolide)-b-poly (ethylene glycol) (PLGA) nanoparticles. MSCs were modified to generate artificial azide groups on their surface, allowing nanoparticle loading via endocytosis and surface conjugation via click chemistry. This dual drug loading strategy significantly improves the PTX-loading capacity of azide-expressed MSCs (MSC-Az, 55.4 pg/cell) compared to unmodified MSCs (28.1 pg/cell). The in vitro studies revealed that PTX-loaded MSC-Az, nano-MSCs, exhibited cytotoxic effects against pancreatic cancer without altering their inherent phenotype, differentiation abilities, and tumor tropism. In an orthotopic pancreatic tumor model, nano-MSCs demonstrated significant inhibition of tumor growth (p < 0.05) and improved survival (p < 0.0001) compared to PTX solution, PTX nanocarriers, and Abraxane. Thus, nano-MSCs could be an effective delivery system for targeted pancreatic cancer chemotherapy and other solid tumors.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Arpita Ghosal
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Philip Salu
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Katie Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, United States.
| |
Collapse
|
2
|
Taheri M, Tehrani HA, Dehghani S, Rajabzadeh A, Alibolandi M, Zamani N, Arefian E, Ramezani M. Signaling crosstalk between mesenchymal stem cells and tumor cells: Implications for tumor suppression or progression. Cytokine Growth Factor Rev 2024; 76:30-47. [PMID: 38341337 DOI: 10.1016/j.cytogfr.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in various therapeutic applications over the last two decades, particularly in regenerative medicine and cancer treatment. MSCs have the ability to differentiate into mesodermal and non-mesodermal lineages, which makes them a popular choice in tissue engineering and regenerative medicine. Studies have shown that MSCs have inherent tumor-suppressive properties and can affect the behavior of multiple cells contributing to tumor development. Additionally, MSCs possess a tumor tropism property and have a hypoimmune nature. The intrinsic features of MSCs along with their potential to undergo genetic manipulation and be loaded with various anticancer therapeutics have motivated researchers to use them in different cancer therapy approaches without considering their complex dynamic biological aspects. However, despite their desirable features, several reports have shown that MSCs possess tumor-supportive properties. These contradictory results signify the sophisticated nature of MSCs and warn against the potential therapeutic applications of MSCs. Therefore, researchers should meticulously consider the biological properties of MSCs in preclinical and clinical studies to avoid any undesirable outcomes. This manuscript reviews preclinical studies on MSCs and cancer from the last two decades, discusses how MSC properties affect tumor progression and explains the mechanisms behind tumor suppressive and supportive functions. It also highlights critical cellular pathways that could be targeted in future studies to improve the safety and effectiveness of MSC-based therapies for cancer treatment. The insights obtained from this study will pave the way for further clinical research on MSCs and development of more effective cancer treatments.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rajabzadeh
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nina Zamani
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Takayama Y, Kusamori K, Katsurada Y, Obana S, Itakura S, Nishikawa M. Efficient delivery of mesenchymal stem/stromal cells to injured liver by surface PEGylation. Stem Cell Res Ther 2023; 14:216. [PMID: 37608303 PMCID: PMC10464485 DOI: 10.1186/s13287-023-03446-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) have been used in clinical trials for various diseases. These have certain notable functions such as homing to inflammation sites, tissue repair, and immune regulation. In many pre-clinical studies, MSCs administered into peripheral veins demonstrated effective therapeutic outcomes. However, most of the intravenously administered MSCs were entrapped in the lung, and homing to target sites was less than 1%. This occurred mainly because of the adhesion of MSCs to vascular endothelial cells in the lung. To prevent this adhesion, we modified the surface of MSCs with polyethylene glycol (PEG; a biocompatible polymer) using the avidin-biotin complex (ABC) method. METHODS The surface of MSCs was modified with PEG using the ABC method. Then, the cell adhesion to mouse aortic endothelial cells and the tissue distribution of PEG-modified MSCs were evaluated. Moreover, the homing to the injured liver and therapeutic effect of PEG-modified MSCs were evaluated using carbon tetrachloride-induced acute liver failure model mice. RESULTS The PEG modification significantly suppressed the adhesion of MSCs to cultured mouse aortic endothelial cells as well as the entrapment of MSCs in the lungs after intravenous injection in mice. PEG-modified MSCs efficiently homed to the injured liver of carbon tetrachloride-induced acute liver failure model mice. More importantly, the cells significantly suppressed serum transaminase levels and leukocyte infiltration into the injured liver. CONCLUSION These results indicate that PEG modification to the surface of MSCs can suppress the lung entrapment of intravenously administered MSCs and improve their homing to the injured liver.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Chuo-Ku, Kobe, 650-0047, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Yuri Katsurada
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shu Obana
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
4
|
Wu Y, Shum HCE, Wu K, Vadgama J. From Interaction to Intervention: How Mesenchymal Stem Cells Affect and Target Triple-Negative Breast Cancer. Biomedicines 2023; 11:1182. [PMID: 37189800 PMCID: PMC10136169 DOI: 10.3390/biomedicines11041182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expressions, making targeted therapies ineffective. Mesenchymal stem cells (MSCs) have emerged as a promising approach for TNBC treatment by modulating the tumor microenvironment (TME) and interacting with cancer cells. This review aims to comprehensively overview the role of MSCs in TNBC treatment, including their mechanisms of action and application strategies. We analyze the interactions between MSC and TNBC cells, including the impact of MSCs on TNBC cell proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance, along with the signaling pathways and molecular mechanisms involved. We also explore the impact of MSCs on other components of the TME, such as immune and stromal cells, and the underlying mechanisms. The review discusses the application strategies of MSCs in TNBC treatment, including their use as cell or drug carriers and the advantages and limitations of different types and sources of MSCs in terms of safety and efficacy. Finally, we discuss the challenges and prospects of MSCs in TNBC treatment and propose potential solutions or improvement methods. Overall, this review provides valuable insights into the potential of MSCs as a novel therapeutic approach for TNBC treatment.
Collapse
Affiliation(s)
- Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Hang Chee Erin Shum
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Alferiev IS, Hooshdaran B, Pressly BB, Zoltick PW, Stachelek SJ, Chorny M, Levy RJ, Fishbein I. Intraprocedural endothelial cell seeding of arterial stents via biotin/avidin targeting mitigates in-stent restenosis. Sci Rep 2022; 12:19212. [PMID: 36357462 PMCID: PMC9649779 DOI: 10.1038/s41598-022-23820-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Impaired endothelialization of endovascular stents has been established as a major cause of in-stent restenosis and late stent thrombosis. Attempts to enhance endothelialization of inner stent surfaces by pre-seeding the stents with endothelial cells in vitro prior to implantation are compromised by cell destruction during high-pressure stent deployment. Herein, we report on the novel stent endothelialization strategy of post-deployment seeding of biotin-modified endothelial cells to avidin-functionalized stents. Acquisition of an avidin monolayer on the stent surface was achieved by consecutive treatments of bare metal stents (BMS) with polyallylamine bisphosphonate, an amine-reactive biotinylation reagent and avidin. Biotin-modified endothelial cells retain growth characteristics of normal endothelium and can express reporter transgenes. Under physiological shear conditions, a 50-fold higher number of recirculating biotinylated cells attached to the avidin-modified metal surfaces compared to bare metal counterparts. Delivery of biotinylated endothelial cells to the carotid arterial segment containing the implanted avidin-modified stent in rats results in immediate cell binding to the stent struts and is associated with a 30% reduction of in-stent restenosis in comparison with BMS.
Collapse
Affiliation(s)
- Ivan S Alferiev
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Stanley J Stachelek
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael Chorny
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert J Levy
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ilia Fishbein
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Alagesan S, Brady J, Byrnes D, Fandiño J, Masterson C, McCarthy S, Laffey J, O’Toole D. Enhancement strategies for mesenchymal stem cells and related therapies. Stem Cell Res Ther 2022; 13:75. [PMID: 35189962 PMCID: PMC8860135 DOI: 10.1186/s13287-022-02747-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cell therapy, particularly mesenchymal stem/stromal (MSC) therapy, has been investigated for a wide variety of disease indications, particularly those with inflammatory pathologies. However, recently it has become evident that the MSC is far from a panacea. In this review we will look at current and future strategies that might overcome limitations in efficacy. Many of these take their inspiration from stem cell niche and the mechanism of MSC action in response to the injury microenvironment, or from previous gene therapy work which can now benefit from the added longevity and targeting ability of a live cell vector. We will also explore the nascent field of extracellular vesicle therapy and how we are already seeing enhancement protocols for this exciting new drug. These enhanced MSCs will lead the way in more difficult to treat diseases and restore potency where donors or manufacturing practicalities lead to diminished MSC effect.
Collapse
|
8
|
Takayama Y, Kusamori K, Nishikawa M. Mesenchymal stem/stromal cells as next-generation drug delivery vehicles for cancer therapeutics. Expert Opin Drug Deliv 2021; 18:1627-1642. [PMID: 34311638 DOI: 10.1080/17425247.2021.1960309] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Drug delivery to solid tumors remains a significant therapeutic challenge. Mesenchymal stem/stromal cells (MSCs) home to tumor tissues and can be employed as tumor targeted drug/gene delivery vehicles. Reportedly, therapeutic gene- or anti-cancer drug-loaded MSCs have shown remarkable anti-tumor effects in preclinical studies, and some clinical trials for assessing therapeutic MSCs in patients with cancer have been registered. AREAS COVERED In the present review, we first discuss the source and interdonor heterogeneity of MSCs, their tumor-homing mechanism, and the route of MSC administration in MSC-based cancer therapy. We then summarize the therapeutic applications of MSCs as a drug delivery vehicle for therapeutic genes or anti-cancer drugs and the drug delivery mechanism from drug-loaded MSCs to cancer cells. EXPERT OPINION Although numerous preclinical studies have revealed significant anti-tumor effects, several clinical trials assessing MSC-based cancer gene therapy have failed to demonstrate corroborative results, documenting limited therapeutic effects. Notably, a successful clinical outcome with MSC-based cancer therapy would require the interdonor heterogeneity of administered MSCs to be resolved, along with improved tumor-homing efficiency and optimized drug delivery efficiency from MSCs to cancer cells.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba Japan
| |
Collapse
|
9
|
Kusamori K. Development of Advanced Cell-Based Therapy by Regulating Cell-Cell Interactions. Biol Pharm Bull 2021; 44:1029-1036. [PMID: 34334488 DOI: 10.1248/bpb.b21-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-based therapy for disease treatment involves the transplantation of cells obtained either from self or others into relevant patients. While cells constituting the body tissues maintain homeostasis by performing remarkable functions through complicated cell-cell interactions, transplanted cells, which are generally cultured as a monolayer, are unable to recapitulate similar interactions in vivo. The regulation of cell-cell interactions can immensely increase the function and therapeutic effect of transplanted cells. This review aims to summarize the methods of regulating cell-cell interactions that could significantly increase the therapeutic effects of transplanted cells. The first method involves the generation of multicellular spheroids by three-dimensional cell culture. Spheroid formation greatly improved the survival and therapeutic effects of insulin-secreting cells in diabetic mice after transplantation. Moreover, mixed multicellular spheroids, composed of insulin-secreting cells and aorta endothelial cells or fibroblasts, were found to significantly improve insulin secretion. Secondly, adhesamine derivatives, which are low-molecular-weight compounds that accelerate cell adhesion and avoid anoikis and anchorage-dependent apoptosis, have been used to improve the survival of bone marrow-derived cells and significantly enhanced the therapeutic effects in a diabetic mouse model of delayed wound healing. Finally, the avidin-biotin complex method, a cell surface modification method, has been applied to endow tumor-homing mesenchymal stem cells with anti-tumor ability by modifying them with doxorubicin-encapsulated liposomes. The modified cells showed excellent effectiveness in cell-based cancer-targeting therapy. The discussed methods can be useful tools for advanced cell-based therapy, promising future clinical applications.
Collapse
Affiliation(s)
- Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
10
|
Su Y, Zhang T, Huang T, Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int J Pharm 2021; 600:120477. [PMID: 33737099 DOI: 10.1016/j.ijpharm.2021.120477] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as a promising living carrier for targeted drug delivery. A wealth of literature has shown evidence for great advances in MSCs-based drug delivery system (MSCs-DDS) in the treatment of various diseases. Nevertheless, as this field of study rapidly advances, several challenges associated with this delivery strategy have arisen, mainly due to the inherent limitations of MSCs. To this end, several novel technologies are being developed in parallel to improve the efficiency or safety of this system. In this review, we introduce recent advances and summarize the present challenges of MSCs-DDS. We also highlight some potential technologies to improve MSCs-DDS, including nanotechnology, genome engineering technology, and biomimetic technology. Finally, prospects for application of artificially improved MSCs-DDS are addressed. The technologies summarized in this review provide a general guideline for the improvement of MSCs-DDS.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Yang L, Ma J, Guan L, Mu Y. General Characteristics of Microbubble-Adenovirus Vectors Carrying Genes. Cell Mol Bioeng 2020; 14:201-208. [PMID: 33868500 DOI: 10.1007/s12195-020-00663-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction Transferring genes safely, targeting cells and achieving efficient transfection are urgent problems in gene therapy that need to be solved. Combining microbubbles (MBs) and viruses to construct double vectors has become a promising approach for gene delivery. Understanding the characteristic performance of MBs that carry genes is key to promoting effective gene transfer. Therefore, in this study, we constructed MB-adenovirus vectors and discussed their general characteristics. Methods We constructed MB-adenovirus vectors carrying the chemokine (C-X-C motif) ligand 12 (Cxcl12) and bone morphogenetic protein-2 (Bmp2) genes (pAd-Cxcl12 and pAd-Bmp2, respectively) to explore the general characteristics of double vectors carrying genes. Results The MB-adenovirus vectors had stable physical properties, and no significant differences in diameter, concentration, or pH were noted compared with naked MBs (p > 0.05). Flow cytometry and RT-PCR were used to detect the gene-loading capacity of MBs. The gene-loading efficiency of MBs increased with increasing virus amounts and was highest (91%) when 10.0 µL of virus was added. Beyond 10.0 µL of added virus, the gene-loading efficiency of MBs decreased with the continuous addition of virus. The maximum amounts of pAd-Cxcl12 and pAd-Bmp2 in 100 µL of MBs were approximately 14 and 10 µL, respectively. Conclusions This study indicates that addition of an inappropriate viral load will result in low MB loading efficiency, and the maximum amount of genes loaded by MBs may differ based on the genes carried by the virus.
Collapse
Affiliation(s)
- Lingjie Yang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, 830011 China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Ma
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, 830011 China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, 830011 China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, 830011 China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
12
|
Takayama Y, Kusamori K, Tsukimori C, Shimizu Y, Hayashi M, Kiyama I, Katsumi H, Sakane T, Yamamoto A, Nishikawa M. Anticancer drug-loaded mesenchymal stem cells for targeted cancer therapy. J Control Release 2020; 329:1090-1101. [PMID: 33098911 DOI: 10.1016/j.jconrel.2020.10.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) have a tumor-homing ability-they accumulate inside tumors after systemic injection, and may thus be useful as carriers for tumor-targeting therapy. To use MSCs effectively as an anti-cancer therapy, they must first be functionalized with a large amount of anti-cancer drugs without causing any significant changes to their tumor-tropism. In the present study, we attempted to modify the cell surface of MSCs with doxorubicin-loaded liposomes (DOX-Lips), using the avidin-biotin complex method, and evaluated delivery efficiency and anti-tumor efficacy of DOX-Lip-modified MSCs. The amount of DOX in DOX-Lip-modified C3H10T1/2 cells, a murine mesenchymal stem cell line, was approximately 21.5 pg per cell, with no significant changes to the tumor-tropism of C3H10T1/2 cells. Notably, DOX-Lip-modified C3H10T1/2 cells significantly suppressed the proliferation of firefly luciferase-expressing murine colon adenocarcinoma colon26/fluc cells, compared to DOX-Lips alone. Fluorescent DOX accumulated at the cell contact surface and inside green fluorescence protein-expressing colon26 (colon26/GFP) in co-cultures of DOX-Lip-modified C3H10T1/2 and colon26/GFP cells. This localized distribution was not observed when only DOX-Lips was added to colon26/GFP cells. These results suggest that DOX-Lips are efficiently delivered from DOX-Lip-modified C3H10T1/2 cells to the neighboring colon26 cells. Furthermore, DOX-Lip-modified C3H10T1/2 cells suppressed tumor growth in subcutaneous tumor-bearing mice, and in a lung metastasis mouse model. Taken together, these results indicate that the intercellular delivery of DOX may be enhanced using DOX-Lip-modified MSCs as an efficient carrier system for targeted tumor therapy.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Chihiro Tsukimori
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yosuke Shimizu
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mika Hayashi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ikumi Kiyama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
13
|
Majumder J, Taratula O, Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev 2019; 144:57-77. [PMID: 31400350 PMCID: PMC6748653 DOI: 10.1016/j.addr.2019.07.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/04/2023]
Abstract
Systemic drug delivery methods such as oral or parenteral administration of free drugs possess relatively low treatment efficiency and marked adverse side effects. The use of nanoparticles for drug delivery in most cases substantially enhances drug efficacy, improves pharmacokinetics and drug release and limits their side effects. However, further enhancement in drug efficacy and significant limitation of adverse side effects can be achieved by specific targeting of nanocarrier-based delivery systems especially in combination with local administration. The present review describes major advantages and limitations of organic and inorganic nanocarriers or living cell-based drug and nucleic acid delivery systems. Among these, different nanoparticles, supramolecular gels, therapeutic cells as living drug carriers etc. have emerged as a new frontier in modern medicine.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Takayama Y, Kusamori K, Nishikawa M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019; 24:molecules24010172. [PMID: 30621193 PMCID: PMC6337375 DOI: 10.3390/molecules24010172] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023] Open
Abstract
Click chemistry has great potential for use in binding between nucleic acids, lipids, proteins, and other molecules, and has been used in many research fields because of its beneficial characteristics, including high yield, high specificity, and simplicity. The recent development of copper-free and less cytotoxic click chemistry reactions has allowed for the application of click chemistry to the field of medicine. Moreover, metabolic glycoengineering allows for the direct modification of living cells with substrates for click chemistry either in vitro or in vivo. As such, click chemistry has become a powerful tool for cell transplantation and drug delivery. In this review, we describe some applications of click chemistry for cell engineering in cell transplantation and for drug delivery in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
15
|
Kusamori K, Takayama Y, Nishikawa M. Stable Surface Modification of Mesenchymal Stem Cells Using the Avidin-Biotin Complex Technique. ACTA ACUST UNITED AC 2018; 47:e66. [DOI: 10.1002/cpsc.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science; Chiba Japan
| | - Yukiya Takayama
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science; Chiba Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science; Chiba Japan
| |
Collapse
|