1
|
Zhao L, Zhang Y, Tian Y, Ding X, Lin R, Xiao L, Peng F, Zhang K, Yang Z. Role of ENPP1 in cancer pathogenesis: Mechanisms and clinical implications (Review). Oncol Lett 2024; 28:590. [PMID: 39411204 PMCID: PMC11474142 DOI: 10.3892/ol.2024.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer is a significant societal, public health and economic challenge in the 21st century, and is the primary cause of death from disease globally. Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) serves a crucial role in several biochemical processes, including adenosine triphosphate hydrolysis, purine metabolism and regulation of signaling pathways. Specifically, ENPP1, a type II transmembrane glycoprotein and key member of the ENPP family, may be upregulated in tumor cells and implicated in the pathogenesis of multiple human cancers. The present review provides an overview of the structural, pathological and physiological roles of ENPP1 and discusses the potential mechanisms of ENPP1 in the development of cancers such as breast, colon, gallbladder, liver and lung cancers, and also summarizes the four major signaling pathways in tumors. Furthermore, the present review demonstrates that ENPP1 serves a crucial role in cell migration, proliferation and invasion, and that corresponding inhibitors have been developed and associated with clinical characterization.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yu Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yahui Tian
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Xin Ding
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Runling Lin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
- Weifang Key L2aboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Kai Zhang
- Genetic Testing Centre, Qingdao University Women's and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| |
Collapse
|
2
|
Ma C, Zhao J, Zhou L, Jia C, Shi Y, Li X, Jihu K, Zhang T. Targeting ENPP1 depletion may be a promising therapeutic strategy for treating oral squamous cell carcinoma via cytotoxic autophagy-related apoptosis. FASEB J 2024; 38:e23420. [PMID: 38231531 DOI: 10.1096/fj.202301835r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024]
Abstract
ENPP1 depletion closely related with modulation immunotherapy of several types of cancer. However, the role of ENPP1 correlation with autophagy in oral squamous cell carcinoma (OSCC) pathogenesis remain unknown. In this study, effects of ENPP1 on OSCC cells in vitro were examined by cell proliferation assay, transwell chamber assay, flow cytometry analysis and shRNA technique. Cellular key proteins related to cell autophagy and apoptosis were evaluated by Western blot and immunofluorescent staining. Moreover, functions of ENPP1 on OSCC process were observed in nude mouse model. We reported that overexpression of ENPP1 promote the growth of OSCC cell xenografts in nude mouse model. In contrast, ENPP1 downregulation significantly inhibits OSCC cancer growth and induces apoptosis both in vitro and in vivo, which are preceded by cytotoxic autophagy. ENPP1downregulation induces a robust accumulation of autophagosomes, increases LC3B-II and decreases SQSTM1/p62 in ENPP1-shRNA-treated cells and xenografts. Mechanistic studies show that ENPP1 downregulation increases PRKAA1 phosphorylation leading to ULK1 activation. AMPK-inhibition abrogates ENPP1 downregulation-induced ULK1-activation, LC3B-turnover and SQSTM1/p62-degradation while AMPK-activation potentiates it's effects. Collectively, these data uncover that ENPP1 downregulation induces autophagic cell death in OSCC cancer, which may provide a potential therapeutic target for the treatment of OSCC.
Collapse
Affiliation(s)
- Chao Ma
- Department of Stomatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Jizhi Zhao
- Department of Stomatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Lian Zhou
- Department of Stomatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Yanping Shi
- Department of Stomatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Xing Li
- Department of Stomatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Kedi Jihu
- Department of Stomatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Tao Zhang
- Department of Stomatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, P.R. China
| |
Collapse
|
3
|
Banerjee K, Saha S, Das S, Ghosal S, Ghosh I, Basu A, Jana SS. Expression of nonmuscle myosin IIC is regulated by non-canonical binding activity of miRNAs. iScience 2023; 26:108384. [PMID: 38047082 PMCID: PMC10690570 DOI: 10.1016/j.isci.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The expression of mechanoresponsive nonmuscle myosin II (NMII)C is found to be inducible during tumor progression, but its mechanism is yet to be explored. Here, we report a group of microRNAs (mmu-miR-200a-5p, mmu-miR-532-3p, mmu-miR-680, and mmu-miR-1901) can significantly repress the expression of nonmuscle myosin IIC (NMIIC). Interestingly, these microRNAs have both canonical and non-canonical binding sites at 3/UTR and coding sequence (CDS) of NMIIC's heavy chain (HC) mRNA. Each of the miRNA downregulates NMHC-IIC to a different degree as assessed by dual-luciferase and immunoblot analyses. When we abolish the complementary base pairing at canonical binding site, mmu-miR-532-3p can still bind at non-canonical binding site and form Argonaute2 (AGO2)-miRNA complex to downregulate the expression of NMIIC. Modulating the expression of NMIIC by miR-532-3p in mouse mammary tumor cells, 4T1, increases its tumorigenic potential both in vitro and in vivo. Together, these studies provide the functional role of miRNA's non-canonical binding mediated NMIIC regulation in tumor cells.
Collapse
Affiliation(s)
- Kumarjeet Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, VA, USA
| | - Shaoli Das
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Suman Ghosal
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Indranil Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Abhimanyu Basu
- Department of General Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Siddhartha S. Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
4
|
Zhang Y, Qin W, Zhang W, Qin Y, Zhou YL. Guidelines on lung adenocarcinoma prognosis based on immuno-glycolysis-related genes. Clin Transl Oncol 2023; 25:959-975. [PMID: 36447119 PMCID: PMC10025218 DOI: 10.1007/s12094-022-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/29/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVES This study developed a new model for risk assessment of immuno-glycolysis-related genes for lung adenocarcinoma (LUAD) patients to predict prognosis and immunotherapy efficacy. METHODS LUAD samples and data obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases are used as training and test columns, respectively. Twenty-two (22) immuno-glycolysis-related genes were screened, the patients diagnosed with LUAD were divided into two molecular subtypes by consensus clustering of these genes. The initial prognosis model was developed using the multiple regression analysis method and Receiver Operating characteristic (ROC) analysis was used to verify its predictive potential. Gene set enrichment analysis (GSEA) showed the immune activities and pathways in different risk populations, we calculated immune checkpoints, immune escape, immune phenomena (IPS), and tumor mutation burden (TMB) based on TCGA datasets. Finally, the relationship between the model and drug sensitivity was analyzed. RESULTS Fifteen (15) key differentially expressed genes (DEGs) with prognostic value were screened and a new prognostic model was constructed. Four hundred and forty-three (443) samples were grouped into two different risk cohorts based on median model risk values. It was observed that survival rates in high-risk groups were significantly low. ROC curves were used to evaluate the model's accuracy in determining the survival time and clinical outcome of LUAD patients. Cox analysis of various clinical factors proved that the risk score has great potential as an independent prognostic factor. The results of immunological analysis can reveal the immune infiltration and the activity of related functions in different pathways in the two risk groups, and immunotherapy was more effective in low-risk patients. Most chemotherapeutic agents are more sensitive to low-risk patients, making them more likely to benefit. CONCLUSION A novel prognostic model for LUAD patients was established based on IGRG, which could more accurately predict the prognosis and an effective immunotherapy approach for patients.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wen Qin
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wenhui Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yi Qin
- Nursing Department, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
AVA-NP-695 Selectively Inhibits ENPP1 to Activate STING Pathway and Abrogate Tumor Metastasis in 4T1 Breast Cancer Syngeneic Mouse Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196721. [PMID: 36235254 PMCID: PMC9573294 DOI: 10.3390/molecules27196721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is an endogenous DNA sensor that synthesizes cyclic guanosine monophosphate–adenosine monophosphate (2′3′-cGAMP) from ATP and GTP. 2′3′-cGAMP activates the stimulator of interferon genes (STING) pathway, resulting in the production of interferons and pro-inflammatory cytokines. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is the phosphodiesterase that negatively regulates the STING pathway by hydrolyzing 2′3′-cGAMP. It has been established that the cGAS–STING pathway plays a major role in inhibiting tumor growth by upregulating T cell response. Herein, we demonstrate that AVA-NP-695, a selective and highly potent ENPP1 inhibitor, apart from the immunomodulatory effect also modulates cancer metastasis by negatively regulating epithelial–mesenchymal transition (EMT). We established that the combined addition of 2′3′-cGAMP and AVA-NP-695 significantly abrogated the transforming growth factor beta (TGF-ꞵ)-induced EMT in MDA-MB-231 cells. Finally, results from the in vivo study showed superior tumor growth inhibition and impact on tumor metastasis of AVA-NP-695 compared to Olaparib and PD-1 in a syngeneic 4T1 breast cancer mouse model. The translation of efficacy from in vitro to in vivo 4T1 tumor model provides a strong rationale for the therapeutic potential of AVA-NP-695 against triple-negative breast cancer (TNBC) as an immunomodulatory and anti-metastatic agent.
Collapse
|
6
|
From Myricetin to the Discovery of Novel Natural Human ENPP1 Inhibitors: A Virtual Screening, Molecular Docking, Molecular Dynamics Simulation, and MM/GBSA Study. Molecules 2022; 27:molecules27196175. [PMID: 36234712 PMCID: PMC9573336 DOI: 10.3390/molecules27196175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
It was recently revealed that naturally occurring myricetin can inhibit ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which, in turn, can treat ischemic cardiac injury. However, due to myricetin’s poor druggability, its further developments are relatively limited, which necessitates the discovery of novel ENPP1-inhibiting myricetin analogs as alternatives. In this study, the binding model of myricetin with ENPP1 was elucidated by molecular docking and molecular dynamics studies. Subsequently, virtual screening on the self-developed flavonoid natural product database (FNPD), led to the identification of two flavonoid glycosides (Cas No: 1397173-50-0 and 1169835-58-8), as potential ENPP1 inhibitors. Docking scores and MM/GBSA binding energies predicted that they might have higher inhibitory effects than myricetin. This study provides a strong foundation for the future development of ischemic cardiac injury drugs.
Collapse
|
7
|
Cao XH, Yang K, Liang MX, Ma P, Xu D, Fei YJ, Zhang W, Chen X, Tang JH. Variation of Long Non-Coding RNA And mRNA Profiles in Breast Cancer Cells With Influences of Adipocytes. Front Oncol 2021; 11:631551. [PMID: 34094912 PMCID: PMC8176020 DOI: 10.3389/fonc.2021.631551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
Background It is well known that obesity is one of the risks for incurrence and development in breast cancer patients. Long non-coding RNAs (lncRNAs) are reported to participate in the composition of tumor microenvironment and to regulate breast cancer cell metabolic activities. However, there was rare study focused on the lncRNAs in breast cancer with the influences of adipocytes. The study aimed to investigate lncRNAs expression profiles and discover potential biomarkers to predict the incidence and progression of adipocyte-associated-breast cancer. Methods We co-cultured adipocytes with breast cancer cells and profiled the expression of lncRNAs as well as mRNAs by using the RNA-sequencing method. Wound Healing, Migration assays and Invasion assays were applied to verify the invasion and metastasis of cancer cells. Results MDA-MB-231/Hpa-V and SK-BR-3/Hpa-V cells showed elevated migration and invasiveness compared to the control group. A sum of 371 mRNAs (181 upregulated and 190 downregulated) and 850 lncRNAs(414 upregulated and 436 downregulated) were differentially expressed in MDA-MB-231/Hpa-V comparing to MDA-MB-231(P < 0.05; |log2 (fold change)|>1.2). GO enrichment, KEGG pathway and interaction networks demonstrated that differentially expressed lncRNAs were involved in functional categories, such as material metabolism, which might lead to the progression of breast cancer. Conclusion Our study detected a lncRNA profile in breast cancer cells affecting by adipocytes and provided a better understanding of the tumor microenvironment. LncRNAs may be helpful to predict the therapeutic responses and prognosis of obese breast cancer patients.
Collapse
Affiliation(s)
- Xin-Hui Cao
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Kai Yang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin-Jiao Fei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Tang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Poluan RH, Sudigyo D, Rahmawati G, Setiasari DW, Sesotyosari SL, Wardana T, Astuti I, Heriyanto DS, Indrasari SR, Herawati C, Afiahayati , Haryana SM. Transcriptome Related to Avoiding Immune Destruction in Nasopharyngeal Cancer in Indonesian Patients Using Next-Generation Sequencing. Asian Pac J Cancer Prev 2020; 21:2593-2601. [PMID: 32986357 PMCID: PMC7779461 DOI: 10.31557/apjcp.2020.21.9.2593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: This study aims to obtain the transcriptomes profile associated with avoiding immune destruction from nasopharyngeal cancer patients in Indonesia using next-generation sequencing. Methods: The samples are divided into two types of samples; 1) biopsy of nasopharyngeal cancer tissue samples, 2) brushing tissue of people without nasopharyngeal cancer as control samples. The sequencing results were mapped (HISAT2) and quantified (HTSeq) for differential expression analysis using edgeR software. Transcripts data analyzed with Pantherdb and DAVID software to find genes related to the immune system and pathways related to immune destruction by cancer. Results: The differential expression results show that 2,046 genes that have a significant differential expression. The 90 genes expression has down-regulated and 1,956 genes expression up-regulated, there are 20 genes related to the immune system. The 20 genes related to the immune system by analyzing lionproject.net that directly related to hallmark avoiding immune destruction that genes are CXCL9/10/11. The gene expression of CXCL9/10/11 regulates PD-L1 expressions via the Jak/STAT signaling pathway. The interaction between the extracellular domain PD-1 and PD-L1 in cancer cells have avoiding immune destruction. Conclusion: The results of this study suggest that the gene expression of CXCL9/10/11 have up-regulated is related to avoiding immune destruction that can use as an early detection biomarker of nasopharyngeal cancer in Indonesian patients.
Collapse
Affiliation(s)
- Risky Hiskia Poluan
- Study Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Digdo Sudigyo
- Study Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Gisti Rahmawati
- Study Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | - Tirta Wardana
- Universitas Jenderal Soedirman, Central Java, Indonesia
| | - Indwiani Astuti
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Didik Setyo Heriyanto
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sagung Rai Indrasari
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - - Afiahayati
- Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Checchi M, Bertacchini J, Cavani F, Magarò MS, Reggiani Bonetti L, Pugliese GR, Tamma R, Ribatti D, Maurel DB, Palumbo C. Scleral ossicles: angiogenic scaffolds, a novel biomaterial for regenerative medicine applications. Biomater Sci 2019; 8:413-425. [PMID: 31738355 DOI: 10.1039/c9bm01234f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Given the current prolonged life expectancy, various pathologies affect increasingly the aging subjects. Regarding the musculoskeletal apparatus, bone fragility induces more susceptibility to fractures, often not accompanied by good ability of self-repairing, in particular when critical-size defects (CSD) occur. Currently orthopedic surgery makes use of allografting and autografting which, however, have limitations due to the scarce amount of tissue that can be taken from the donor, the possibility of disease transmission and donor site morbidity. The need to develop new solutions has pushed the field of tissue engineering (TE) research to study new scaffolds to be functionalized in order to obtain constructs capable of promoting tissue regeneration and achieve stable bone recovery over time. This investigation focuses on the most important aspect related to bone tissue regeneration: the angiogenic properties of the scaffold to be used. As an innovative solution, scleral ossicles (SOs), previously characterized as natural, biocompatible and spontaneously decellularized scaffolds used for bone repair, were tested for angiogenic potential and biocompatibility. To reach this purpose, in ovo Chorioallantoic Membrane Assay (CAM) was firstly used to test the angiogenic potential; secondly, in vivo subcutaneous implantation of SOs (in a rat model) was performed in order to assess the biocompatibility and the inflammatory response. Finally, thanks to the analysis of mass spectrometry (LCMSQE), the putative proteins responsible for the SO angiogenic properties were identified. Thus, a novel natural biomaterial is proposed, which is (i) able to induce an angiogenic response in vivo by subcutaneous implantation in a non-immunodeficient animal model, (ii) which does not induce any inflammatory response, and (iii) is useful for regenerative medicine application for the healing of bone CSD.
Collapse
Affiliation(s)
- Marta Checchi
- Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chu HW, Chang KP, Hsu CW, Chang IYF, Liu HP, Chen YT, Wu CC. Identification of Salivary Biomarkers for Oral Cancer Detection with Untargeted and Targeted Quantitative Proteomics Approaches. Mol Cell Proteomics 2019; 18:1796-1806. [PMID: 31253657 PMCID: PMC6731081 DOI: 10.1074/mcp.ra119.001530] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 01/08/2023] Open
Abstract
Oral cavity squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. In Taiwan, OSCC is the fifth leading cause of cancer-related mortality and leads to 2800 deaths per year. The poor outcome of OSCC patients is principally ascribed to the fact that this disease is often advanced at the time of diagnosis, suggesting that early detection of OSCC is urgently needed. Analysis of cancer-related body fluids is one promising approach to identify biomarker candidates of cancers. To identify OSCC biomarkers, salivary proteomes of OSCC patients, individuals with oral potentially malignant disorders (OPMDs), and healthy volunteers were comparatively profiled with isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry (MS). The salivary levels of 67 and 18 proteins in the OSCC group are elevated and decreased compared with that in the noncancerous group (OPMD and healthy groups), respectively. The candidate biomarkers were further selected using the multiple reaction monitoring (MRM)-MS and validated with the immunoassays. More importantly, the higher salivary level of three proteins, complement factor H (CFH), fibrinogen alpha chain (FGA), and alpha-1-antitrypsin (SERPINA1) was correlated with advanced stages of OSCC. Our results indicate that analysis of salivary proteome is a feasible strategy for biomarker discovery, and the three proteins are potential salivary markers for OSCC diagnosis.
Collapse
Affiliation(s)
- Hao-Wei Chu
- ‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- §Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chia-Wei Hsu
- ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ian Yi-Feng Chang
- ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Ping Liu
- ‖Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ting Chen
- ‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; **Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; ‡‡Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chih-Ching Wu
- ‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; §Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; §§Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; ¶¶Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Yang X, Cheng Y, Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci Rep 2018; 38:BSR20180557. [PMID: 30049845 PMCID: PMC6137252 DOI: 10.1042/bsr20180557] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine regulating vascular permeability, angiogenesis, and inflammation. Dysregulations in these responses contribute to the pathogenesis of ischemic retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion, and sickle cell retinopathy (SCR). However, the role of ANGPTL4 in these diseases remains controversial. Here, we summarize the functional mechanisms of ANGPTL4 in several diseases. We highlight original studies that provide detailed data about the mechanisms of action for ANGPTL4, its applications as a diagnostic or prognostic biomarker, and its use as a potential therapeutic target. Taken together, the discussions in this review will help us gain a better understanding of the molecular mechanisms by which ANGPTL4 functions in eye disease and will provide directions for future research.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|