1
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Aung TM, Ngamjarus C, Proungvitaya T, Saengboonmee C, Proungvitaya S. Biomarkers for prognosis of meningioma patients: A systematic review and meta-analysis. PLoS One 2024; 19:e0303337. [PMID: 38758750 PMCID: PMC11101050 DOI: 10.1371/journal.pone.0303337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Meningioma is the most common primary brain tumor and many studies have evaluated numerous biomarkers for their prognostic value, often with inconsistent results. Currently, no reliable biomarkers are available to predict the survival, recurrence, and progression of meningioma patients in clinical practice. This study aims to evaluate the prognostic value of immunohistochemistry-based (IHC) biomarkers of meningioma patients. A systematic literature search was conducted up to November 2023 on PubMed, CENTRAL, CINAHL Plus, and Scopus databases. Two authors independently reviewed the identified relevant studies, extracted data, and assessed the risk of bias of the studies included. Meta-analyses were performed with the hazard ratio (HR) and 95% confidence interval (CI) of overall survival (OS), recurrence-free survival (RFS), and progression-free survival (PFS). The risk of bias in the included studies was evaluated using the Quality in Prognosis Studies (QUIPS) tool. A total of 100 studies with 16,745 patients were included in this review. As the promising markers to predict OS of meningioma patients, Ki-67/MIB-1 (HR = 1.03, 95%CI 1.02 to 1.05) was identified to associate with poor prognosis of the patients. Overexpression of cyclin A (HR = 4.91, 95%CI 1.38 to 17.44), topoisomerase II α (TOP2A) (HR = 4.90, 95%CI 2.96 to 8.12), p53 (HR = 2.40, 95%CI 1.73 to 3.34), vascular endothelial growth factor (VEGF) (HR = 1.61, 95%CI 1.36 to 1.90), and Ki-67 (HR = 1.33, 95%CI 1.21 to 1.46), were identified also as unfavorable prognostic biomarkers for poor RFS of meningioma patients. Conversely, positive progesterone receptor (PR) and p21 staining were associated with longer RFS and are considered biomarkers of favorable prognosis of meningioma patients (HR = 0.60, 95% CI 0.41 to 0.88 and HR = 1.89, 95%CI 1.11 to 3.20). Additionally, high expression of Ki-67 was identified as a prognosis biomarker for poor PFS of meningioma patients (HR = 1.02, 95%CI 1.00 to 1.04). Although only in single studies, KPNA2, CDK6, Cox-2, MCM7 and PCNA are proposed as additional markers with high expression that are related with poor prognosis of meningioma patients. In conclusion, the results of the meta-analysis demonstrated that PR, cyclin A, TOP2A, p21, p53, VEGF and Ki-67 are either positively or negatively associated with survival of meningioma patients and might be useful biomarkers to assess the prognosis.
Collapse
Affiliation(s)
- Tin May Aung
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chetta Ngamjarus
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Joshi R, Sharma A, Kulshreshtha R. Noncoding RNA landscape and their emerging roles as biomarkers and therapeutic targets in meningioma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200782. [PMID: 38596289 PMCID: PMC10951709 DOI: 10.1016/j.omton.2024.200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Meningiomas are among the most prevalent primary CNS tumors in adults, accounting for nearly 38% of all brain neoplasms. The World Health Organization (WHO) grade assigned to meningiomas guides medical care in patients and is primarily based on tumor histology and malignancy potential. Although often considered benign, meningiomas with complicated histology, limited accessibility for surgical resection, and/or higher malignancy potential (WHO grade 2 and WHO grade 3) are harder to combat, resulting in significant morbidity. With limited treatment options and no systemic therapies, it is imperative to understand meningioma tumorigenesis at the molecular level and identify novel therapeutic targets. The last decade witnessed considerable progress in understanding the noncoding RNA landscape of meningioma, with microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) emerging as molecular entities of interest. This review aims to highlight the commonly dysregulated miRNAs and lncRNAs in meningioma and their correlation with meningioma progression, malignancy, recurrence, and radioresistance. The role of "key" miRNAs as biomarkers and their therapeutic potential has also been reviewed in detail. Furthermore, current and emerging therapeutic modalities for meningioma have been discussed, with emphasis on the need to identify and subsequently employ clinically relevant miRNAs and lncRNAs as novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ritanksha Joshi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anuja Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Shelbourn A, Nuechterlein N, Parada CA, Eaton J, Tucker M, Ferreira M, Cimino PJ. Validating MCM2 as a clinically relevant surrogate immunohistochemical marker for an aggressive meningioma molecular subtype. J Neuropathol Exp Neurol 2023; 82:1037-1039. [PMID: 37837323 PMCID: PMC11032699 DOI: 10.1093/jnen/nlad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023] Open
Affiliation(s)
- Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jessica Eaton
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Mallory Tucker
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Kimura S, Lok J, Gelman IH, Lo EH, Arai K. Role of A-Kinase Anchoring Protein 12 in the Central Nervous System. J Clin Neurol 2023; 19:329-337. [PMID: 37417430 DOI: 10.3988/jcn.2023.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 07/08/2023] Open
Abstract
A-kinase anchoring protein (AKAP) 12 is a scaffolding protein that anchors various signaling proteins to the plasma membrane. These signaling proteins include protein kinase A, protein kinase C, protein phosphatase 2B, Src-family kinases, cyclins, and calmodulin, which regulate their respective signaling pathways. AKAP12 expression is observed in the neurons, astrocytes, endothelial cells, pericytes, and oligodendrocytes of the central nervous system (CNS). Its physiological roles include promoting the development of the blood-brain barrier, maintaining white-matter homeostasis, and even regulating complex cognitive functions such as long-term memory formation. Under pathological conditions, dysregulation of AKAP12 expression levels may be involved in the pathology of neurological diseases such as ischemic brain injury and Alzheimer's disease. This minireview aimed to summarize the current literature on the role of AKAP12 in the CNS.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Circ_0001777 Affects Triple-negative Breast Cancer Progression Through the miR-95-3p/AKAP12 Axis. Clin Breast Cancer 2023; 23:143-154. [PMID: 36513585 DOI: 10.1016/j.clbc.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Triple Negative Breast Cancer (TNBC) is 1 of the most serious cancer. Circular RNA_0001777 (circ_0001777) expression was decreased in TNBC tissues. However, the molecular mechanism of circ_0001777 remains unknown. METHODS The expression of circ_0001777, microRNA-95-3p (miR-95-3p) and A-kinase anchor protein 12 (AKAP12) were detected by quantitative real-time fluorescence polymerase chain reaction (qRT-PCR). A series of in vitro experiments were designed to explore the function of circ_0001777 in TNBC cells and the regulatory mechanism between circ_0001777 and miR-95-3p and AKAP12 in TNBC cells. Western blot examined the relative protein levels in TNBC cells. Bioinformatics prediction site predicted the relationship between miR-95-3p and circ_0001777 or AKAP12 and was verified by Dual-luciferase reporter assays. The xenotransplantation model was established to study the role of circ_0001777 in vivo. RESULTS The expression of circ_0001777 and AKAP12 was decreased in TNBC tissues, while the expression of miR-95-3p was increased. Circ_0001777 can sponge miR-95-3p, and AKAP12 is the target of miR-95-3p. In vitro complement experiments, overexpression of circ_0001777 significantly decreased the malignant behavior of TNBC, while co-transfection of miR-95-3p partially up-regulated this change. In addition, AKAP12 knockdown increased the proliferation, migration, and invasion of TNBC cells inhibited by overexpression of circ_0001777. Mechanically, circ_0001777 regulates AKAP12 expression in TNBC cells by sponge miR-95-3p. In addition, in vivo studies have shown that overexpression of circ_0001777 inhibits tumor growth. CONCLUSION Overexpression of circ_0001777 decreased proliferation, migration, and invasion of TNBC cells by regulating the miR-95-3p/AKAP12 axis, suggesting that circ_0001777/miR-95-3p/AKAP12 axis may be a potential regulatory mechanism for the treatment of TNBC.
Collapse
|
7
|
Li H. Physiologic and pathophysiologic roles of AKAP12. Sci Prog 2022; 105:368504221109212. [PMID: 35775596 PMCID: PMC10450473 DOI: 10.1177/00368504221109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A kinase anchoring protein (AKAP) 12 is a scaffolding protein that improves the specificity and efficiency of spatiotemporal signal through assembling intracellular signal proteins into a specific complex. AKAP12 is a negative mitogenic regulator that plays an important role in controlling cytoskeletal architecture, maintaining endothelial integrity, regulating glial function and forming blood-brain barrier (BBB) and blood retinal barrier (BRB). Moreover, elevated or reduced AKAP12 contributes to a variety of diseases. Complex connections between AKAP12 and various diseases including chronic liver diseases (CLDs), inflammatory diseases and a series of cancers will be tried to delineate in this paper. We first describe the expression, distribution and physiological function of AKAP12. Then we summarize the current knowledge of different connections between AKAP12 expression and various diseases. Some research groups have found paradoxical roles of AKAP12 in different diseases and further confirmation is needed. This paper aims to assess the role of AKAP12 in physiology and diseases to help lay the foundation for the design of small molecules for specific AKAP12 to correct the pathological signal defects.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
8
|
Peng W, Wu P, Yuan M, Yuan B, Zhu L, Zhou J, Li Q. Potential Molecular Mechanisms of Recurrent and Progressive Meningiomas: A Review of the Latest Literature. Front Oncol 2022; 12:850463. [PMID: 35712491 PMCID: PMC9196588 DOI: 10.3389/fonc.2022.850463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas, the most frequent primary intracranial tumors of the central nervous system in adults, originate from the meninges and meningeal spaces. Surgical resection and adjuvant radiation are considered the preferred treatment options. Although most meningiomas are benign and slow-growing, some patients suffer from tumor recurrence and disease progression, eventually resulting in poorer clinical outcomes, including malignant transformation and death. It is thus crucial to identify these "high-risk" tumors early; this requires an in-depth understanding of the molecular and genetic alterations, thereby providing a theoretical foundation for establishing personalized and precise treatment in the future. Here, we review the most up-to-date knowledge of the cellular biological alterations involved in the progression of meningiomas, including cell proliferation, neo-angiogenesis, inhibition of apoptosis, and immunogenicity. Focused genetic alterations, including chromosomal abnormalities and DNA methylation patterns, are summarized and discussed in detail. We also present latest therapeutic targets and clinical trials for meningiomas' treatment. A further understanding of cellular biological and genetic alterations will provide new prospects for the accurate screening and treatment of recurrent and progressive meningiomas.
Collapse
Affiliation(s)
- Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
| | - Bo Yuan
- Department of Nephrology, The Dazu District People’s Hospital, Chongqing, China
| | - Lian Zhu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Jiesong Zhou
- Department of Plastic Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
M2-Macrophage-Derived Exosomes Promote Meningioma Progression through TGF-β Signaling Pathway. J Immunol Res 2022; 2022:8326591. [PMID: 35637794 PMCID: PMC9146444 DOI: 10.1155/2022/8326591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) have been shown to be an essential component of the tumor microenvironment and facilitate the proliferation and invasion of a variety of malignancies. However, the contribution of TAMs to meningioma progression has not been characterized in detail. In this study, we aimed to discover a novel regulatory pathway by which exosome-mediated M2-polarized macrophages participate in meningioma tumorigenesis and progression. Methods. First, the distribution and functional phenotype of macrophages in meningioma tissues were assessed by immunohistochemistry. Macrophage-derived exosomes (MDEs) were characterized, and further cell coculture experiments were performed to explore the effects of M2-MDEs on the proliferation, migration, and invasion of meningioma cells. RNA sequencing was used to analyze the transcriptomic signatures in meningioma cells treated with M2-MDEs. Three-dimensional tumorspheres and xenograft tumor models were used to evaluate the effects of M2-MDEs on meningioma tumorigenesis and development. Results. We found that M2 macrophages were enriched in meningioma tissue. Coculture with meningioma cells induced the M2 polarization of macrophages. We also found that M2-MDEs were able to significantly promote cell proliferation, cell migration, cell invasion, and tumorigenesis in meningiomas. Bioinformatic analysis suggested that the TGF-β pathway was activated in meningioma cells treated with M2-MDEs. Functional experiments demonstrated that blocking the TGF-β signaling pathway could effectively reverse the tumor-promotive effects mediated by M2-MDEs. Conclusions. Overall, our study showed that M2-MDEs promoted meningioma development and invasion by activating the TGF-β signaling pathway. Targeting exosome-mediated intercellular communication in the tumor microenvironment may be a novel therapeutic strategy for meningioma patients.
Collapse
|
10
|
WHO grade III meningioma: De novo tumors show improved progression free survival as compared to secondary progressive tumors. J Clin Neurosci 2021; 91:105-109. [PMID: 34373013 DOI: 10.1016/j.jocn.2021.05.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/24/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022]
Abstract
Emerging evidence suggest WHO grade III meningiomas that arise de novo as opposed to dedifferentiating from a lower grade may harbor differing prognoses. To investigate this, a single institution retrospective analysis of prospectively acquired patients between 1999 and 2018 was performed. Clinical data and radiographic parameters were reviewed to calculate progression free survival and overall survival in patients undergoing microsurgical resection. Next generation targeted sequencing of meningioma associated genes was performed on 11 tumors. Eighteen patients were identified as undergoing surgical resection of WHO grade III meningioma. Nine patients (50%) had de novo arising tumors and nine patients had secondary progressive tumors. To compare outcomes, only those patients undergoing gross total resection (Simpson grade I) were included for survival analysis. There was an improvement in median progression free survival for de novo resected tumors as compared to secondary progressive tumors (p = 0.02). Median overall survival for patients with de novo tumors was not statistically improved compared to that of secondary progressive tumors (p = 0.22). Next generation sequencing of targeted genes (NF2, BAP1, TRAF7, KLF4, SMO and AKT) revealed 5/11 tumors containing mutations in the NF2 gene, 2/11 containing BAP1 mutations, and a single tumor containing mutations in both NF2 and TRAF7. More mutations in NF2 and BAP1 were seen in the secondary progressive tumors. In conclusion, patients undergoing gross total resection for de novo arising grade III meningiomas showed improved progression free survival, though similar overall survival, as compared to those patients with secondary progressive tumors. Further studies focused on tumor associated genes and other associated risk factors are needed to improve risk-stratification.
Collapse
|
11
|
Sofela AA, McGavin L, Whitfield PC, Hanemann CO. Biomarkers for differentiating grade II meningiomas from grade I: a systematic review. Br J Neurosurg 2021; 35:696-702. [PMID: 34148477 DOI: 10.1080/02688697.2021.1940853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION There are a number of prognostic markers (methylation, CDKN2A/B) described to be useful for the stratification of meningiomas. However, there are currently no clinically validated biomarkers for the preoperative prediction of meningioma grade, which is determined by the histological analysis of tissue obtained from surgery. Accurate preoperative biomarkers would inform the pre-surgical assessment of these tumours, their grade and prognosis and refine the decision-making process for treatment. This review is focused on the more controversial grade II tumours, where debate still surrounds the need for adjuvant therapy, repeat surgery and frequency of follow up. METHODS We evaluated current literature for potential grade II meningioma clinical biomarkers, focusing on radiological, biochemical (blood assays) and immunohistochemical markers for diagnosis and prognosis, and how they can be used to differentiate them from grade I meningiomas using the post-2016 WHO classification. To do this, we conducted a PUBMED, SCOPUS, OVID SP, SciELO, and INFORMA search using the keywords; 'biomarker', 'diagnosis', 'atypical', 'meningioma', 'prognosis', 'grade I', 'grade 1', 'grade II' and 'grade 2'. RESULTS We identified 1779 papers, 20 of which were eligible for systematic review according to the defined inclusion and exclusion criteria. From the review, we identified radiological characteristics (irregular tumour shape, tumour growth rate faster than 3cm3/year, high peri-tumoural blood flow), blood markers (low serum TIMP1/2, high serum HER2, high plasma Fibulin-2) and histological markers (low H3K27me3, low SMARCE1, low AKAP12, high ARIDB4) that may aid in differentiating grade II from grade I meningiomas. CONCLUSION Being able to predict meningioma grade at presentation using the radiological and blood markers described may influence management as the likely grade II tumours will be followed up or treated more aggressively, while the histological markers may prognosticate progression or post-treatment recurrence. This to an extent offers a more personalised treatment approach for patients.
Collapse
Affiliation(s)
- Agbolahan A Sofela
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK.,South West Neurosurgery Centre, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Lucy McGavin
- Department of Radiology, Derriford Hospital, Plymouth, UK
| | - Peter C Whitfield
- South West Neurosurgery Centre, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - C Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| |
Collapse
|
12
|
Peptidomic profiling of cerebrospinal fluid from patients with intracranial saccular aneurysms. J Proteomics 2021; 240:104188. [PMID: 33781962 DOI: 10.1016/j.jprot.2021.104188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023]
Abstract
Intracranial saccular aneurysms (ISA) represent 90%-95% of all intracranial aneurysm cases, characterizing abnormal pockets at arterial branch points. Ruptures lead to subarachnoid hemorrhages (SAH) and poor prognoses. We applied mass spectrometry-based peptidomics to investigate the peptidome of twelve cerebrospinal fluid (CSF) samples collected from eleven patients diagnosed with ISA. For peptide profile analyses, participants were classified into: 1) ruptured intracranial saccular aneurysms (RIA), 2) unruptured intracranial saccular aneurysms (UIA), and late-ruptured intracranial saccular aneurysms (LRIA). Altogether, a total of 2199 peptides were detected by both Mascot and Peaks software, from which 484 (22.0%) were unique peptides. All unique peptides presented conserved chains, domains, regions of protein modulation and/or post-translational modification sites related to human diseases. Gene Ontology (GO) analyses of peptide precursor proteins showed that 42% are involved in binding, 56% in cellular anatomical entities, and 39% in intercellular signaling molecules. Unique peptides identified in patients diagnosed with RIA have a larger molecular weight and a distinctive developmental process compared to UIA and LRIA (P ≤ 0.05). Continued investigations will allow the characterization of the biological and clinical significance of the peptides identified in the present study, as well as identify prototypes for peptide-based pharmacological therapies to treat ISA. SIGNIFICANCE.
Collapse
|
13
|
Ding C, Yi X, Xu J, Huang Z, Bu X, Wang D, Ge H, Zhang G, Gu J, Kang D, Wu X. Long Non-Coding RNA MEG3 Modifies Cell-Cycle, Migration, Invasion, and Proliferation Through AKAP12 by Sponging miR-29c in Meningioma Cells. Front Oncol 2020; 10:537763. [PMID: 33251130 PMCID: PMC7672212 DOI: 10.3389/fonc.2020.537763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Meningioma (MEN) is a common central nervous system disease. Accumulating evidence indicated that long non-coding RNA maternally expressed gene 3 (MEG3) participated in the progression of MEN. However, the potential mechanisms of MEG3 in altering the aggressive phenotypes of MEN need further exploration. Levels of MEG3, microRNA (miR)-29c, and A-kinase anchor protein 12 (AKAP12) were determined using quantitative real-time Polymerase Chain Reaction (qRT-PCR) assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the relationship between miR-29c and MEG3 or AKAP12. The protein level of AKAP12 was detected by western blot. Moreover, cell-cycle arrest, migration, invasion, and proliferation were assessed by flow cytometry, wound healing, transwell assays, and CCK-8 assay, respectively. Levels of MEG3 and AKAP12 were downregulated, while miR-29c was effectively increased in MEN tissues and cell line. Mechanically, MEG3 was a sponge of miR-29c to regulate the expression of AKAP12. Functionally, increase of MEG3 diminished cell-cycle, migration, invasion, and proliferation in MEN cells, and reintroduction of miR-29c could eliminate these effects. In addition, AKAP12 depletion overturned the inhibitory effects of miR-29c absence on cell-cycle, migration, invasion, and proliferation in vitro. Also, AKAP12 was co-regulated by MEG3/miR-29c axis. MEG3 mediated the aggressive behaviors of MEN cells via miR-29c/AKAP12 axis, supporting that MEG3 served as a promising biomarker for the diagnosis and treatment of human MEN.
Collapse
Affiliation(s)
- Chenyu Ding
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xuehan Yi
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiaheng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhenhua Huang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Desheng Wang
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hongliang Ge
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gaoqi Zhang
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianjun Gu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiyue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Sürmen MG, Sürmen S, Ali A, Musharraf SG, Emekli N. Phosphoproteomic strategies in cancer research: a minireview. Analyst 2020; 145:7125-7149. [PMID: 32996481 DOI: 10.1039/d0an00915f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into cancer mechanisms and aid in the diagnosis and prognosis of the disease. Phosphoproteome is one of the most studied complements of the whole proteome given its importance in the understanding of cellular processes such as signaling and regulations. Over the last decade, several new methods have been developed for phosphoproteome analysis. A significant amount of these efforts pertains to cancer research. The current use of powerful analytical instruments in phosphoproteomic approaches has paved the way for deeper and sensitive investigations. However, these methods and techniques need further improvements to deal with challenges posed by the complexity of samples and scarcity of phosphoproteins in the whole proteome, throughput and reproducibility. This review aims to provide a comprehensive summary of the variety of steps used in phosphoproteomic methods applied in cancer research including the enrichment and fractionation strategies. This will allow researchers to evaluate and choose a better combination of steps for their phosphoproteome studies.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nesrin Emekli
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
15
|
Dunn J, Lenis VP, Hilton DA, Warta R, Herold-Mende C, Hanemann CO, Futschik ME. Integration and Comparison of Transcriptomic and Proteomic Data for Meningioma. Cancers (Basel) 2020; 12:E3270. [PMID: 33167358 PMCID: PMC7694371 DOI: 10.3390/cancers12113270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Meningioma are the most frequent primary intracranial tumour. Management of aggressive meningioma is complex, and development of effective biomarkers or pharmacological interventions is hampered by an incomplete knowledge of molecular landscape. Here, we present an integrated analysis of two complementary omics studies to investigate alterations in the "transcriptome-proteome" profile of high-grade (III) compared to low-grade (I) meningiomas. We identified 3598 common transcripts/proteins and revealed concordant up- and downregulation in grade III vs. grade I meningiomas. Concordantly upregulated genes included FABP7, a fatty acid binding protein and the monoamine oxidase MAOB, the latter of which we validated at the protein level and established an association with Food and Drug Administration (FDA)-approved drugs. Notably, we derived a plasma signature of 21 discordantly expressed genes showing positive changes in protein but negative in transcript levels of high-grade meningiomas, including the validated genes CST3, LAMP2, PACS1 and HTRA1, suggesting the acquisition of these proteins by tumour from plasma. Aggressive meningiomas were enriched in processes such as oxidative phosphorylation and RNA metabolism, whilst concordantly downregulated genes were related to reduced cellular adhesion. Overall, our study provides the first transcriptome-proteome characterisation of meningioma, identifying several novel and previously described transcripts/proteins with potential grade III biomarker and therapeutic significance.
Collapse
Affiliation(s)
- Jemma Dunn
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK;
| | - Vasileios P. Lenis
- School of Health & Life Sciences, Centuria Building, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK;
| | - David A. Hilton
- Cellular and Anatomical Pathology, Plymouth Hospitals NHS Trust, Derriford Road, Plymouth PL6 8BU, UK;
| | - Rolf Warta
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (R.W.); (C.H.-M.)
| | - Christel Herold-Mende
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (R.W.); (C.H.-M.)
| | - C. Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK;
| | - Matthias E. Futschik
- Faculty of Medicine, School of Public Health, Imperial College London, Medical School, St Mary’s Hospital, Praed Street, London W2 1NY, UK
| |
Collapse
|
16
|
Bucko PJ, Garcia I, Manocha R, Bhat A, Wordeman L, Scott JD. Gravin-associated kinase signaling networks coordinate γ-tubulin organization at mitotic spindle poles. J Biol Chem 2020; 295:13784-13797. [PMID: 32732289 PMCID: PMC7535905 DOI: 10.1074/jbc.ra120.014791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
Mitogenic signals that regulate cell division often proceed through multienzyme assemblies within defined intracellular compartments. The anchoring protein Gravin restricts the action of mitotic kinases and cell-cycle effectors to defined mitotic structures. In this report we discover that genetic deletion of Gravin disrupts proper accumulation and asymmetric distribution of γ-tubulin during mitosis. We utilize a new precision pharmacology tool, Local Kinase Inhibition, to inhibit the Gravin binding partner polo-like kinase 1 at spindle poles. Using a combination of gene-editing approaches, quantitative imaging, and biochemical assays, we provide evidence that disruption of local polo-like kinase 1 signaling underlies the γ-tubulin distribution defects observed with Gravin loss. Our study uncovers a new role for Gravin in coordinating γ-tubulin recruitment during mitosis and illuminates the mechanism by which signaling enzymes regulate this process at a distinct subcellular location.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Irvin Garcia
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Ridhima Manocha
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Akansha Bhat
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
17
|
Liu J, Xia C, Wang G. Multi-Omics Analysis in Initiation and Progression of Meningiomas: From Pathogenesis to Diagnosis. Front Oncol 2020; 10:1491. [PMID: 32983987 PMCID: PMC7484374 DOI: 10.3389/fonc.2020.01491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are common intracranial tumors that can be cured by surgical resection in most cases. However, the most disconcerting is high-grade meningiomas, which frequently recur despite initial successful treatment, eventually conferring poor prognosis. Therefore, the early diagnosis and classification of meningioma is necessary for the subsequent intervention and an improved prognosis. A growing body of evidence demonstrates the potential of multi-omics study (including genomics, transcriptomics, epigenomics, proteomics) for meningioma diagnosis and mechanistic links to potential pathological mechanism. This thesis addresses a neglected aspect of recent advances in the field of meningiomas at multiple omics levels, highlighting that the integration of multi-omics can reveal the mechanism of meningiomas, which provides a timely and necessary scientific basis for the treatment of meningiomas.
Collapse
Affiliation(s)
- Jiachen Liu
- Clinical Medicine, Xiangya Medical College of Central South University, Changsha, China
| | - Congcong Xia
- Clinical Medicine, Xiangya Medical College of Central South University, Changsha, China
| | - Gaiqing Wang
- Department of Neurology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya, China
| |
Collapse
|
18
|
Shao Z, Liu L, Zheng Y, Tu S, Pan Y, Yan S, Wei Q, Shao A, Zhang J. Molecular Mechanism and Approach in Progression of Meningioma. Front Oncol 2020; 10:538845. [PMID: 33042832 PMCID: PMC7518150 DOI: 10.3389/fonc.2020.538845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Meningioma is the most common tumor of the central nervous system, most of which is benign. Even after complete resection, a high rate of recurrence of meningioma is observed. From in-depth study of its pathogenesis, it has been found that a number of chromosomal variations and abnormal molecular signals are closely related to the occurrence and development of malignancy in meningioma, which may provide the theoretical basis and potential direction for accurate and targeted treatment. We have reviewed advances in chromosomal variations and molecular mechanisms involved in the progression of meningioma, and have highlighted the association with malignant biological behavior including cell proliferation, angiogenesis, increased invasiveness, and inhibition of apoptosis. In addition, the chemotherapy of meningioma is summarized and discussed.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Mukherjee S, Biswas D, Gadre R, Jain P, Syed N, Stylianou J, Zeng Q, Mahadevan A, Epari S, Shetty P, Moiyadi A, Roy Ball G, Srivastava S. Comprehending Meningioma Signaling Cascades Using Multipronged Proteomics Approaches & Targeted Validation of Potential Markers. Front Oncol 2020; 10:1600. [PMID: 32974197 PMCID: PMC7482667 DOI: 10.3389/fonc.2020.01600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022] Open
Abstract
Meningiomas are one of the most prevalent primary brain tumors. Our study aims to obtain mechanistic insights of meningioma pathobiology using mass spectrometry-based label-free quantitative proteome analysis to identifying druggable targets and perturbed pathways for therapeutic intervention. Label-free based proteomics study was done from peptide samples of 21 patients and 8 non-tumor controls which were followed up with Phosphoproteomics to identify the kinases and phosphorylated components of the perturbed pathways. In silico approaches revealed perturbations in extracellular matrix remodeling and associated cascades. To assess the extent of influence of Integrin and PI3K-Akt pathways, we used an Integrin Linked Kinase inhibitor on patient-derived meningioma cell line and performed a transcriptomic analysis of the components. Furthermore, we designed a Targeted proteomics assay which to the best of our knowledge for very first-time enables identification of peptides from 54 meningioma patients via SRM assay to validate the key proteins emerging from our study. This resulted in the identification of peptides from CLIC1, ES8L2, and AHNK many of which are receptors and kinases and are difficult to be characterized using conventional approaches. Furthermore, we were also able to monitor transitions for proteins like NEK9 and CKAP4 which have been reported to be associated with meningioma pathobiology. We believe, this study can aid in designing peptide-based validation assays for meningioma patients as well as IHC studies for clinical applications.
Collapse
Affiliation(s)
- Shuvolina Mukherjee
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Deeptarup Biswas
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Rucha Gadre
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Pooja Jain
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nelofer Syed
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Julianna Stylianou
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Qingyu Zeng
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Anita Mahadevan
- Department of Neuropathology, Human Brain Tissue Repository (Brain Bank), NIMHANS, Bengaluru, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Centre, Mumbai, India
| | | | - Graham Roy Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Sanjeeva Srivastava
- Proteomics Lab, Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
20
|
Shen L, Zhao ZG, Lainson JC, Brown JR, Sykes KF, Johnston SA, Diehnelt CW. Production of high-complexity frameshift neoantigen peptide microarrays. RSC Adv 2020; 10:29675-29681. [PMID: 35518269 PMCID: PMC9056171 DOI: 10.1039/d0ra05267a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022] Open
Abstract
Parallel measurement of large numbers of antigen-antibody interactions are increasingly enabled by peptide microarray technologies. Our group has developed an in situ synthesized peptide microarray of >400 000 frameshift neoantigens using mask-based photolithographic peptide synthesis, to profile patient specific neoantigen reactive antibodies in a single assay. The system produces 208 replicate mircoarrays per wafer and is capable of producing multiple wafers per synthetic lot to routinely synthesize over 300 million peptides simultaneously. In this report, we demonstrate the feasibility of the system for detecting peripheral-blood antibody binding to frameshift neoantigens across multiple synthetic lots.
Collapse
Affiliation(s)
- Luhui Shen
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University Tempe AZ USA
| | - Zhan-Gong Zhao
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University Tempe AZ USA
| | - John C Lainson
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University Tempe AZ USA
| | | | | | - Stephen Albert Johnston
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University Tempe AZ USA .,Calviri, Inc. Tempe AZ USA
| | - Chris W Diehnelt
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University Tempe AZ USA
| |
Collapse
|
21
|
Bucko PJ, Scott JD. Drugs That Regulate Local Cell Signaling: AKAP Targeting as a Therapeutic Option. Annu Rev Pharmacol Toxicol 2020; 61:361-379. [PMID: 32628872 DOI: 10.1146/annurev-pharmtox-022420-112134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells respond to environmental cues by mobilizing signal transduction cascades that engage protein kinases and phosphoprotein phosphatases. Correct organization of these enzymes in space and time enables the efficient and precise transmission of chemical signals. The cyclic AMP-dependent protein kinase A is compartmentalized through its association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of multivalent scaffolds that constrain signaling enzymes and effectors at subcellular locations to drive essential physiological events. More recently, it has been recognized that defective signaling in certain endocrine disorders and cancers proceeds through pathological AKAP complexes. Consequently, pharmacologically targeting these macromolecular complexes unlocks new therapeutic opportunities for a growing number of clinical indications. This review highlights recent findings on AKAP signaling in disease, particularly in certain cancers, and offers an overview of peptides and small molecules that locally regulate AKAP-binding partners.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
22
|
Caretta A, Denaro L, D'Avella D, Mucignat-Caretta C. Protein Kinase A Distribution in Meningioma. Cancers (Basel) 2019; 11:cancers11111686. [PMID: 31671850 PMCID: PMC6895821 DOI: 10.3390/cancers11111686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Deregulation of intracellular signal transduction pathways is a hallmark of cancer cells, clearly differentiating them from healthy cells. Differential intracellular distribution of the cAMP-dependent protein kinases (PKA) was previously detected in cell cultures and in vivo in glioblastoma and medulloblastoma. Our goal is to extend this observation to meningioma, to explore possible differences among tumors of different origins and prospective outcomes. The distribution of regulatory and catalytic subunits of PKA has been examined in tissue specimens obtained during surgery from meningioma patients. PKA RI subunit appeared more evenly distributed throughout the cytoplasm, but it was clearly detectable only in some tumors. RII was present in discrete spots, presumably at high local concentration; these aggregates could also be visualized under equilibrium binding conditions with fluorescent 8-substituted cAMP analogues, at variance with normal brain tissue and other brain tumors. The PKA catalytic subunit showed exactly overlapping pattern to RII and in fixed sections could be visualized by fluorescent cAMP analogues. Gene expression analysis showed that the PKA catalytic subunit revealed a significant correlation pattern with genes involved in meningioma. Hence, meningioma patients show a distinctive distribution pattern of PKA regulatory and catalytic subunits, different from glioblastoma, medulloblastoma, and healthy brain tissue. These observations raise the possibility of exploiting the PKA intracellular pathway as a diagnostic tool and possible therapeutic interventions.
Collapse
Affiliation(s)
- Antonio Caretta
- Department of Food and Drug, University of Parma, 43100 Parma, Italy.
- National Institute of Biostructures and Biosystems, 00136 Roma, Italy.
| | - Luca Denaro
- Department of Neuroscience, University of Padova, Padova 35121, Italy.
| | - Domenico D'Avella
- Department of Neuroscience, University of Padova, Padova 35121, Italy.
| | - Carla Mucignat-Caretta
- National Institute of Biostructures and Biosystems, 00136 Roma, Italy.
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
23
|
Phosphoproteomic and Kinomic Signature of Clinically Aggressive Grade I (1.5) Meningiomas Reveals RB1 Signaling as a Novel Mediator and Biomarker. Clin Cancer Res 2019; 26:193-205. [PMID: 31615938 DOI: 10.1158/1078-0432.ccr-18-0641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/17/2018] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
|
24
|
Erkan EP, Ströbel T, Dorfer C, Sonntagbauer M, Weinhäusel A, Saydam N, Saydam O. Circulating Tumor Biomarkers in Meningiomas Reveal a Signature of Equilibrium Between Tumor Growth and Immune Modulation. Front Oncol 2019; 9:1031. [PMID: 31649887 PMCID: PMC6795693 DOI: 10.3389/fonc.2019.01031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are primary central nervous system (CNS) tumors that originate from the arachnoid cells of the meninges. Recurrence occurs in higher grade meningiomas and a small subset of Grade I meningiomas with benign histology. Currently, there are no established circulating tumor markers which can be used for diagnostic and prognostic purposes in a non-invasive way for meningiomas. Here, we aimed to identify potential biomarkers of meningioma in patient sera. For this purpose, we collected preoperative (n = 30) serum samples from the meningioma patients classified as Grade I (n = 23), Grade II (n = 4), or Grade III (n = 3). We used a high-throughput, multiplex immunoassay cancer panel comprising of 92 cancer-related protein biomarkers to explore the serum protein profiles of meningioma patients. We detected 14 differentially expressed proteins in the sera of the Grade I meningioma patients in comparison to the age- and gender-matched control subjects (n = 12). Compared to the control group, Grade I meningioma patients showed increased serum levels of amphiregulin (AREG), CCL24, CD69, prolactin, EGF, HB-EGF, caspase-3, and decreased levels of VEGFD, TGF-α, E-Selectin, BAFF, IL-12, CCL9, and GH. For validation studies, we utilized an independent set of meningioma tumor tissue samples (Grade I, n = 20; Grade II, n = 10; Grade III, n = 6), and found that the expressions of amphiregulin and Caspase3 are significantly increased in all grades of meningiomas either at the transcriptional or protein level, respectively. In contrast, the gene expression of VEGF-D was significantly lower in Grade I meningioma tissue samples. Taken together, our study identifies a meningioma-specific protein signature in blood circulation of meningioma patients and highlights the importance of equilibrium between tumor-promoting factors and anti-tumor immunity.
Collapse
Affiliation(s)
- Erdogan Pekcan Erkan
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Ströbel
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Markus Sonntagbauer
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Andreas Weinhäusel
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Nurten Saydam
- Department of Biochemistry, Molecular Biology, and Biophysics, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
25
|
Fertility treatment is associated with multiple meningiomas and younger age at diagnosis. J Neurooncol 2019; 143:137-144. [PMID: 30868355 DOI: 10.1007/s11060-019-03147-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Meningiomas are more common in females and 70-80% express the progesterone receptor, raising the possibility that high-dose exogenous estrogen/progesterone exposure, such as occurs during fertility treatments, may increase the risk of developing a meningioma. The goal of this study was to report the incidence of prior fertility treatment in a consecutive series of female meningioma patients. METHODS A retrospective review (2015-2018) was performed of female patients with meningioma, and those with prior fertility treatment were compared to those without fertility treatment using standard statistical methods. RESULTS Of 206 female patients with meningioma, 26 (12.6%) had a history of fertility treatments. Patients underwent various forms of assisted reproductive technology including: in vitro fertilization (50.0%), clomiphene with or without intrauterine insemination (34.6%), and unspecified (19.2%). Median follow up was 1.8 years. Tumors were WHO grade I (78.6%) or grade II (21.4%). Patients who underwent fertility treatments presented at significantly younger mean age compared to those who had not (51.8 vs. 57.3 years, p = 0.0135, 2-tailed T-test), and on multivariate analysis were more likely to have multiple meningiomas (OR 4.97, 95% CI 1.4-18.1, p = 0.0154) and convexity/falx meningiomas (OR 4.45, 95% CI 1.7-11.5, p = 0.0021). CONCLUSIONS Patients in this cohort with a history of fertility treatment were more likely to present at a younger age and have multiple and convexity/falx meningiomas, emphasizing the importance of taking estrogen/progesterone exposure history when evaluating patients with meningioma. Future clinical studies at other centers in larger populations and laboratory investigations are needed to determine the role of fertility treatment in meningioma development.
Collapse
|
26
|
Dunn J, Ferluga S, Sharma V, Futschik M, Hilton DA, Adams CL, Lasonder E, Hanemann CO. Proteomic analysis discovers the differential expression of novel proteins and phosphoproteins in meningioma including NEK9, HK2 and SET and deregulation of RNA metabolism. EBioMedicine 2018; 40:77-91. [PMID: 30594554 PMCID: PMC6412084 DOI: 10.1016/j.ebiom.2018.12.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
Background Meningioma is the most frequent primary intracranial tumour. Surgical resection remains the main therapeutic option as pharmacological intervention is hampered by poor knowledge of their proteomic signature. There is an urgent need to identify new therapeutic targets and biomarkers of meningioma. Methods We performed proteomic profiling of grade I, II and III frozen meningioma specimens and three normal healthy human meninges using LC-MS/MS to analyse global proteins, enriched phosphoproteins and phosphopeptides. Differential expression and functional annotation of proteins was completed using Perseus, IPA® and DAVID. We validated differential expression of proteins and phosphoproteins by Western blot on a meningioma validation set and by immunohistochemistry. Findings We quantified 3888 proteins and 3074 phosphoproteins across all meningioma grades and normal meninges. Bioinformatics analysis revealed commonly upregulated proteins and phosphoproteins to be enriched in Gene Ontology terms associated with RNA metabolism. Validation studies confirmed significant overexpression of proteins such as EGFR and CKAP4 across all grades, as well as the aberrant activation of the downstream PI3K/AKT pathway, which seems differential between grades. Further, we validated upregulation of the total and activated phosphorylated form of the NIMA-related kinase, NEK9, involved in mitotic progression. Novel proteins identified and validated in meningioma included the nuclear proto-oncogene SET, the splicing factor SF2/ASF and the higher-grade specific protein, HK2, involved in cellular metabolism. Interpretation Overall, we generated a proteomic thesaurus of meningiomas for the identification of potential biomarkers and therapeutic targets. Fund This study was supported by Brain Tumour Research.
Collapse
Affiliation(s)
- Jemma Dunn
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Sara Ferluga
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Vikram Sharma
- School of Biomedical Science, Faculty of Medicine and Dentistry, University of Plymouth, Derriford Research Facility, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Matthias Futschik
- School of Biomedical Science, Faculty of Medicine and Dentistry, University of Plymouth, Derriford Research Facility, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - David A Hilton
- Cellular and Anatomical Pathology, Plymouth Hospitals NHS Trust, Derriford Road, Plymouth PL6 8DH, UK
| | - Claire L Adams
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Edwin Lasonder
- School of Biomedical Science, Faculty of Medicine and Dentistry, University of Plymouth, Derriford Research Facility, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK.
| |
Collapse
|