1
|
Sakamoto F, Kanamori S, Díaz LM, Cádiz A, Ishii Y, Yamaguchi K, Shigenobu S, Nakayama T, Makino T, Kawata M. Detection of evolutionary conserved and accelerated genomic regions related to adaptation to thermal niches in Anolis lizards. Ecol Evol 2024; 14:e11117. [PMID: 38455144 PMCID: PMC10920033 DOI: 10.1002/ece3.11117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Understanding the genetic basis for adapting to thermal environments is important due to serious effects of global warming on ectothermic species. Various genes associated with thermal adaptation in lizards have been identified mainly focusing on changes in gene expression or the detection of positively selected genes using coding regions. Only a few comprehensive genome-wide analyses have included noncoding regions. This study aimed to identify evolutionarily conserved and accelerated genomic regions using whole genomes of eight Anolis lizard species that have repeatedly adapted to similar thermal environments in multiple lineages. Evolutionarily conserved genomic regions were extracted as regions with overall sequence conservation (regions with fewer base substitutions) across all lineages compared with the neutral model. Genomic regions that underwent accelerated evolution in the lineage of interest were identified as those with more base substitutions in the target branch than in the entire background branch. Conserved elements across all branches were relatively abundant in "intergenic" genomic regions among noncoding regions. Accelerated regions (ARs) of each lineage contained a significantly greater proportion of noncoding RNA genes than the entire multiple alignment. Common genes containing ARs within 5 kb of their vicinity in lineages with similar thermal habitats were identified. Many genes associated with circadian rhythms and behavior were found in hot-open and cool-shaded habitat lineages. These genes might play a role in contributing to thermal adaptation and assist future studies examining the function of genes involved in thermal adaptation via genome editing.
Collapse
Affiliation(s)
- Fuku Sakamoto
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Luis M. Díaz
- National Museum of Natural History of CubaHavanaCuba
| | - Antonio Cádiz
- Faculty of BiologyUniversity of HavanaHavanaCuba
- Present address:
Department of BiologyUniversity of MiamiCoral GablesFloridaUSA
| | - Yuu Ishii
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Shuji Shigenobu
- Trans‐Omics FacilityNational Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, School of Life ScienceThe Graduate University for Advanced Studies, SOKENDAIOkazakiJapan
| | - Takuro Nakayama
- Division of Life Sciences, Center for Computational SciencesUniversity of TsukubaTsukubaJapan
| | - Takashi Makino
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masakado Kawata
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
2
|
Kanamori S, Díaz LM, Cádiz A, Yamaguchi K, Shigenobu S, Kawata M. Draft genome of six Cuban Anolis lizards and insights into genetic changes during their diversification. BMC Ecol Evol 2022; 22:129. [PMID: 36333669 PMCID: PMC9635203 DOI: 10.1186/s12862-022-02086-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background Detecting genomic variants and their accumulation processes during species diversification and adaptive radiation is important for understanding the molecular and genetic basis of evolution. Anolis lizards in the West Indies are good models for studying evolutionary mechanisms because of the repeated evolution of their morphology and the ecology. We performed de novo genome assembly of six Cuban Anolis lizards with different ecomorphs and thermal habitats (Anolis isolepis, Anolis allisoni, Anolis porcatus, Anolis allogus, Anolis homolechis, and Anolis sagrei). We carried out a comparative analysis of these genome assemblies to investigate the genetic changes that occurred during their diversification. Results We reconstructed novel draft genomes with relatively long scaffolds and high gene completeness, with the scaffold N50 ranging from 5.56 to 39.79 Mb and vertebrate Benchmarking Universal Single-Copy Orthologs completeness ranging from 77.5% to 86.9%. Comparing the repeat element compositions and landscapes revealed differences in the accumulation process between Cuban trunk-crown and trunk-ground species and separate expansions of several families of LINE in each Cuban trunk-ground species. Duplicated gene analysis suggested that the proportional differences in duplicated gene numbers among Cuban Anolis lizards may be associated with differences in their habitat ranges. Additionally, Pairwise Sequentially Markovian Coalescent analysis suggested that the effective population sizes of each species may have been affected by Cuba’s geohistory. Conclusions We provide draft genomes of six Cuban Anolis lizards and detected species and lineage-specific transposon accumulation and gene copy number changes that may be involved in adaptive evolution. The change processes in the past effective population size was also estimated, and the factors involved were inferred. These results provide new insights into the genetic basis of Anolis lizard diversification and are expected to serve as a stepping stone for the further elucidation of their diversification mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02086-7.
Collapse
Affiliation(s)
- Shunsuke Kanamori
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Luis M. Díaz
- National Museum of Natural History of Cuba, Havana, Cuba
| | - Antonio Cádiz
- grid.412165.50000 0004 0401 9462Faculty of Biology, University of Havana, Havana, Cuba ,grid.26790.3a0000 0004 1936 8606Department of Biology, University of Miami, Coral Gables, USA
| | - Katsushi Yamaguchi
- grid.419396.00000 0004 0618 8593Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Shigenobu
- grid.419396.00000 0004 0618 8593Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan ,grid.275033.00000 0004 1763 208XDepartment of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Masakado Kawata
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Kanamori S, Cádiz A, Díaz LM, Ishii Y, Nakayama T, Kawata M. Detection of genes positively selected in Cuban Anolis lizards that naturally inhabit hot and open areas and currently thrive in urban areas. Ecol Evol 2021; 11:1719-1728. [PMID: 33613999 PMCID: PMC7882966 DOI: 10.1002/ece3.7161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
Species of Anolis lizards of the West Indies that naturally inhabit hot and open areas also tend to thrive in urban areas. In this study, transcriptome was sequenced for nine species of Cuban Anolis lizards that are closely related to each other, but inhabit different thermal microhabitats. Using PAML and HyPhy software, we attempted to identify genes and amino acid sites under positive selection in the common ancestral branch of A. porcatus and A. allisoni, and the branch of A. sagrei, which inhabit hot and open areas, and thrive in urban areas. Although there were no genes where positive selection was commonly detected on both of the tested branches, positive selection was detected in genes involved in the stress response (e.g., DNA damage and oxidative stress) and cardiac function, which could be related to adaptive evolution of tolerance to heat or ultraviolet radiation, on both branches. These findings suggest that adaptive evolution of the response to stress caused by heat or ultraviolet radiation might have occurred in ancestors of Anolis species inhabiting hot and open areas and might be related to the current thriving in urban areas of them.
Collapse
Affiliation(s)
| | - Antonio Cádiz
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of BiologyUniversity of MiamiCoral GablesUSA
| | - Luis M. Díaz
- National Museum of Natural History of CubaHavanaCuba
| | - Yuu Ishii
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Takuro Nakayama
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masakado Kawata
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
4
|
Genome-wide scan for selection signatures reveals novel insights into the adaptive capacity in local North African cattle. Sci Rep 2020; 10:19466. [PMID: 33173134 PMCID: PMC7655849 DOI: 10.1038/s41598-020-76576-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Natural-driven selection is supposed to have left detectable signatures on the genome of North African cattle which are often characterized by the fixation of genetic variants associated with traits under selection pressure and/or an outstanding genetic differentiation with other populations at particular loci. Here, we investigate the population genetic structure and we provide a first outline of potential selection signatures in North African cattle using single nucleotide polymorphism genotyping data. After comparing our data to African, European and indicine cattle populations, we identified 36 genomic regions using three extended haplotype homozygosity statistics and 92 outlier markers based on Bayescan test. The 13 outlier windows detected by at least two approaches, harboured genes (e.g. GH1, ACE, ASIC3, HSPH1, MVD, BCL2, HIGD2A, CBFA2T3) that may be involved in physiological adaptations required to cope with environmental stressors that are typical of the North African area such as infectious diseases, extended drought periods, scarce food supply, oxygen scarcity in the mountainous areas and high-intensity solar radiation. Our data also point to candidate genes involved in transcriptional regulation suggesting that regulatory elements had also a prominent role in North African cattle response to environmental constraints. Our study yields novel insights into the unique adaptive capacity in these endangered populations emphasizing the need for the use of whole genome sequence data to gain a better understanding of the underlying molecular mechanisms.
Collapse
|
5
|
Cox CL, Alexander S, Casement B, Chung AK, Curlis JD, Degon Z, Dubois M, Falvey C, Graham ZA, Folfas E, Gallegos Koyner MA, Neel LK, Nicholson DJ, Perez DJP, Ortiz-Ross X, Rosso AA, Taylor Q, Thurman TJ, Williams CE, McMillan WO, Logan ML. Ectoparasite extinction in simplified lizard assemblages during experimental island invasion. Biol Lett 2020; 16:20200474. [PMID: 32750271 DOI: 10.1098/rsbl.2020.0474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduced species can become invasive, damaging ecosystems and disrupting economies through explosive population growth. One mechanism underlying population expansion in invasive populations is 'enemy release', whereby the invader experiences relaxation of agonistic interactions with other species, including parasites. However, direct observational evidence of release from parasitism during invasion is rare. We mimicked the early stages of invasion by experimentally translocating populations of mite-parasitized slender anole lizards (Anolis apletophallus) to islands that varied in the number of native anoles. Two islands were anole-free prior to the introduction, whereas a third island had a resident population of Gaige's anole (Anolis gaigei). We then characterized changes in trombiculid mite parasitism over multiple generations post-introduction. We found that mites rapidly went extinct on one-species islands, but that lizards introduced to the two-species island retained mites. After three generations, the two-species island had the highest total density and biomass of lizards, but the lowest density of the introduced species, implying that the 'invasion' had been less successful. This field-transplant study suggests that native species can be 'enemy reservoirs' that facilitate co-colonization of ectoparasites with the invasive host. Broadly, these results indicate that the presence of intact and diverse native communities may help to curb invasiveness.
Collapse
Affiliation(s)
- Christian L Cox
- Institute for the Environment, Florida International University Miami, FL 33199, USA.,Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - Sean Alexander
- Department of Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Brianna Casement
- Department of Biology, Heidelberg University, Tiffin, OH 44883, USA
| | - Albert K Chung
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - John David Curlis
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA.,Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zachariah Degon
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - Madeline Dubois
- College of Science, Northeastern University, Boston, MA 02115, USA
| | - Cleo Falvey
- Department of Biology, University of Massachusetts, Boston, MA 02115, USA
| | - Zackary A Graham
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Edita Folfas
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| | | | - Lauren K Neel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | | | - Xochitl Ortiz-Ross
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,Biology, College of the Atlantic, Bar Harbor, ME 04609, USA
| | - Adam A Rosso
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - Quinn Taylor
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - Timothy J Thurman
- Department of Wildlife Biology, University of Montana, Missoula, MT 59812, USA.,Smithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama.,Department of Biology, McGill University, Montreal, Quebec, Canada, H3A 0G4
| | | | - W Owen McMillan
- Institute for the Environment, Florida International University Miami, FL 33199, USA.,Smithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama
| | - Michael L Logan
- Smithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama.,Department of Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
6
|
Bourgeois Y, Boissinot S. Selection at behavioural, developmental and metabolic genes is associated with the northward expansion of a successful tropical colonizer. Mol Ecol 2019; 28:3523-3543. [PMID: 31233650 DOI: 10.1111/mec.15162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
What makes a species able to colonize novel environments? This question is key to understand the dynamics of adaptive radiations and ecological niche shifts, but the mechanisms that underlie expansion into novel habitats remain poorly understood at a genomic scale. Lizards from the genus Anolis are typically tropical, and the green anole (Anolis carolinensis) constitutes an exception since it expanded into temperate North America from subtropical Florida. Thus, we used the green anole as a model to investigate signatures of selection associated with colonization of a new environment, namely temperate North America. To this end, we analysed 29 whole-genome sequences, covering the entire native range of the species. We used a combination of recent methods to quantify both positive and balancing selection in northern populations, including FST outlier methods, machine learning and ancestral recombination graphs. We naively scanned for genes of interest and assessed the overlap between multiple tests. Strikingly, we identified many genes involved in behaviour, suggesting that the recent successful colonization of northern environments may have been linked to behavioural shifts as well as physiological adaptation. Using a candidate genes strategy, we determined that genes involved in response to cold or behaviour displayed more frequently signals of selection, while controlling for local recombination rate, gene clustering and gene length. In addition, we found signatures of balancing selection at immune genes in all investigated genetic groups, but also at genes involved in neuronal and anatomical development.
Collapse
Affiliation(s)
- Yann Bourgeois
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|