2
|
Milne R, Bauch CT, Anand M. Local Overfishing Patterns Have Regional Effects on Health of Coral, and Economic Transitions Can Promote Its Recovery. Bull Math Biol 2022; 84:46. [PMID: 35182222 DOI: 10.1007/s11538-022-01000-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Overfishing has the potential to severely disrupt coral reef ecosystems worldwide, while harvesting at more sustainable levels instead can boost fish yield without damaging reefs. The dispersal abilities of reef species mean that coral reefs form highly connected environments, and the viability of reef fish populations depends on spatially explicit processes such as the spillover effect and unauthorized harvesting inside marine protected areas. However, much of the literature on coral conservation and management has only examined overfishing on a local scale, without considering how different spatial patterns of fishing levels can affect reef health both locally and regionally. Here, we simulate a coupled human-environment model to determine how coral and herbivorous reef fish respond to overfishing across multiple spatial scales. We find that coral and reef fish react in opposite ways to habitat fragmentation driven by overfishing, and that a potential spillover effect from marine protected areas into overfished patches helps coral populations far less than it does reef fish. We also show that ongoing economic transitions from fishing to tourism have the potential to revive fish and coral populations over a relatively short timescale, and that large-scale reef recovery is possible even if these transitions only occur locally. Our results show the importance of considering spatial dynamics in marine conservation efforts and demonstrate the ability of economic factors to cause regime shifts in human-environment systems.
Collapse
Affiliation(s)
- Russell Milne
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada. .,School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| | - Chris T Bauch
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.,School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Madhur Anand
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.,School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Yletyinen J, Perry GLW, Burge OR, Mason NWH, Stahlmann‐Brown P. Invasion landscapes as social‐ecological systems: Role of social factors in invasive plant species control. PEOPLE AND NATURE 2021. [DOI: 10.1002/pan3.10217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
4
|
Yletyinen J, Perry GLW, Stahlmann-Brown P, Pech R, Tylianakis JM. Multiple social network influences can generate unexpected environmental outcomes. Sci Rep 2021; 11:9768. [PMID: 33963221 PMCID: PMC8105375 DOI: 10.1038/s41598-021-89143-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
Understanding the function of social networks can make a critical contribution to achieving desirable environmental outcomes. Social-ecological systems are complex, adaptive systems in which environmental decision makers adapt to a changing social and ecological context. However, it remains unclear how multiple social influences interact with environmental feedbacks to generate environmental outcomes. Based on national-scale survey data and a social-ecological agent-based model in the context of voluntary private land conservation, our results suggest that social influences can operate synergistically or antagonistically, thereby enabling behaviors to spread by two or more mechanisms that amplify each other's effects. Furthermore, information through social networks may indirectly affect and respond to isolated individuals through environmental change. The interplay of social influences can, therefore, explain the success or failure of conservation outcomes emerging from collective behavior. To understand the capacity of social influence to generate environmental outcomes, social networks must not be seen as 'closed systems'; rather, the outcomes of environmental interventions depend on feedbacks between the environment and different components of the social system.
Collapse
Affiliation(s)
- J Yletyinen
- University of Canterbury, School of Biological Sciences, Private Bag 4800, Christchurch, 8140, New Zealand.
- Manaaki Whenua-Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand.
| | - G L W Perry
- School of Environment, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - P Stahlmann-Brown
- Manaaki Whenua-Landcare Research, PO Box 10345, Wellington, 6011, New Zealand
| | - R Pech
- Manaaki Whenua-Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| | - J M Tylianakis
- University of Canterbury, School of Biological Sciences, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
6
|
Hernández-Elizárraga VH, Olguín-López N, Hernández-Matehuala R, Ocharán-Mercado A, Cruz-Hernández A, Guevara-González RG, Caballero-Pérez J, Ibarra-Alvarado C, Sánchez-Rodríguez J, Rojas-Molina A. Comparative Analysis of the Soluble Proteome and the Cytolytic Activity of Unbleached and Bleached Millepora complanata ("Fire Coral") from the Mexican Caribbean. Mar Drugs 2019; 17:E393. [PMID: 31277227 PMCID: PMC6669453 DOI: 10.3390/md17070393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/24/2023] Open
Abstract
Coral bleaching caused by global warming has resulted in massive damage to coral reefs worldwide. Studies addressing the consequences of elevated temperature have focused on organisms of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata ("fire coral") that inhabited reef colonies exposed to the 2015-2016 El Niño-Southern Oscillation in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis, and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results suggest that bleached M. complanata is capable of increasing its toxins production in order to balance the lack of nutrients supplied by its symbionts.
Collapse
Affiliation(s)
- Víctor Hugo Hernández-Elizárraga
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrea Ocharán-Mercado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrés Cruz-Hernández
- Laboratorio de Biología Molecular. Escuela de Agronomía, Universidad de La Salle Bajío, Av. Universidad 15 602, Colonia Lomas del Campestre, C.P. 37150 León, Guanajuato, México
| | - Ramón Gerardo Guevara-González
- C.A Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km. 1, S/N, C.P. 76265 Amazcala, El Marqués, Querétaro, México
| | - Juan Caballero-Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Judith Sánchez-Rodríguez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes S/N, Puerto Morelos, C.P. 77580 Quintana Roo, México
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México.
| |
Collapse
|