1
|
Li Y, Wang Y, Xiao D, Wang J, Jin D. The identification of Finegoldia dalianensis sp. nov., isolated from the pus of the patient with skin abscess and genomic analysis of the strains belonging to Finegoldia genus. Anaerobe 2024; 90:102913. [PMID: 39343356 DOI: 10.1016/j.anaerobe.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES To comprehensively characterize a new species, named Finegoldia dalianensis sp. nov., isolated from the pus of a skin abscess from a patient and genomic analysis of the strains belonging to Finegoldia genus. METHODS Strain LY240594T was definitively characterized through phylogenetic, genomic, and biochemical approach. Extensive genomic comparisons, involving the genome of LY240594T and those of 82 Finegoldia strains from GenBank, were instrumental in revealing genetic relationships within the Finegoldia genus. RESULTS Strain LY240594 was initially identified as F. magna based on MALDI-TOF MS analysis, showing 99.7 % 16S rRNA gene sequences similarity with the type strain of F. magna CCUG 17636T. However, there were 68.5 % similarity with dDDH method and 90.9 % similarity by ANI analysis respectively, between LY240594T and the selected type strain, F. magna DSM 20470T. Biochemical differences were also found between two strains. The ANI and genomic analysis of 82 Finegoldia sp. Strains and Strain LY240594 revealed that those strains could be categorized into at least three groups using a 95 % ANI threshold. CONCLUSION Comprehensive characterization supported the proposal of a new species within the genus Finegoldia, named Finegoldia dalianensis sp. nov. The type strain, LY240594T (=GDMCC 1.4375T = KCTC 25838T), features 1938 genes and a G + C content of 31.8 mol%. Genomic comparisons and ANI studies elucidated substantial heterogeneity within the Finegoldia genus.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
| | - Yan Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China
| | - Di Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China
| | - Jing Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China.
| | - Dong Jin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China; Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, 050011, China.
| |
Collapse
|
2
|
Coluccio A, Lopez Palomera F, Spero MA. Anaerobic bacteria in chronic wounds: Roles in disease, infection and treatment failure. Wound Repair Regen 2024. [PMID: 39129662 DOI: 10.1111/wrr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Infection is among the most common factors that impede wound healing, yet standard treatments routinely fail to resolve chronic wound infections. The chronic wound environment is largely hypoxic/anoxic, and wounds are predominantly colonised by facultative and obligate anaerobic bacteria. Oxygen (O2) limitation is an underappreciated driver of microbiota composition and behaviour in chronic wounds. In this perspective article, we examine how anaerobic bacteria and their distinct physiologies support persistent, antibiotic-recalcitrant infections. We describe the anaerobic energy metabolisms bacteria rely on for long-term survival in the wound environment, and why many antibiotics become less effective under hypoxic conditions. We also discuss obligate anaerobes, which are among the most prevalent taxa to colonise chronic wounds, yet their potential roles in influencing the microbial community and wound healing have been overlooked. All of the most common obligate anaerobes found in chronic wounds are opportunistic pathogens. We consider how these organisms persist in the wound environment and interface with host physiology to hinder wound healing processes or promote chronic inflammation. Finally, we apply our understanding of anaerobic physiologies to evaluate current treatment practices and to propose new strategies for treating chronic wound infections.
Collapse
Affiliation(s)
- Alison Coluccio
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | - Melanie A Spero
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
3
|
Maki JJ, Howard M, Connelly S, Pettengill MA, Hardy DJ, Cameron A. Species Delineation and Comparative Genomics within the Campylobacter ureolyticus Complex. J Clin Microbiol 2023; 61:e0004623. [PMID: 37129508 PMCID: PMC10204631 DOI: 10.1128/jcm.00046-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Campylobacter ureolyticus is an emerging pathogen increasingly appreciated as a common cause of gastroenteritis and extra-intestinal infections in humans. Outside the setting of gastroenteritis, little work has been done to describe the genomic content and relatedness of the species, especially regarding clinical isolates. We reviewed the epidemiology of clinical C. ureolyticus cultured by our institution over the past 10 years. Fifty-one unique C. ureolyticus isolates were identified between January 2010 and August 2022, mostly originating from abscesses and blood cultures. To clarify the taxonomic relationships between isolates and to attribute specific genes with different clinical manifestations, we sequenced 19 available isolates from a variety of clinical specimen types and conducted a pangenomic analysis with publicly available C. ureolyticus genomes. Digital DNA:DNA hybridization suggested that these C. ureolyticus comprised a species complex of 10 species clusters (SCs) and several subspecies clusters. Although some orthologous genes or gene functions were enriched in isolates found in different SCs and clinical specimens, no association was significant. Nearly a third of the isolates possessed antimicrobial resistance genes, including the ermA resistance gene, potentially conferring resistance to macrolides, the treatment of choice for severe human campylobacteriosis. This work effectively doubles the number of publicly available C. ureolyticus genomes, provides further clarification of taxonomic relationships within this bacterial complex, and identifies target SCs for future analysis.
Collapse
Affiliation(s)
- Joel J. Maki
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mondraya Howard
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sara Connelly
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew A. Pettengill
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dwight J. Hardy
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrew Cameron
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Ponraj DS, Lund M, Lange J, Poehlein A, Himmelbach A, Falstie-Jensen T, Jørgensen NP, Ravn C, Brüggemann H. Shotgun sequencing of sonication fluid for the diagnosis of orthopaedic implant-associated infections with Cutibacterium acnes as suspected causative agent. Front Cell Infect Microbiol 2023; 13:1165017. [PMID: 37265503 PMCID: PMC10229904 DOI: 10.3389/fcimb.2023.1165017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Orthopaedic implant-associated infections (OIAIs) due to Cutibacterium acnes can be difficult to diagnose. The aim of this pilot study was to determine if metagenomic next-generation sequencing (mNGS) can provide additional information to improve the diagnosis of C. acnes OIAIs. mNGS was performed on sonication fluid (SF) specimens derived from 24 implants. These were divided into three groups, based on culture results: group I, culture-negative (n = 4); group II, culture-positive for C. acnes (n = 10); and group III, culture-positive for other bacteria (n = 10). In group I, sequence reads from C. acnes were detected in only one SF sample, originating from a suspected case of OIAIs, which was SF and tissue culture-negative. In group II, C. acnes sequences were detected in 7/10 samples. In group III, C. acnes sequence reads were found in 5/10 samples, in addition to sequence reads that matched the bacterial species identified by culture. These samples could represent polymicrobial infections that were missed by culture. Taken together, mNGS was able to detect C. acnes DNA in more samples compared to culture and could be used to identify cases of suspected C. acnes OIAIs, in particular regarding possible polymicrobial infections, where the growth of C. acnes might be compromised due to a fast-growing bacterial species. However, since SF specimens are usually low-biomass samples, mNGS is prone to DNA contamination, possibly introduced during DNA extraction or sequencing procedures. Thus, it is advisable to set a sequence read count threshold, taking into account project- and NGS-specific criteria.
Collapse
Affiliation(s)
| | - Michael Lund
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jeppe Lange
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Orthopaedic Surgery, Regional Hospital, Horsens, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | - Christen Ravn
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
5
|
van der Krieken DA, Rikken G, Ederveen TH, Jansen PA, Rodijk-Olthuis D, Meesters LD, van Vlijmen-Willems IM, van Cranenbroek B, van der Molen RG, Schalkwijk J, van den Bogaard EH, Zeeuwen PL. Gram-positive anaerobic cocci guard skin homeostasis by regulating host-defense mechanisms. iScience 2023; 26:106483. [PMID: 37096035 PMCID: PMC10122035 DOI: 10.1016/j.isci.2023.106483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
In atopic dermatitis (AD), chronic skin inflammation is associated with skin barrier defects and skin microbiome dysbiosis including a lower abundance of Gram-positive anaerobic cocci (GPACs). We here report that, through secreted soluble factors, GPAC rapidly and directly induced epidermal host-defense molecules in cultured human keratinocytes and indirectly via immune-cell activation and cytokines derived thereof. Host-derived antimicrobial peptides known to limit the growth of Staphylococcus aureus-a skin pathogen involved in AD pathology-were strongly upregulated by GPAC-induced signaling through aryl hydrocarbon receptor (AHR)-independent mechanisms, with a concomitant AHR-dependent induction of epidermal differentiation genes and control of pro-inflammatory gene expression in organotypic human epidermis. By these modes of operandi, GPAC may act as an "alarm signal" and protect the skin from pathogenic colonization and infection in the event of skin barrier disruption. Fostering growth or survival of GPAC may be starting point for microbiome-targeted therapeutics in AD.
Collapse
Affiliation(s)
- Danique A. van der Krieken
- Department of Dermatology, Radboud University Medical Center (Radboudumc), 6500HB Nijmegen, the Netherlands
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center (Radboudumc), 6500HB Nijmegen, the Netherlands
| | - Thomas H.A. Ederveen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 6500HB Nijmegen, the Netherlands
| | - Patrick A.M. Jansen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), 6500HB Nijmegen, the Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center (Radboudumc), 6500HB Nijmegen, the Netherlands
| | - Luca D. Meesters
- Department of Dermatology, Radboud University Medical Center (Radboudumc), 6500HB Nijmegen, the Netherlands
| | | | - Bram van Cranenbroek
- Laboratory Medicine, Laboratory of Medical Immunology, Radboudumc, 6500HB Nijmegen, the Netherlands
| | - Renate G. van der Molen
- Laboratory Medicine, Laboratory of Medical Immunology, Radboudumc, 6500HB Nijmegen, the Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center (Radboudumc), 6500HB Nijmegen, the Netherlands
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), 6500HB Nijmegen, the Netherlands
- Corresponding author
| | - Patrick L.J.M. Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), 6500HB Nijmegen, the Netherlands
- Corresponding author
| |
Collapse
|
6
|
Breton J, Tanes C, Tu V, Albenberg L, Rowley S, Devas N, Hwang R, Kachelries K, Wu GD, Baldassano RN, Bittinger K, Mattei P. A Microbial Signature for Paediatric Perianal Crohn's Disease. J Crohns Colitis 2022; 16:1281-1292. [PMID: 35211723 DOI: 10.1093/ecco-jcc/jjac032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Perianal fistulising disease can affect up to 25% of patients with Crohn's disease [CD] and lead to significant morbidity. Although the role of the gut microbiota in inflammatory bowel disease [IBD] has been increasingly recognised, its role in fistula development has scarcely been studied. Here, we aimed to define the microbial signature associated with perianal fistulising CD in children. METHODS A prospective observational study including children age 6-18 years with a diagnosis of perianal fistulising CD was conducted. Stool samples and rectal and perianal fistula swabs were collected. Stool samples and rectal swabs from children with CD without perianal disease and healthy children were included as comparison. Whole shotgun metagenomic sequencing was performed. RESULTS A total of 31 children [mean age 15.5 ± 3.5 years] with perianal CD were prospectively enrolled. The fistula-associated microbiome showed an increase in alpha diversity and alteration in the abundance of several taxa compared with the rectal- and faecal-associated microbiome with key taxa belonging to the Proteobacteria phylum. Genes conferring resistance to the clinically used antibiotic regimen ciprofloxacin and metronidazole were found in the three sample types. In comparison with children without the perianal phenotype [N = 36] and healthy controls [N = 41], the mucosally-associated microbiome of children with perianal CD harboured a reduced butyrogenic potential. Linear discriminant analysis identified key taxa distinguishing the rectal mucosally-associated microbiome of children with perianal CD from children without this phenotype. CONCLUSIONS The microbial community within CD-related anorectal fistula is compositionally and functionally unique. Taken together, these findings emphasise the need to better understand the ecosystem of the fistula milieu to guide development of novel microbiome-based strategies in this CD phenotype.
Collapse
Affiliation(s)
- Jessica Breton
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lindsey Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Rowley
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nina Devas
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rosa Hwang
- Division of General Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelly Kachelries
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert N Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Mattei
- Division of General Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
7
|
A Review of Recent Developments in Veterinary Otology. Vet Sci 2022; 9:vetsci9040161. [PMID: 35448659 PMCID: PMC9032795 DOI: 10.3390/vetsci9040161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
The knowledge gap between practical research and its implementation in veterinary practice is becoming harder to bridge, as researchers now have a plethora of journals in which to publish. This paper summarizes recent research from the latest publications related to ear disease in dogs which have implications for veterinary practitioners. The topics reviewed include 16s rRNA new-generation sequencing, the use of oclacitinib in pinnal ulceration, the etiopathogenesis of aural hematoma, contamination of the middle ear during elective myringotomy and how to avoid it, and the use of carbon dioxide lasers in chronic obstructive otitis.
Collapse
|
8
|
Kayıran MA, Sahin E, Koçoğlu E, Sezerman OU, Gürel MS, Karadağ AS. Is cutaneous microbiota a player in disease pathogenesis? Comparison of cutaneous microbiota in psoriasis and seborrheic dermatitis with scalp involvement. Indian J Dermatol Venereol Leprol 2022; 88:738-748. [PMID: 35389020 DOI: 10.25259/ijdvl_323_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Knowledge about cutaneous microbiota in psoriasis vulgaris and seborrheic dermatitis is limited, and a comparison of microbiota in the two diseases was not yet previously undertaken. AIMS/OBJECTIVES This study aimed to compare the scalp lesional and non-lesional microbiota in psoriasis vulgaris and seborrheic dermatitis with that in a healthy control group. METHODS Fifty samples were taken with sterile swabs from patients' and controls' scalps, and 16S rRNA gene sequencing analyses were performed. RESULTS Alpha and beta diversity analyses showed that bacterial load and diversity were significantly increased in psoriasis vulgaris and seborrheic dermatitis lesions compared to the controls. As phyla, Actinobacteria decreased and Firmicutes increased, while as genera, Propionibacterium decreased; Staphylococcus, Streptococcus, Aquabacterium, Neisseria and Azospirillum increased in lesions of both diseases. Specifically, Mycobacterium, Finegoldia, Haemophilus and Ezakiella increased in psoriasis vulgaris and Enhydrobacter, Micromonospora and Leptotrichia increased in seborrheic dermatitis lesions. Mycobacterium, Ezakiella and Peptoniphilus density were higher in psoriasis vulgaris compared to seborrheic dermatitis lesions. The bacterial diversity and load values of non-lesional scalp in psoriasis vulgaris and seborrheic dermatitis lay between those of lesional areas and controls. LIMITATIONS The small sample size is the main limitation of this study. CONCLUSION Higher bacterial diversity was detected in lesions of both psoriasis and seborrheic dermatitis compared to the controls, but similar alterations were observed when the two diseases were compared. Although these differences could be a result rather than a cause of the two diseases, there is a need to analyze all members of the microbiota and microbiota-host interactions.
Collapse
Affiliation(s)
- Melek Aslan Kayıran
- Department of Dermatology, Faculty of Medicine, Istanbul Medeniyet University, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, Turkey
| | - Eray Sahin
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Istanbul, Turkey
| | - Esra Koçoğlu
- Department of Clinical Microbiology, Faculty of Medicine, Istanbul Medeniyet University, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, Turkey
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Istanbul, Turkey
| | - Mehmet Salih Gürel
- Department of Dermatology, Faculty of Medicine, Istanbul Medeniyet University, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, Turkey
| | - Ayşe Serap Karadağ
- Department of Dermatology, Arel University Medical School, Memorial Health Group, Atasehir and Sisli Hospital, Dermatology Clinic, Istanbul, Turkey
| |
Collapse
|
9
|
Hong SN, Kim KJ, Baek MG, Yi H, Lee SH, Kim DY, Lee CH, Shin C, Rhee CS. Association of obstructive sleep apnea severity with the composition of the upper airway microbiome. J Clin Sleep Med 2022; 18:505-515. [PMID: 34463248 PMCID: PMC8804986 DOI: 10.5664/jcsm.9640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
STUDY OBJECTIVES Although the airway mucosal system plays a pivotal role in the pathogenesis of obstructive sleep apnea (OSA), the underlying disease mechanism remains unclear. The microbiome greatly impacts human health and disease, particularly in the mucosa, where it can have direct interactions. In this study, we aimed to analyze the microbiome composition in the upper airway mucosa of individuals with and without OSA to identify potential disease severity-related microbial signatures. METHODS This population-based cohort study involved 92 participants (mean age = 62.7 ± 5.8 years; male-to-female ratio = 0.74) who underwent a physical examination and sleep study. Upper airway swab samples were collected from the nasopharyngeal mucosa to evaluate the microbiome based on 16S rRNA gene pyrosequencing. The relationship between microbiome composition and sleep parameters was explored through bioinformatics analysis. RESULTS The average apnea-hypopnea index was 7.75 ± 6.5 events/h. Proteobacteria, Firmicutes, and Actinobacteria were the predominant phyla in the nasopharyngeal microbiota in all participants. Simpson diversity indexes were higher in patients with OSA (0.6435 ± 0.2827) than in the control patients (0.6095 ± 0.2683); however, the difference was not significant (P = .1155). Specific anaerobes negatively correlated with the lowest oxygen saturation level during sleep (sum of powered score (1) = -117.47; P = .0052). CONCLUSIONS The upper airway microbiome of older patients with mild-moderate OSA exhibited minor differences in composition compared with that of individuals without OSA, possibly owing to environmental changes in the upper airway mucosa resulting from recurrent airway obstruction and intermittent hypoxia in patients with OSA. CITATION Hong S-N, Kim KJ, Baek M-G, et al. Association of obstructive sleep apnea severity with the composition of the upper airway microbiome. J Clin Sleep Med. 2022;18(2):505-515.
Collapse
Affiliation(s)
- Seung-No Hong
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Korea
| | - Kang Jin Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Min-Gyung Baek
- Department of Public Health Sciences, Korea University, Seoul, Korea
| | - Hana Yi
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chul Hee Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chol Shin
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea,Sensory Organ Research Institute, Medical Research Center, Seoul National University, Seoul, Korea,Address correspondence to: Chae-Seo Rhee, MD, PhD, Department of Otorhinolaryngology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744, Korea; Tel: +82-2-2072-2440; Fax: +82-2-745-2387;
| |
Collapse
|
10
|
Group B Streptococcus CAMP Factor Does Not Contribute to Interactions with the Vaginal Epithelium and Is Dispensable for Vaginal Colonization in Mice. Microbiol Spectr 2021; 9:e0105821. [PMID: 34908468 PMCID: PMC8672899 DOI: 10.1128/spectrum.01058-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive pathogen group B Streptococcus (GBS) is a leading cause of neonatal bacterial infections, preterm birth, and stillbirth. Although maternal GBS vaginal colonization is a risk factor for GBS-associated adverse birth outcomes, mechanisms promoting GBS vaginal persistence are not fully defined. GBS possesses a broadly conserved small molecule, CAMP factor, that is co-hemolytic in the presence of Staphylococcus aureus sphingomyelinase C. While this co-hemolytic reaction is commonly used by clinical laboratories to identify GBS, the contribution of CAMP factor to GBS vaginal persistence is unknown. Using in vitro biofilm, adherence and invasion assays with immortalized human vaginal epithelial VK2 cells, and a mouse model of GBS vaginal colonization, we tested the contribution of CAMP factor using GBS strain COH1 and its isogenic CAMP-deficient mutant (Δcfb). We found no evidence for CAMP factor involvement in GBS biofilm formation, or adherence, invasion, or cytotoxicity toward VK2 cells in the presence or absence of S. aureus. Additionally, there was no difference in vaginal burdens or persistence between COH1 and Δcfb strains in a murine colonization model. In summary, our results using in vitro human cell lines and murine models do not support a critical role for CAMP factor in promoting GBS vaginal colonization. IMPORTANCE Group B Streptococcus (GBS) remains a pervasive pathogen for pregnant women and their newborns. Maternal screening and intrapartum antibiotic prophylaxis to GBS-positive mothers have reduced, but not eliminated GBS neonatal disease, and have not impacted GBS-associated preterm birth or stillbirth. Additionally, this antibiotic exposure is associated with adverse effects on the maternal and neonatal microbiota. Identifying key GBS factors important for maternal vaginal colonization will foster development of more targeted, alternative therapies to antibiotic treatment. Here, we investigate the contribution of a broadly conserved GBS determinant, CAMP factor, to GBS vaginal colonization and find that CAMP factor is unlikely to be a biological target to control maternal GBS colonization.
Collapse
|
11
|
Tang S, Prem A, Tjokrosurjo J, Sary M, Van Bel MA, Rodrigues-Hoffmann A, Kavanagh M, Wu G, Van Eden ME, Krumbeck JA. The canine skin and ear microbiome: A comprehensive survey of pathogens implicated in canine skin and ear infections using a novel next-generation-sequencing-based assay. Vet Microbiol 2020; 247:108764. [PMID: 32768216 DOI: 10.1016/j.vetmic.2020.108764] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
This study analyzed the complex bacterial and fungal microbiota of healthy and clinically affected canine ear and skin samples. A total of 589 canine samples were included: 257 ear swab samples (128 healthy vs. 129 clinically affected) and 332 skin swab samples (172 healthy vs. 160 clinically affected) were analyzed using next-generation sequencing (NGS) to determine both relative and absolute abundances of bacteria and fungi present in the samples. This study highlighted the canine microbiota of clinically affected cases was characterized by an overall loss of microbial diversity, high microbial biomass, with overgrowth of certain members of the microbiota. The observed phenotype of these samples was best described by the combination of both relative and absolute microbial abundances. Compared to healthy samples, 78.3% of the clinically affected ear samples had microbial overgrowth; 69.8% bacterial overgrowth, 16.3% fungal overgrowth, and 7.0% had both bacterial and fungal overgrowth. The most important microbial taxa enriched in clinically affected ears were Malassezia pachydermatis, Staphylococcus pseudintermedius, Staphylococcus schleiferi, and a few anaerobic bacteria such as Finegoldia magna, Peptostreptococcus canis, and Porphyromonas cangingivalis. The anaerobic microbes identified here were previously not commonly recognized as pathogens in canine ear infections. Similar observations were found for skin samples, but yeasts and anaerobes were less abundant when compared to clinically affected cases. Results highlighted herein, signify the potential of NGS-based methods for the accurate quantification and identification of bacterial and fungal populations in diagnosing canine skin and ear infections, and highlight the limitations of traditional culture-based testing.
Collapse
Affiliation(s)
- Shuiquan Tang
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA; Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Aishani Prem
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | | | - Mony Sary
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Mikayla A Van Bel
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA; Saddleback Animal Hospital, 1082 Bryan Ave, Tustin, CA, 92780, USA; Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Aline Rodrigues-Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael Kavanagh
- Saddleback Animal Hospital, 1082 Bryan Ave, Tustin, CA, 92780, USA
| | - Guangxi Wu
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Marc E Van Eden
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA; Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Janina A Krumbeck
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA; Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA, 92614, USA.
| |
Collapse
|
12
|
Mechanistic insights into the action of probiotics against bacterial vaginosis and its mediated preterm birth: An overview. Microb Pathog 2020; 141:104029. [PMID: 32014462 DOI: 10.1016/j.micpath.2020.104029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
The human body is a reservoir of numerous micro-creatures; whose role is substantial and indispensable in the overall development of human beings. The advances in omic approaches have offered powerful means to decipher the core microbiome and metabolome diversities in a specific organ system. The establishment of lactobacilli in the female reproductive tract is thought to be a paramount prerequisite that maintains homeostatic conditions for a sustainable and healthy pregnancy. Nevertheless, a plethora of such Lactobacillus strains of vaginal source revealed probiotic phenotypes. The plummeting in the occurrence of lactobacilli in the vaginal ecosystem is associated with several adverse pregnancy outcomes (APOs). One such pathological condition is "Bacterial Vaginosis" (BV), a pathogen dominated gynecological threat. In this scenario, the ascending traffic of notorious Gram-negative/variable BV pathogens to the uterus is one of the proposed pathways that give rise to inflammation-related APOs like preterm birth. Since antibiotic resistance is aggravating among urogenital pathogens, the probiotics intervention remains one of the alternative biotherapeutic strategies to overcome BV and its associated APOs. Perhaps, the increased inclination towards the safer and natural biotherapeutic strategies rather than pharmaceutical drugs for maintaining gestational and reproductive health resulted in the use of probiotics in pregnancy diets. In this context, the current review is an attempt to highlight the microbiome and metabolites signatures of BV and non-BV vaginal ecosystem, inflammation or infection-related preterm birth, host-microbial interactions, role and effectiveness of probiotics to fight against aforesaid diseased conditions.
Collapse
|
13
|
Neumann A, Björck L, Frick IM. Finegoldia magna, an Anaerobic Gram-Positive Bacterium of the Normal Human Microbiota, Induces Inflammation by Activating Neutrophils. Front Microbiol 2020; 11:65. [PMID: 32117109 PMCID: PMC7025542 DOI: 10.3389/fmicb.2020.00065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The Gram-positive anaerobic commensal Finegoldia magna colonizes the skin and other non-sterile body surfaces, and is an important opportunistic pathogen. Here we analyzed the effect of F. magna on human primary neutrophils. F. magna strains ALB8 (expressing protein FAF), 312 (expressing protein L) and 505 (naturally lacking both protein FAF and L) as well as their associated proteins activate neutrophils to release reactive oxygen species, an indication for neutrophil oxidative burst. Co-incubation of neutrophils with the bacteria leads to a strong increase of CD66b surface expression, another indicator for neutrophil activation. Furthermore, all tested stimuli triggered the release of NETs from the activated neutrophils, pointing to a host defense mechanism in response to the tested stimuli. This phenotype is dependent on actin rearrangement, NADPH oxidases and the ERK1/2 pathway. Proteins FAF and L also induced the secretion of several pro-inflammatory neutrophil proteins; HBP, IL-8 and INFγ. This study shows for the first time a direct interaction of F. magna with human neutrophils and suggests that the activation of neutrophils plays a role in F. magna pathogenesis.
Collapse
Affiliation(s)
- Ariane Neumann
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
14
|
Mitra A, Grossman Biegert GW, Delgado AY, Karpinets TV, Solley TN, Mezzari MP, Yoshida-Court K, Petrosino JF, Mikkelson MD, Lin L, Eifel P, Zhang J, Ramondetta LM, Jhingran A, Sims TT, Schmeler K, Okhuysen P, Colbert LE, Klopp AH. Microbial Diversity and Composition Is Associated with Patient-Reported Toxicity during Chemoradiation Therapy for Cervical Cancer. Int J Radiat Oncol Biol Phys 2020; 107:163-171. [PMID: 31987960 DOI: 10.1016/j.ijrobp.2019.12.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Patients receiving pelvic radiation for cervical cancer experience high rates of acute gastrointestinal (GI) toxicity. The association of changes in the gut microbiome with bowel toxicity from radiation is not well characterized. METHODS AND MATERIALS Thirty-five patients undergoing definitive chemoradiation therapy (CRT) underwent longitudinal sampling (baseline and weeks 1, 3, and 5) of the gut microbiome and prospective assessment of patient-reported GI toxicity. DNA was isolated from stool obtained at rectal examination and analyzed with 16S rRNA sequencing. GI toxicity was assessed with the Expanded Prostate Cancer Index Composite instrument to evaluate frequency, urgency, and discomfort associated with bowel function. Shannon diversity index was used to characterize alpha (within sample) diversity. Weighted UniFrac principle coordinates analysis was used to compare beta (between sample) diversity between samples using permutational multivariate analysis of variance. Linear discriminant analysis effect size highlighted microbial features that best distinguish categorized patient samples. RESULTS Gut microbiome diversity continuously decreased over the course of CRT, with the largest decrease at week 5. Expanded Prostate Cancer Index Composite bowel function scores also declined over the course of treatment, reflecting increased symptom burden. At all individual time points, higher diversity of the gut microbiome was linearly correlated with better patient-reported GI function, but baseline diversity was not predictive of eventual outcome. Patients with high toxicity demonstrated different compositional changes during CRT in addition to compositional differences in Clostridia species. CONCLUSIONS Over time, increased radiation toxicity is associated with decreased gut microbiome diversity. Baseline diversity is not predictive of end-of-treatment bowel toxicity, but composition may identify patients at risk for developing high toxicity.
Collapse
Affiliation(s)
- Aparna Mitra
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Andrea Y Delgado
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tatiana V Karpinets
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Travis N Solley
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa P Mezzari
- Alkek Center for Metagenomics and Microbiome Research Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kyoko Yoshida-Court
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe F Petrosino
- Alkek Center for Metagenomics and Microbiome Research Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Megan D Mikkelson
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lilie Lin
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Eifel
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lois M Ramondetta
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anuja Jhingran
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Travis T Sims
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathleen Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pablo Okhuysen
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Colbert
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ann H Klopp
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Abstract
S. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments. Salmonella is responsible for many nontyphoidal foodborne infections and enteric (typhoid) fever in humans. Of the two Salmonella species, Salmonella enterica is highly diverse and includes 10 known subspecies and approximately 2,600 serotypes. Understanding the evolutionary processes that generate the tremendous diversity in Salmonella is important in reducing and controlling the incidence of disease outbreaks and the emergence of virulent strains. In this study, we aim to elucidate the impact of homologous recombination in the diversification of S. enterica subspecies. Using a data set of previously published 926 Salmonella genomes representing the 10 S. enterica subspecies and Salmonella bongori, we calculated a genus-wide pan-genome composed of 84,041 genes and the S. enterica pan-genome of 81,371 genes. The size of the accessory genomes varies between 12,429 genes in S. enterica subsp. arizonae (subsp. IIIa) to 33,257 genes in S. enterica subsp. enterica (subsp. I). A total of 12,136 genes in the Salmonella pan-genome show evidence of recombination, representing 14.44% of the pan-genome. We identified genomic hot spots of recombination that include genes associated with flagellin and the synthesis of methionine and thiamine pyrophosphate, which are known to influence host adaptation and virulence. Last, we uncovered within-species heterogeneity in rates of recombination and preferential genetic exchange between certain donor and recipient strains. Frequent but biased recombination within a bacterial species may suggest that lineages vary in their response to environmental selection pressure. Certain lineages, such as the more uncommon non-enterica subspecies (non-S. enterica subsp. enterica), may also act as a major reservoir of genetic diversity for the wider population. IMPORTANCES. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments.
Collapse
|
16
|
Chien S, Gorman D, Koutsogiannidis CP, Ravishankar R, Kamath G, Zamvar V. The novel use of oral antibiotic monotherapy in prosthetic valve endocarditis caused by Finegoldia magna: a case study. J Cardiothorac Surg 2019; 14:170. [PMID: 31533849 PMCID: PMC6751658 DOI: 10.1186/s13019-019-0993-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 02/08/2023] Open
Abstract
Background Finegoldia magna, a Gram-positive anaerobic coccus, is part of the human normal microbiota as a commensal of mucocutaneous surfaces. However, it remains an uncommon pathogen in infective endocarditis, with only eight clinical cases previously reported in the literature. Currently, infective endocarditis is routinely treated with prolonged intravenous antibiotic therapy. However, recent research has found that switching patients to oral antibiotics is non-inferior to prolonged parenteral antibiotic treatment, challenging the current guidelines for the treatment of infective endocarditis. Case presentation This case report focuses on a 52-year-old gentleman, who presented with initially culture-negative infective endocarditis following bioprosthetic aortic valve replacement. Blood cultures later grew Finegoldia magna. Following initial intravenous antibiotic therapy and re-do surgical replacement of the prosthetic aortic valve, the patient was successfully switched to oral antibiotic monotherapy, an unusual strategy in the treatment of infective endocarditis inspired by the recent publication of the POET trial. He made excellent progress on an eight-week course of oral antibiotics and was successfully discharged from surgical follow-up. Conclusions This case is the 9th reported case of Finegoldia magna infective endocarditis in the literature. Our case also raises the possibility of a more patient-friendly and cost-effective means of providing long-term antibiotic therapy in suitable patients with prosthetic valve endocarditis and suggests that the principles highlighted in the POET trial can also be applicable to post-operative patients after cardiac surgery.
Collapse
Affiliation(s)
- Siobhan Chien
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK.
| | - David Gorman
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | | | | | - Ganesh Kamath
- Department of Cardiothoracic Surgery, Kasturba Medical College, Manipal, India
| | - Vipin Zamvar
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| |
Collapse
|
17
|
Govender Y, Gabriel I, Minassian V, Fichorova R. The Current Evidence on the Association Between the Urinary Microbiome and Urinary Incontinence in Women. Front Cell Infect Microbiol 2019; 9:133. [PMID: 31119104 PMCID: PMC6504689 DOI: 10.3389/fcimb.2019.00133] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/12/2019] [Indexed: 01/26/2023] Open
Abstract
Urinary incontinence (UI) is a burdensome condition with high prevalence in middle-aged to older women and an unclear etiology. Advances in our understanding of host-microbe interactions in the urogenital tract have stimulated interest in the urinary microbiome. DNA sequencing and enhanced urine culture suggest that similarly to other mucosal sites, the urinary bladder of healthy individuals harbors resident microbial communities that may play distinct roles in bladder function. This review focused on the urobiome (expanded quantitative urine culture-based or genomic sequencing-based urinary microbiome) associated with different subtypes of UI, including stress, urgency and mixed urinary incontinence, and related syndromes, such as interstitial cystitis and overactive bladder in women, contrasted to urinary tract infections. Furthermore, we examined clinical evidence for the association of the urinary microbiome with responses to pharmacotherapy for amelioration of UI symptoms. Although published studies are still relatively limited in number, study design and sample size, cumulative evidence suggests that certain Lactobacillus species may play a role in maintaining a healthy bladder milieu. Higher bacterial diversity in the absence of Lactobacillus dominance was associated with urgency UI and resistance to anticholinergic treatment for this condition. UI may also facilitate the persistence of uropathogens following antibiotic treatment, which in turn can alter the commensal/potentially beneficial microbial communities. Risk factors of UI, including age, menopausal status, sex steroid hormones, and body mass index may also impact the urinary microbiome. However, it is yet unclear whether the effects of these risks factors on UI are mediated by urinary host-microbe interactions and a mechanistic link with the female urogenital microbiome is still to be established. Strategies for future research are suggested.
Collapse
Affiliation(s)
- Yashini Govender
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Iwona Gabriel
- Division of Urogynecology, Brigham and Women's Hospital, Boston, MA, United States
| | - Vatche Minassian
- Division of Urogynecology, Brigham and Women's Hospital, Boston, MA, United States
| | - Raina Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
18
|
Park CJ, Andam CP. Within-Species Genomic Variation and Variable Patterns of Recombination in the Tetracycline Producer Streptomyces rimosus. Front Microbiol 2019; 10:552. [PMID: 30949149 PMCID: PMC6437091 DOI: 10.3389/fmicb.2019.00552] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
Streptomyces rimosus is best known as the primary source of the tetracycline class of antibiotics, most notably oxytetracycline, which have been widely used against many gram-positive and gram-negative pathogens and protozoan parasites. However, despite the medical and agricultural importance of S. rimosus, little is known of its evolutionary history and genome dynamics. In this study, we aim to elucidate the pan-genome characteristics and phylogenetic relationships of 32 S. rimosus genomes. The S. rimosus pan-genome contains more than 22,000 orthologous gene clusters, and approximately 8.8% of these genes constitutes the core genome. A large part of the accessory genome is composed of 9,646 strain-specific genes. S. rimosus exhibits an open pan-genome (decay parameter α = 0.83) and high gene diversity between strains (genomic fluidity φ = 0.12). We also observed strain-level variation in the distribution and abundance of biosynthetic gene clusters (BGCs) and that each individual S. rimosus genome has a unique repertoire of BGCs. Lastly, we observed variation in recombination, with some strains donating or receiving DNA more often than others, strains that tend to frequently recombine with specific partners, genes that often experience recombination more than others, and variable sizes of recombined DNA sequences. We conclude that the high levels of inter-strain genomic variation in S. rimosus is partly explained by differences in recombination among strains. These results have important implications on current efforts for natural drug discovery, the ecological role of strain-level variation in microbial populations, and addressing the fundamental question of why microbes have pan-genomes.
Collapse
Affiliation(s)
- Cooper J Park
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Cheryl P Andam
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|