1
|
Koyama J, Morise M, Furukawa T, Oyama S, Matsuzawa R, Tanaka I, Wakahara K, Yokota H, Kimura T, Shiratori Y, Kondoh Y, Hashimoto N, Ishii M. Artificial intelligence-based personalized survival prediction using clinical and radiomics features in patients with advanced non-small cell lung cancer. BMC Cancer 2024; 24:1417. [PMID: 39558311 PMCID: PMC11572056 DOI: 10.1186/s12885-024-13190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Multiple first-line treatment options have been developed for advanced non-small cell lung cancer (NSCLC) in each subgroup determined by predictive biomarkers, specifically driver oncogene and programmed cell death ligand-1 (PD-L1) status. However, the methodology for optimal treatment selection in individual patients is not established. This study aimed to develop artificial intelligence (AI)-based personalized survival prediction model according to treatment selection. METHODS The prediction model was built based on random survival forest (RSF) algorithm using patient characteristics, anticancer treatment histories, and radiomics features of the primary tumor. The predictive accuracy was validated with external test data and compared with that of cox proportional hazard (CPH) model. RESULTS A total of 459 patients (training, n = 299; test, n = 160) with advanced NSCLC were enrolled. The algorithm identified following features as significant factors associated with survival: age, sex, performance status, Brinkman index, comorbidity of chronic obstructive pulmonary disease, histology, stage, driver oncogene status, tumor PD-L1 expression, administered anticancer agent, six markers of blood test (sodium, lactate dehydrogenase, etc.), and three radiomics features associated with tumor texture, volume, and shape. The C-index of RSF model for test data was 0.841, which was higher than that of CPH model (0.775, P < 0.001). Furthermore, the RSF model enabled to identify poor survivor treated with pembrolizumab because of tumor PD-L1 high expression and those treated with driver oncogene targeted therapy according to driver oncogene status. CONCLUSIONS The proposed AI-based algorithm accurately predicted the survival of each patient with advanced NSCLC. The AI-based methodology will contribute to personalized medicine. TRIAL REGISTRATION The trial design was retrospectively registered study performed in accordance with the Declaration of Helsinki and approved by the Institutional Review Board of Nagoya University Graduate School of Medicine (approval: 2020 - 0287).
Collapse
Affiliation(s)
- Junji Koyama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan.
| | - Taiki Furukawa
- Medical IT Center, Nagoya University Hospital, Nagoya, Japan
| | - Shintaro Oyama
- Innovative Research Center for Preventive Medical Engineering (PME), Nagoya University, Nagoya, Japan
- Image Processing Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Reiko Matsuzawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Keiko Wakahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Hideo Yokota
- Image Processing Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Wako, Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | | | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Fujita Health University, Toyoake, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| |
Collapse
|
2
|
Coppes RP, van Dijk LV. Future of Team-based Basic and Translational Science in Radiation Oncology. Semin Radiat Oncol 2024; 34:370-378. [PMID: 39271272 DOI: 10.1016/j.semradonc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
To further optimize radiotherapy, a more personalized treatment towards individual patient's risk profiles, dissecting both patient-specific tumor and normal tissue response to multimodality treatments is needed. Novel developments in radiobiology, using in vitro patient-specific complex tissue resembling 3D models and multiomics approaches at a spatial single-cell level, may provide unprecedented insight into the radiation responses of tumors and normal tissue. Here, we describe the necessary team effort, including all disciplines in radiation oncology, to integrate such data into clinical prediction models and link the relatively "big data" from the clinical practice, allowing accurate patient stratification for personalized treatment approaches.
Collapse
Affiliation(s)
- R P Coppes
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands..
| | - L V van Dijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Cellina M, De Padova G, Caldarelli N, Libri D, Cè M, Martinenghi C, Alì M, Papa S, Carrafiello G. Artificial Intelligence in Lung Cancer Imaging: From Data to Therapy. Crit Rev Oncog 2024; 29:1-13. [PMID: 38505877 DOI: 10.1615/critrevoncog.2023050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Lung cancer remains a global health challenge, leading to substantial morbidity and mortality. While prevention and early detection strategies have improved, the need for precise diagnosis, prognosis, and treatment remains crucial. In this comprehensive review article, we explore the role of artificial intelligence (AI) in reshaping the management of lung cancer. AI may have different potential applications in lung cancer characterization and outcome prediction. Manual segmentation is a time-consuming task, with high inter-observer variability, that can be replaced by AI-based approaches, including deep learning models such as U-Net, BCDU-Net, and others, to quantify lung nodules and cancers objectively and to extract radiomics features for the characterization of the tissue. AI models have also demonstrated their ability to predict treatment responses, such as immunotherapy and targeted therapy, by integrating radiomic features with clinical data. Additionally, AI-based prognostic models have been developed to identify patients at higher risk and personalize treatment strategies. In conclusion, this review article provides a comprehensive overview of the current state of AI applications in lung cancer management, spanning from segmentation and virtual biopsy to outcome prediction. The evolving role of AI in improving the precision and effectiveness of lung cancer diagnosis and treatment underscores its potential to significantly impact clinical practice and patient outcomes.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| | - Giuseppe De Padova
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Nazarena Caldarelli
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Dario Libri
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Carlo Martinenghi
- Radiology Department, Ospedale San Raffaele, Via Olgettina, 60 - 20132 Milan, Italy
| | - Marco Alì
- Radiology Unit, CDI, Centro Diagnostico Italiano, Via Simone Saint Bon, 20, 20147 Milan, Italy
| | - Sergio Papa
- Radiology Unit, CDI, Centro Diagnostico Italiano, Via Simone Saint Bon, 20, 20147 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
5
|
Nguyen TM, Bertolus C, Giraud P, Burgun A, Saintigny P, Bibault JE, Foy JP. A Radiomics Approach to Identify Immunologically Active Tumor in Patients with Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2023; 15:5369. [PMID: 38001629 PMCID: PMC10670096 DOI: 10.3390/cancers15225369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND We recently developed a gene-expression-based HOT score to identify the hot/cold phenotype of head and neck squamous cell carcinomas (HNSCCs), which is associated with the response to immunotherapy. Our goal was to determine whether radiomic profiling from computed tomography (CT) scans can distinguish hot and cold HNSCC. METHOD We included 113 patients from The Cancer Genome Atlas (TCGA) and 20 patients from the Groupe Hospitalier Pitié-Salpêtrière (GHPS) with HNSCC, all with available pre-treatment CT scans. The hot/cold phenotype was computed for all patients using the HOT score. The IBEX software (version 4.11.9, accessed on 30 march 2020) was used to extract radiomic features from the delineated tumor region in both datasets, and the intraclass correlation coefficient (ICC) was computed to select robust features. Machine learning classifier models were trained and tested in the TCGA dataset and validated using the area under the receiver operator characteristic curve (AUC) in the GHPS cohort. RESULTS A total of 144 radiomic features with an ICC >0.9 was selected. An XGBoost model including these selected features showed the best performance prediction of the hot/cold phenotype with AUC = 0.86 in the GHPS validation dataset. CONCLUSIONS AND RELEVANCE We identified a relevant radiomic model to capture the overall hot/cold phenotype of HNSCC. This non-invasive approach could help with the identification of patients with HNSCC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Tan Mai Nguyen
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
| | - Chloé Bertolus
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
| | - Paul Giraud
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
- Sorbonne Université, Department of Radiation Oncology, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Anita Burgun
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Emmanuel Bibault
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
- Department of Radiation Oncology, Hôpital Européen Georges-Pompidou, Université Paris Cité, 75015 Paris, France
| | - Jean-Philippe Foy
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Sorbonne Université, INSERM UMRS 938, Centre de Recherche de Saint Antoine, Team Cancer Biology and Therapeutics, 75011 Paris, France
| |
Collapse
|
6
|
Ahmed B, Sheikhzadeh P, Changizi V, Abbasi M, Soleymani Y, Sarhan W, Rahmim A. CT radiomics analysis of primary colon cancer patients with or without liver metastases: a correlative study with [ 18F]FDG PET uptake values. Abdom Radiol (NY) 2023; 48:3297-3309. [PMID: 37453942 DOI: 10.1007/s00261-023-03999-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Utilizing [18F]Fluoro-2-deoxy-D-glucose Positron Emission Tomography/Computed Tomography ([18F]FDG PET/CT) scans on primary colon cancer (CC) patients including with liver metastases (LM), we aimed to determine the relationship between structural CT radiomic features and metabolic PET standard uptake value (SUV) in these patients. MATERIAL AND METHOD A retrospective analysis was performed on 60 patients with primary CC, of which 40 had liver metastases that were more than 2 cm in diameter. [18F]FDG PET/CT was used to calculate SUVmax, and 42 CT radiomic characteristics were extracted from non-enhanced CT images. Tumors were manually segmented on fused PET/CT scans by two experienced nuclear medicine physicians. Sixty primary CC and forty LM lesions were segmented accordingly. In the cases of multiple LM lesions, the lesion with the largest diameter was chosen for segmentation. In a univariate analysis approach, we used Spearman correlation with multiple testing correction (Benjamini-Hutchberg false discovery rate (FDR), α = 0.05) to ascertain the relationship between SUVmax and CT radiomic features. RESULT Twenty-two (52.3%) and twenty-six (61.9%) CT radiomic features were found to be significantly correlated with SUVmax values of primary CC (n = 60) and LM (n = 40) lesions, respectively (FDR-corrected p value < 0.05 and 0.6 < |ρ| < 1). GLCM_homogeneity (ρ = 0.839), GLCM_dissimilarity (ρ = - 0.832), GLZLM_ZLNU (ρ = 0.827), and GLCM_contrast (ρ = - 0.815) were the 4 features most correlated with SUVmax in CC. On the other hand, in LM, the 4 features most correlated with SUVmax were GLRLM_LRHGE (ρ = 0.859), GLRLM_LRE (ρ = 0.859), GLRLM_LRLGE (ρ = 0.857), and GLRLM_RP (ρ = - 0.820). CONCLUSION We investigated the relationship between SUVmax of preoperative primary CC lesions and their LM with CT radiomic features. We found some CT radiomic features having relationships with the metabolic characteristics of lesions. This work suggests that non-invasive predictive imaging biomarkers for precision medicine can be derived from CT radiomic.
Collapse
Affiliation(s)
- Badr Ahmed
- Department of Radiology Technology and Radiotherapy, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vahid Changizi
- Department of Radiology Technology and Radiotherapy, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrshad Abbasi
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Yunus Soleymani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Wisam Sarhan
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nuclear Medicine International Hospital for Cancer and Nuclear Medicine, University of Kufa, Najaf, Iraq
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, Miele V, Tatangelo F, Cutolo C, Maggialetti N, Caruso D, Izzo F, Petrillo A. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. LA RADIOLOGIA MEDICA 2023; 128:1310-1332. [PMID: 37697033 DOI: 10.1007/s11547-023-01710-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated. METHODS The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion. Radiomic features were extracted using PyRadiomics. Univariate and multivariate approaches including machine learning algorithms were employed. RESULTS The best predictor to identify tumor growth was the Wavelet_HLH_glcm_MaximumProbability with an accuracy of 84% and to detect recurrence the best predictor was wavelet_HLH_ngtdm_Complexity with an accuracy of 90%, both extracted by T1-weigthed arterial phase sequence. The best predictor to detect tumor budding was the wavelet_LLH_glcm_Imc1 with an accuracy of 88% and to identify mucinous type was wavelet_LLH_glcm_JointEntropy with an accuracy of 92%, both calculated on T2-weigthed sequence. An increase statistically significant of accuracy (90%) was obtained using a linear weighted combination of 15 predictors extracted by T2-weigthed images to detect tumor front growth. An increase statistically significant of accuracy at 93% was obtained using a linear weighted combination of 11 predictors by the T1-weigthed arterial phase sequence to classify tumor budding. An increase statistically significant of accuracy at 97% was obtained using a linear weighted combination of 16 predictors extracted on CT to detect recurrence. An increase statistically significant of accuracy was obtained in the tumor budding identification considering a K-nearest neighbors and the 11 significant features extracted T1-weigthed arterial phase sequence. CONCLUSIONS The results confirmed the Radiomics capacity to recognize clinical and histopathological prognostic features that should influence the choice of treatments in colorectal liver metastases patients to obtain a more personalized therapy.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy.
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Alessandro Ottaiano
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Claudia Cardone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Renato Patrone
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Fabiana Tatangelo
- Division of Pathological Anatomy and Cytopathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084, Salerno, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Radiology Unit-Sant'Andrea University Hospital, Sapienza-University of Rome, 00189, Rome, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
8
|
Jiang Y, Zhou K, Sun Z, Wang H, Xie J, Zhang T, Sang S, Islam MT, Wang JY, Chen C, Yuan Q, Xi S, Li T, Xu Y, Xiong W, Wang W, Li G, Li R. Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics. Cell Rep Med 2023; 4:101146. [PMID: 37557177 PMCID: PMC10439253 DOI: 10.1016/j.xcrm.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi-institution cohorts of 2,686 patients with gastric cancer, we show that the radiological model accurately predicted the TME status and is an independent prognostic factor beyond clinicopathologic variables. The model further predicts the benefit from adjuvant chemotherapy for patients with localized disease. In patients treated with checkpoint blockade immunotherapy, the model predicts clinical response and further improves predictive accuracy when combined with existing biomarkers. Our approach enables noninvasive assessment of the TME, which opens the door for longitudinal monitoring and tracking response to cancer therapy. Given the routine use of radiologic imaging in oncology, our approach can be extended to many other solid tumor types.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kangneng Zhou
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Xie
- Graduate Group of Epidemiology, University of California Davis, Davis, CA, USA
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengtian Sang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Md Tauhidul Islam
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jen-Yeu Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sujuan Xi
- The Reproductive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tuanjie Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Saber R, Henault D, Messaoudi N, Rebolledo R, Montagnon E, Soucy G, Stagg J, Tang A, Turcotte S, Kadoury S. Radiomics using computed tomography to predict CD73 expression and prognosis of colorectal cancer liver metastases. J Transl Med 2023; 21:507. [PMID: 37501197 PMCID: PMC10375693 DOI: 10.1186/s12967-023-04175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/30/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Finding a noninvasive radiomic surrogate of tumor immune features could help identify patients more likely to respond to novel immune checkpoint inhibitors. Particularly, CD73 is an ectonucleotidase that catalyzes the breakdown of extracellular AMP into immunosuppressive adenosine, which can be blocked by therapeutic antibodies. High CD73 expression in colorectal cancer liver metastasis (CRLM) resected with curative intent is associated with early recurrence and shorter patient survival. The aim of this study was hence to evaluate whether machine learning analysis of preoperative liver CT-scan could estimate high vs low CD73 expression in CRLM and whether such radiomic score would have a prognostic significance. METHODS We trained an Attentive Interpretable Tabular Learning (TabNet) model to predict, from preoperative CT images, stratified expression levels of CD73 (CD73High vs. CD73Low) assessed by immunofluorescence (IF) on tissue microarrays. Radiomic features were extracted from 160 segmented CRLM of 122 patients with matched IF data, preprocessed and used to train the predictive model. We applied a five-fold cross-validation and validated the performance on a hold-out test set. RESULTS TabNet provided areas under the receiver operating characteristic curve of 0.95 (95% CI 0.87 to 1.0) and 0.79 (0.65 to 0.92) on the training and hold-out test sets respectively, and outperformed other machine learning models. The TabNet-derived score, termed rad-CD73, was positively correlated with CD73 histological expression in matched CRLM (Spearman's ρ = 0.6004; P < 0.0001). The median time to recurrence (TTR) and disease-specific survival (DSS) after CRLM resection in rad-CD73High vs rad-CD73Low patients was 13.0 vs 23.6 months (P = 0.0098) and 53.4 vs 126.0 months (P = 0.0222), respectively. The prognostic value of rad-CD73 was independent of the standard clinical risk score, for both TTR (HR = 2.11, 95% CI 1.30 to 3.45, P < 0.005) and DSS (HR = 1.88, 95% CI 1.11 to 3.18, P = 0.020). CONCLUSIONS Our findings reveal promising results for non-invasive CT-scan-based prediction of CD73 expression in CRLM and warrant further validation as to whether rad-CD73 could assist oncologists as a biomarker of prognosis and response to immunotherapies targeting the adenosine pathway.
Collapse
Affiliation(s)
- Ralph Saber
- MedICAL Laboratory, Polytechnique Montréal, Montréal, H3T 1J4, Canada
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
| | - David Henault
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - Nouredin Messaoudi
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
- Department of Surgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel) and Europe Hospitals, Brussels, Belgium
| | - Rolando Rebolledo
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - Emmanuel Montagnon
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
| | - Geneviève Soucy
- Pahology Department, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - John Stagg
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
| | - An Tang
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, H3T 1J4, Canada
| | - Simon Turcotte
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada.
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada.
| | - Samuel Kadoury
- MedICAL Laboratory, Polytechnique Montréal, Montréal, H3T 1J4, Canada.
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada.
- Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, H3T 1J4, Canada.
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, H3T 1J4, Canada.
| |
Collapse
|
10
|
Meißner AK, Gutsche R, Galldiks N, Kocher M, Jünger ST, Eich ML, Nogova L, Araceli T, Schmidt NO, Ruge MI, Goldbrunner R, Proescholdt M, Grau S, Lohmann P. Radiomics for the non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to non-small cell lung cancer. J Neurooncol 2023; 163:597-605. [PMID: 37382806 PMCID: PMC10393847 DOI: 10.1007/s11060-023-04367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND The expression level of the programmed cell death ligand 1 (PD-L1) appears to be a predictor for response to immunotherapy using checkpoint inhibitors in patients with non-small cell lung cancer (NSCLC). As differences in terms of PD-L1 expression levels in the extracranial primary tumor and the brain metastases may occur, a reliable method for the non-invasive assessment of the intracranial PD-L1 expression is, therefore of clinical value. Here, we evaluated the potential of radiomics for a non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to NSCLC. PATIENTS AND METHODS Fifty-three NSCLC patients with brain metastases from two academic neuro-oncological centers (group 1, n = 36 patients; group 2, n = 17 patients) underwent tumor resection with a subsequent immunohistochemical evaluation of the PD-L1 expression. Brain metastases were manually segmented on preoperative T1-weighted contrast-enhanced MRI. Group 1 was used for model training and validation, group 2 for model testing. After image pre-processing and radiomics feature extraction, a test-retest analysis was performed to identify robust features prior to feature selection. The radiomics model was trained and validated using random stratified cross-validation. Finally, the best-performing radiomics model was applied to the test data. Diagnostic performance was evaluated using receiver operating characteristic (ROC) analyses. RESULTS An intracranial PD-L1 expression (i.e., staining of at least 1% or more of tumor cells) was present in 18 of 36 patients (50%) in group 1, and 7 of 17 patients (41%) in group 2. Univariate analysis identified the contrast-enhancing tumor volume as a significant predictor for PD-L1 expression (area under the ROC curve (AUC), 0.77). A random forest classifier using a four-parameter radiomics signature, including tumor volume, yielded an AUC of 0.83 ± 0.18 in the training data (group 1), and an AUC of 0.84 in the external test data (group 2). CONCLUSION The developed radiomics classifiers allows for a non-invasive assessment of the intracranial PD-L1 expression in patients with brain metastases secondary to NSCLC with high accuracy.
Collapse
Affiliation(s)
- Anna-Katharina Meißner
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Robin Gutsche
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Cologne and Duesseldorf, Universities of Aachen, Cologne, Bonn, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
- Department of Stereotactic and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephanie T Jünger
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Marie-Lisa Eich
- Department of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lucia Nogova
- Center for Integrated Oncology (CIO), Cologne and Duesseldorf, Universities of Aachen, Cologne, Bonn, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University Hospital Cologne, Cologne, Germany
| | - Tommaso Araceli
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Maximilian I Ruge
- Center for Integrated Oncology (CIO), Cologne and Duesseldorf, Universities of Aachen, Cologne, Bonn, Germany
- Department of Stereotactic and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Cologne and Duesseldorf, Universities of Aachen, Cologne, Bonn, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Grau
- Department of Neurosurgery, Klinikum Fulda, Academic Hospital of the University of Marburg, Marburg, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| |
Collapse
|
11
|
Tsunedomi R, Shindo Y, Nakajima M, Yoshimura K, Nagano H. The tumor immune microenvironment in pancreatic cancer and its potential in the identification of immunotherapy biomarkers. Expert Rev Mol Diagn 2023; 23:1121-1134. [PMID: 37947389 DOI: 10.1080/14737159.2023.2281482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) has an extremely poor prognosis, even with surgical resection and triplet chemotherapy treatment. Cancer immunotherapy has been recently approved for tumor-agnostic treatment with genome analysis, including in PC. However, it has limited efficacy. AREAS COVERED In addition to the low tumor mutation burden, one of the difficulties of immunotherapy in PC is the presence of abundant stromal cells in its microenvironment. Among stromal cells, cancer-associated fibroblasts (CAFs) play a major role in immunotherapy resistance, and CAF-targeted therapies are currently under development, including those in combination with immunotherapies. Meanwhile, microbiomes and tumor-derived exosomes (TDEs) have been shown to alter the behavior of distant receptor cells in PC. This review discusses the role of CAFs, microbiomes, and TDEs in PC tumor immunity. EXPERT OPINION Elucidating the mechanisms by which CAFs, microbiomes, and TDEs are involved in the tumorigenesis of PC will be helpful for developing novel immunotherapeutic strategies and identifying companion biomarkers for immunotherapy. Spatial single-cell analysis of the tumor microenvironment will be useful for identifying biomarkers of PC immunity. Furthermore, given the complexity of immune mechanisms, artificial intelligence models will be beneficial for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Setagaya, Tokyo, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
12
|
Cousin F, Louis T, Dheur S, Aboubakar F, Ghaye B, Occhipinti M, Vos W, Bottari F, Paulus A, Sibille A, Vaillant F, Duysinx B, Guiot J, Hustinx R. Radiomics and Delta-Radiomics Signatures to Predict Response and Survival in Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers (Basel) 2023; 15:cancers15071968. [PMID: 37046629 PMCID: PMC10093736 DOI: 10.3390/cancers15071968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of our study was to determine the potential role of CT-based radiomics in predicting treatment response and survival in patients with advanced NSCLC treated with immune checkpoint inhibitors. We retrospectively included 188 patients with NSCLC treated with PD-1/PD-L1 inhibitors from two independent centers. Radiomics analysis was performed on pre-treatment contrast-enhanced CT. A delta-radiomics analysis was also conducted on a subset of 160 patients who underwent a follow-up contrast-enhanced CT after 2 to 4 treatment cycles. Linear and random forest (RF) models were tested to predict response at 6 months and overall survival. Models based on clinical parameters only and combined clinical and radiomics models were also tested and compared to the radiomics and delta-radiomics models. The RF delta-radiomics model showed the best performance for response prediction with an AUC of 0.8 (95% CI: 0.65−0.95) on the external test dataset. The Cox regression delta-radiomics model was the most accurate at predicting survival with a concordance index of 0.68 (95% CI: 0.56−0.80) (p = 0.02). The baseline CT radiomics signatures did not show any significant results for treatment response prediction or survival. In conclusion, our results demonstrated the ability of a CT-based delta-radiomics signature to identify early on patients with NSCLC who were more likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- François Cousin
- Department of Nuclear Medicine and Oncological Imaging, University Hospital (CHU) of Liège, 4000 Liège, Belgium
- Correspondence: ; Tel.: +32-475972109
| | - Thomas Louis
- Radiomics (Oncoradiomics SA), 4000 Liège, Belgium
| | - Sophie Dheur
- Department of Radiology, University Hospital (CHU) of Liège, 4000 Liège, Belgium
| | - Frank Aboubakar
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Bruxelles, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Benoit Ghaye
- Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Bruxelles, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | | | - Wim Vos
- Radiomics (Oncoradiomics SA), 4000 Liège, Belgium
| | | | - Astrid Paulus
- Department of Respiratory Medicine, University Hospital (CHU) of Liège, 4000 Liège, Belgium
| | - Anne Sibille
- Department of Respiratory Medicine, University Hospital (CHU) of Liège, 4000 Liège, Belgium
| | - Frédérique Vaillant
- Department of Respiratory Medicine, University Hospital (CHU) of Liège, 4000 Liège, Belgium
| | - Bernard Duysinx
- Department of Respiratory Medicine, University Hospital (CHU) of Liège, 4000 Liège, Belgium
| | - Julien Guiot
- Department of Respiratory Medicine, University Hospital (CHU) of Liège, 4000 Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine and Oncological Imaging, University Hospital (CHU) of Liège, 4000 Liège, Belgium
- GIGA-CRC In Vivo Imaging, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
13
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Patrone R, Ottaiano A, Nasti G, Silvestro L, Cassata A, Grassi F, Avallone A, Izzo F, Petrillo A. Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics. Infect Agent Cancer 2023; 18:18. [PMID: 36927442 PMCID: PMC10018963 DOI: 10.1186/s13027-023-00495-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
In this narrative review, we reported un up-to-date on the role of radiomics to assess prognostic features, which can impact on the liver metastases patient treatment choice. In the liver metastases patients, the possibility to assess mutational status (RAS or MSI), the tumor growth pattern and the histological subtype (NOS or mucinous) allows a better treatment selection to avoid unnecessary therapies. However, today, the detection of these features require an invasive approach. Recently, radiomics analysis application has improved rapidly, with a consequent growing interest in the oncological field. Radiomics analysis allows the textural characteristics assessment, which are correlated to biological data. This approach is captivating since it should allow to extract biological data from the radiological images, without invasive approach, so that to reduce costs and time, avoiding any risk for the patients. Several studies showed the ability of Radiomics to identify mutational status, tumor growth pattern and histological type in colorectal liver metastases. Although, radiomics analysis in a non-invasive and repeatable way, however features as the poor standardization and generalization of clinical studies results limit the translation of this analysis into clinical practice. Clear limits are data-quality control, reproducibility, repeatability, generalizability of results, and issues related to model overfitting.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Napoli, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, Milan, 20122, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Alessandro Ottaiano
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Guglielmo Nasti
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Lucrezia Silvestro
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Antonio Cassata
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesca Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, 80138, Italy
| | - Antonio Avallone
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
14
|
Hochhegger B, Pasini R, Roncally Carvalho A, Rodrigues R, Altmayer S, Kayat Bittencourt L, Marchiori E, Forghani R. Artificial Intelligence for Cardiothoracic Imaging: Overview of Current and Emerging Applications. Semin Roentgenol 2023; 58:184-195. [PMID: 37087139 DOI: 10.1053/j.ro.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
Artificial intelligence algorithms can learn by assimilating information from large datasets in order to decipher complex associations, identify previously undiscovered pathophysiological states, and construct prediction models. There has been tremendous interest and increased incorporation of artificial intelligence into various industries, including healthcare. As a result, there has been an exponential rise in the number of research articles and industry participants producing models intended for a variety of applications in medical imaging, which can be challenging to navigate for radiologists. In thoracic imaging, multiple applications are being evaluated for chest radiography and computed tomography and include applications for lung nodule evaluation and cancer imaging, quantifying diffuse lung disorders, and cardiac imaging, to name a few. This review aims to provide an overview of current clinical AI models, focusing on the most common clinical applications of AI in cardiothoracic imaging.
Collapse
|
15
|
De Muzio F, Fusco R, Cutolo C, Giacobbe G, Bruno F, Palumbo P, Danti G, Grazzini G, Flammia F, Borgheresi A, Agostini A, Grassi F, Giovagnoni A, Miele V, Barile A, Granata V. Post-Surgical Imaging Assessment in Rectal Cancer: Normal Findings and Complications. J Clin Med 2023; 12:1489. [PMID: 36836024 PMCID: PMC9966470 DOI: 10.3390/jcm12041489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Rectal cancer (RC) is one of the deadliest malignancies worldwide. Surgery is the most common treatment for RC, performed in 63.2% of patients. The type of surgical approach chosen aims to achieve maximum residual function with the lowest risk of recurrence. The selection is made by a multidisciplinary team that assesses the characteristics of the patient and the tumor. Total mesorectal excision (TME), including both low anterior resection (LAR) and abdominoperineal resection (APR), is still the standard of care for RC. Radical surgery is burdened by a 31% rate of major complications (Clavien-Dindo grade 3-4), such as anastomotic leaks and a risk of a permanent stoma. In recent years, less-invasive techniques, such as local excision, have been tested. These additional procedures could mitigate the morbidity of rectal resection, while providing acceptable oncologic results. The "watch and wait" approach is not a globally accepted model of care but encouraging results on selected groups of patients make it a promising strategy. In this plethora of treatments, the radiologist is called upon to distinguish a physiological from a pathological postoperative finding. The aim of this narrative review is to identify the main post-surgical complications and the most effective imaging techniques.
Collapse
Affiliation(s)
- Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | | | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
| | - Giulia Grazzini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
| | - Federica Flammia
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli”, 80131 Naples, Italy
| |
Collapse
|
16
|
Zhang Y, Hu HH, Zhou SH, Xia WY, Zhang Y, Zhang JP, Fu XL, Yu W. PET-based radiomics visualizes tumor-infiltrating CD8 T cell exhaustion to optimize radiotherapy/immunotherapy combination in mouse models of lung cancer. Biomark Res 2023; 11:10. [PMID: 36694213 PMCID: PMC9875413 DOI: 10.1186/s40364-023-00454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cumulative preclinical and clinical evidences showed radiotherapy might augment systemic antitumoral responses to immunotherapy for metastatic non-small cell lung cancer, but the optimal timing of combination is still unclear. The overall infiltration and exhausted subpopulations of tumor-infiltrating CD8+ T cells might be a potential biomarker indicating the response to immune checkpoint inhibitors (ICI), the alteration of which is previously uncharacterized during peri-irradiation period, while dynamic monitoring is unavailable via repeated biopsies in clinical practice. METHODS Basing on tumor-bearing mice model, we investigated the dynamics of overall infiltration and exhausted subpopulations of CD8+ T cells after ablative irradiation. With the understanding of distinct metabolic characteristics accompanied with T cell exhaustion, we developed a PET radiomics approach to identify and visualize T cell exhaustion status. RESULTS CD8+ T cell infiltration increased from 3 to 14 days after ablative irradiation while terminally exhausted populations significantly predominated CD8+ T cells during late course of this infiltrating period, indicating that 3-7 days post-irradiation might be a potential appropriate window for delivering ICI treatment. A PET radiomics approach was established to differentiate T cell exhaustion status, which fitted well in both ICI and irradiation settings. We also visualized the underlying association of more heterogeneous texture on PET images with progressed T cell exhaustion. CONCLUSIONS We proposed a non-invasive imaging predictor which accurately assessed heterogeneous T cell exhaustion status relevant to ICI treatment and irradiation, and might serve as a promising solution to timely estimate immune-responsiveness of tumor microenvironment and the optimal timing of combined therapy.
Collapse
Affiliation(s)
- Ying Zhang
- grid.412524.40000 0004 0632 3994Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai, 200030 China
| | - Hui-Hui Hu
- grid.412524.40000 0004 0632 3994Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai, 200030 China
| | - Shi-Hong Zhou
- grid.412524.40000 0004 0632 3994Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wu-Yan Xia
- grid.412524.40000 0004 0632 3994Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai, 200030 China
| | - Yan Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Ping Zhang
- grid.452404.30000 0004 1808 0942Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Long Fu
- grid.412524.40000 0004 0632 3994Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai, 200030 China
| | - Wen Yu
- grid.412524.40000 0004 0632 3994Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai, 200030 China
| |
Collapse
|
17
|
Ghaffari Laleh N, Ligero M, Perez-Lopez R, Kather JN. Facts and Hopes on the Use of Artificial Intelligence for Predictive Immunotherapy Biomarkers in Cancer. Clin Cancer Res 2023; 29:316-323. [PMID: 36083132 DOI: 10.1158/1078-0432.ccr-22-0390] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023]
Abstract
Immunotherapy by immune checkpoint inhibitors has become a standard treatment strategy for many types of solid tumors. However, the majority of patients with cancer will not respond, and predicting response to this therapy is still a challenge. Artificial intelligence (AI) methods can extract meaningful information from complex data, such as image data. In clinical routine, radiology or histopathology images are ubiquitously available. AI has been used to predict the response to immunotherapy from radiology or histopathology images, either directly or indirectly via surrogate markers. While none of these methods are currently used in clinical routine, academic and commercial developments are pointing toward potential clinical adoption in the near future. Here, we summarize the state of the art in AI-based image biomarkers for immunotherapy response based on radiology and histopathology images. We point out limitations, caveats, and pitfalls, including biases, generalizability, and explainability, which are relevant for researchers and health care providers alike, and outline key clinical use cases of this new class of predictive biomarkers.
Collapse
Affiliation(s)
| | - Marta Ligero
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.,Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.,Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
18
|
Granata V, Fusco R, Setola SV, Simonetti I, Picone C, Simeone E, Festino L, Vanella V, Vitale MG, Montanino A, Morabito A, Izzo F, Ascierto PA, Petrillo A. Immunotherapy Assessment: A New Paradigm for Radiologists. Diagnostics (Basel) 2023; 13:diagnostics13020302. [PMID: 36673112 PMCID: PMC9857844 DOI: 10.3390/diagnostics13020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/14/2023] Open
Abstract
Immunotherapy denotes an exemplar change in an oncological setting. Despite the effective application of these treatments across a broad range of tumors, only a minority of patients have beneficial effects. The efficacy of immunotherapy is affected by several factors, including human immunity, which is strongly correlated to genetic features, such as intra-tumor heterogeneity. Classic imaging assessment, based on computed tomography (CT) or magnetic resonance imaging (MRI), which is useful for conventional treatments, has a limited role in immunotherapy. The reason is due to different patterns of response and/or progression during this kind of treatment which differs from those seen during other treatments, such as the possibility to assess the wide spectrum of immunotherapy-correlated toxic effects (ir-AEs) as soon as possible. In addition, considering the unusual response patterns, the limits of conventional response criteria and the necessity of using related immune-response criteria are clear. Radiomics analysis is a recent field of great interest in a radiological setting and recently it has grown the idea that we could identify patients who will be fit for this treatment or who will develop ir-AEs.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
- Correspondence:
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Carmine Picone
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Lucia Festino
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Vito Vanella
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Maria Grazia Vitale
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Agnese Montanino
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Paolo Antonio Ascierto
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
19
|
Park C, Jeong DY, Choi Y, Oh YJ, Kim J, Ryu J, Paeng K, Lee SH, Ock CY, Lee HY. Tumor-infiltrating lymphocyte enrichment predicted by CT radiomics analysis is associated with clinical outcomes of non-small cell lung cancer patients receiving immune checkpoint inhibitors. Front Immunol 2023; 13:1038089. [PMID: 36660547 PMCID: PMC9844154 DOI: 10.3389/fimmu.2022.1038089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Background Enrichment of tumor-infiltrating lymphocytes (TIL) in the tumor microenvironment (TME) is a reliable biomarker of immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC). Phenotyping through computed tomography (CT) radiomics has the overcome the limitations of tissue-based assessment, including for TIL analysis. Here, we assess TIL enrichment objectively using an artificial intelligence-powered TIL analysis in hematoxylin and eosin (H&E) image and analyze its association with quantitative radiomic features (RFs). Clinical significance of the selected RFs is then validated in the independent NSCLC patients who received ICI. Methods In the training cohort containing both tumor tissue samples and corresponding CT images obtained within 1 month, we extracted 86 RFs from the CT images. The TIL enrichment score (TILes) was defined as the fraction of tissue area with high intra-tumoral or stromal TIL density divided by the whole TME area, as measured on an H&E slide. From the corresponding CT images, the least absolute shrinkage and selection operator model was then developed using features that were significantly associated with TIL enrichment. The CT model was applied to CT images from the validation cohort, which included NSCLC patients who received ICI monotherapy. Results A total of 220 NSCLC samples were included in the training cohort. After filtering the RFs, two features, gray level variance (coefficient 1.71 x 10-3) and large area low gray level emphasis (coefficient -2.48 x 10-5), were included in the model. The two features were both computed from the size-zone matrix, which has strength in reflecting intralesional texture heterogeneity. In the validation cohort, the patients with high predicted TILes (≥ median) had significantly prolonged progression-free survival compared to those with low predicted TILes (median 4.0 months [95% CI 2.2-5.7] versus 2.1 months [95% CI 1.6-3.1], p = 0.002). Patients who experienced a response to ICI or stable disease with ICI had higher predicted TILes compared with the patients who experienced progressive disease as the best response (p = 0.001, p = 0.036, respectively). Predicted TILes was significantly associated with progression-free survival independent of PD-L1 status. Conclusions In this CT radiomics model, predicted TILes was significantly associated with ICI outcomes in NSCLC patients. Analyzing TME through radiomics may overcome the limitations of tissue-based analysis and assist clinical decisions regarding ICI.
Collapse
Affiliation(s)
- Changhee Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Young Jeong
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeonu Choi
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - You Jin Oh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Jonghoon Kim
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | | | | | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea,Division of Hematology Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chan-Young Ock
- Lunit, Seoul, Republic of Korea,*Correspondence: Chan-Young Ock, ; Ho Yun Lee,
| | - Ho Yun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea,*Correspondence: Chan-Young Ock, ; Ho Yun Lee,
| |
Collapse
|
20
|
Zhou H, Luo Q, Wu W, Li N, Yang C, Zou L. Radiomics-guided checkpoint inhibitor immunotherapy for precision medicine in cancer: A review for clinicians. Front Immunol 2023; 14:1088874. [PMID: 36936913 PMCID: PMC10014595 DOI: 10.3389/fimmu.2023.1088874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) is a breakthrough in oncology development and has been applied to multiple solid tumors. However, unlike traditional cancer treatment approaches, immune checkpoint inhibitors (ICIs) initiate indirect cytotoxicity by generating inflammation, which causes enlargement of the lesion in some cases. Therefore, rather than declaring progressive disease (PD) immediately, confirmation upon follow-up radiological evaluation after four-eight weeks is suggested according to immune-related Response Evaluation Criteria in Solid Tumors (ir-RECIST). Given the difficulty for clinicians to immediately distinguish pseudoprogression from true disease progression, we need novel tools to assist in this field. Radiomics, an innovative data analysis technique that quantifies tumor characteristics through high-throughput extraction of quantitative features from images, can enable the detection of additional information from early imaging. This review will summarize the recent advances in radiomics concerning immunotherapy. Notably, we will discuss the potential of applying radiomics to differentiate pseudoprogression from PD to avoid condition exacerbation during confirmatory periods. We also review the applications of radiomics in hyperprogression, immune-related biomarkers, efficacy, and immune-related adverse events (irAEs). We found that radiomics has shown promising results in precision cancer immunotherapy with early detection in noninvasive ways.
Collapse
Affiliation(s)
- Huijie Zhou
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Qian Luo
- Department of Hematology, the Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, China
| | - Wanchun Wu
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Na Li
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Chunli Yang
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Liqun Zou
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
- *Correspondence: Liqun Zou,
| |
Collapse
|
21
|
CT radiomic predictors of local relapse after SBRT for lung oligometastases from colorectal cancer: a single institute pilot study. Strahlenther Onkol 2022; 199:477-484. [PMID: 36580087 DOI: 10.1007/s00066-022-02034-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/20/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To assess the potential of radiomic features (RFs) extracted from simulation computed tomography (CT) images in discriminating local progression (LP) after stereotactic body radiotherapy (SBRT) in the management of lung oligometastases (LOM) from colorectal cancer (CRC). MATERIALS AND METHODS Thirty-eight patients with 70 LOM treated with SBRT were analyzed. The largest LOM was considered as most representative for each patient and was manually delineated by two blinded radiation oncologists. In all, 141 RFs were extracted from both contours according to IBSI (International Biomarker Standardization Initiative) recommendations. Based on the agreement between the two observers, 134/141 RFs were found to be robust against delineation (intraclass correlation coefficient [ICC] > 0.80); independent RFs were then assessed by Spearman correlation coefficients. The association between RFs and LP was assessed with Mann-Whitney test and univariate logistic regression (ULR): the discriminative power of the most informative RF was quantified by receiver-operating characteristics (ROC) analysis through area under curve (AUC). RESULTS In all, 15/38 patients presented LP. Median time to progression was 14.6 months (range 2.4-66 months); 5/141 RFs were significantly associated to LP at ULR analysis (p < 0.05); among them, 4 RFs were selected as robust and independent: Statistical_Variance (AUC = 0.75, p = 0.002), Statistical_Range (AUC = 0.72, p = 0.013), Grey Level Size Zone Matrix (GLSZM) _zoneSizeNonUniformity (AUC = 0.70, p = 0.022), Grey Level Dependence Zone Matrix (GLDZM) _zoneDistanceEntropy (AUC = 0.70, p = 0.026). Importantly, the RF with the best performance (Statisical_Variance) is simply representative of density heterogeneity within LOM. CONCLUSION Four RFs extracted from planning CT were significantly associated with LP of LOM from CRC treated with SBRT. Results encourage further research on a larger population aiming to define a usable radiomic score combining the most predictive RFs and, possibly, additional clinical features.
Collapse
|
22
|
He L, Li ZH, Yan LX, Chen X, Sanduleanu S, Zhong WZ, Lambin P, Ye ZX, Sun YS, Liu YL, Qu JR, Wu L, Tu CL, Scrivener M, Pieters T, Coche E, Yang Q, Yang M, Liang CH, Huang YQ, Liu ZY. Development and validation of a computed tomography-based immune ecosystem diversity index as an imaging biomarker in non-small cell lung cancer. Eur Radiol 2022; 32:8726-8736. [PMID: 35639145 DOI: 10.1007/s00330-022-08873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To date, there are no data on the noninvasive surrogate of intratumoural immune status that could be prognostic of survival outcomes in non-small cell lung cancer (NSCLC). We aimed to develop and validate the immune ecosystem diversity index (iEDI), an imaging biomarker, to indicate the intratumoural immune status in NSCLC. We further investigated the clinical relevance of the biomarker for survival prediction. METHODS In this retrospective study, two independent NSCLC cohorts (Resec1, n = 149; Resec2, n = 97) were included to develop and validate the iEDI to classify the intratumoural immune status. Paraffin-embedded resected specimens in Resec1 and Resec2 were stained by immunohistochemistry, and the density percentiles of CD3+, CD4+, and CD8+ T cells to all cells were quantified to estimate intratumoural immune status. Then, EDI features were extracted using preoperative computed tomography to develop an imaging biomarker, called iEDI, to determine the immune status. The prognostic value of iEDI was investigated on NSCLC patients receiving surgical resection (Resec1; Resec2; internal cohort Resec3, n = 419; external cohort Resec4, n = 96; and TCIA cohort Resec5, n = 55). RESULTS iEDI successfully classified immune status in Resec1 (AUC 0.771, 95% confidence interval [CI] 0.759-0.783; and 0.770 through internal validation) and Resec2 (0.669, 0.647-0.691). Patients with higher iEDI-score had longer overall survival (OS) in Resec3 (unadjusted hazard ratio 0.335, 95%CI 0.206-0.546, p < 0.001), Resec4 (0.199, 0.040-1.000, p < 0.001), and TCIA (0.303, 0.098-0.944, p = 0.001). CONCLUSIONS iEDI is a non-invasive surrogate of intratumoural immune status and prognostic of OS for NSCLC patients receiving surgical resection. KEY POINTS • Decoding tumour immune microenvironment enables advanced biomarkers identification. • Immune ecosystem diversity index characterises intratumoural immune status noninvasively. • Immune ecosystem diversity index is prognostic for NSCLC patients.
Collapse
Affiliation(s)
- Lan He
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Zhen-Hui Li
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Li-Xu Yan
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Sebastian Sanduleanu
- The D-lab and the M-lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Phillippe Lambin
- The D-lab and the M-lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Zhao-Xiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ying-Shi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department Radiology, Peking University Cancer Hospital & Institute, Hai Dian District, Beijing, China
| | - Yu-Lin Liu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Rong Qu
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lin Wu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Chang-Ling Tu
- Department of Cadres Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Madeleine Scrivener
- Department of Internal Medicine, Cliniques Universitaires St-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Thierry Pieters
- Departement of Pneumology, Cliniques Universitaires St-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Emmanuel Coche
- Department of Radiology, Cliniques Universitaires St-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Qian Yang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chang-Hong Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan-Qi Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Zai-Yi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
23
|
Alilou M, Khorrami M, Prasanna P, Bera K, Gupta A, Viswanathan VS, Patil P, Velu PD, Fu P, Velcheti V, Madabhushi A. A tumor vasculature-based imaging biomarker for predicting response and survival in patients with lung cancer treated with checkpoint inhibitors. SCIENCE ADVANCES 2022; 8:eabq4609. [PMID: 36427313 PMCID: PMC9699671 DOI: 10.1126/sciadv.abq4609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/06/2022] [Indexed: 05/30/2023]
Abstract
Tumor vasculature is a key component of the tumor microenvironment that can influence tumor behavior and therapeutic resistance. We present a new imaging biomarker, quantitative vessel tortuosity (QVT), and evaluate its association with response and survival in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitor (ICI) therapies. A total of 507 cases were used to evaluate different aspects of the QVT biomarkers. QVT features were extracted from computed tomography imaging of patients before and after ICI therapy to capture the tortuosity, curvature, density, and branching statistics of the nodule vasculature. Our results showed that QVT features were prognostic of OS (HR = 3.14, 0.95% CI = 1.2 to 9.68, P = 0.0006, C-index = 0.61) and could predict ICI response with AUCs of 0.66, 0.61, and 0.67 on three validation sets. Our study shows that QVT imaging biomarker could potentially aid in predicting and monitoring response to ICI in patients with NSCLC.
Collapse
Affiliation(s)
- Mehdi Alilou
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amit Gupta
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Pradnya Patil
- Department of Solid Tumor Oncology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Priya Darsini Velu
- Pathology and Laboratory Medicine, Weill Cornell Medicine Physicians, New York, NY 10021, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, CWRU, Cleveland, OH 44106, USA
| | - Vamsidhar Velcheti
- Department of Hematology and Oncology, NYU Langone Health, New York, NY 10016, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
- Atlanta Veterans Administration Medical Center, Atlanta, GA 30322, USA
| |
Collapse
|
24
|
Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future. Diagnostics (Basel) 2022; 12:diagnostics12112644. [PMID: 36359485 PMCID: PMC9689810 DOI: 10.3390/diagnostics12112644] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is one of the malignancies with higher morbidity and mortality. Imaging plays an essential role in each phase of lung cancer management, from detection to assessment of response to treatment. The development of imaging-based artificial intelligence (AI) models has the potential to play a key role in early detection and customized treatment planning. Computer-aided detection of lung nodules in screening programs has revolutionized the early detection of the disease. Moreover, the possibility to use AI approaches to identify patients at risk of developing lung cancer during their life can help a more targeted screening program. The combination of imaging features and clinical and laboratory data through AI models is giving promising results in the prediction of patients’ outcomes, response to specific therapies, and risk for toxic reaction development. In this review, we provide an overview of the main imaging AI-based tools in lung cancer imaging, including automated lesion detection, characterization, segmentation, prediction of outcome, and treatment response to provide radiologists and clinicians with the foundation for these applications in a clinical scenario.
Collapse
|
25
|
Investigation of radiomics based intra-patient inter-tumor heterogeneity and the impact of tumor subsampling strategies. Sci Rep 2022; 12:17244. [PMID: 36241749 PMCID: PMC9568579 DOI: 10.1038/s41598-022-20931-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
While radiomics analysis has been applied for localized cancer disease, its application to the metastatic setting involves a non-exhaustive lesion subsampling strategy which may sidestep the intrapatient tumoral heterogeneity, hindering the reproducibility and the therapeutic response performance. Our aim was to evaluate if radiomics features can capture intertumoral intrapatient heterogeneity, and the impact of tumor subsampling on the computed heterogeneity. To this end, We delineated and extracted radiomics features of all visible tumors from single acquisition pre-treatment computed tomography of patients with metastatic lung cancer (cohort L) and confirmed our results on a larger cohort of patients with metastatic melanoma (cohort M). To quantify the captured heterogeneity, the absolute coefficient of variation (CV) of each radiomics index was calculated at the patient-level and a sensitivity analysis was performed using only a subset of all extracted features robust to the segmentation step. The extent of information loss by six commonly used tumor sampling strategies was then assessed. A total of 602 lesions were segmented from 43 patients (median age 57, 4.9% female). All robust radiomics indexes exhibited at least 20% of variation with significant heterogeneity both in heavily and oligo metastasized patients, and also at the organ level. None of the segmentation subsampling strategies were able to recover the true tumoral heterogeneity obtained by exhaustive tumor sampling. Image-based inter-tumor intra-patient heterogeneity can be successfully grasped by radiomics analyses. Failing to take into account this kind of heterogeneity will lead to inconsistent predictive algorithms. Guidelines to standardize the tumor sampling step and/or AI-driven tools to alleviate the segmentation effort are required.
Collapse
|
26
|
Dercle L, McGale J, Sun S, Marabelle A, Yeh R, Deutsch E, Mokrane FZ, Farwell M, Ammari S, Schoder H, Zhao B, Schwartz LH. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005292. [PMID: 36180071 PMCID: PMC9528623 DOI: 10.1136/jitc-2022-005292] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.
Collapse
Affiliation(s)
- Laurent Dercle
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Jeremy McGale
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Shawn Sun
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Aurelien Marabelle
- Therapeutic Innovation and Early Trials, Gustave Roussy, Villejuif, Île-de-France, France
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Deutsch
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Michael Farwell
- Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samy Ammari
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France.,Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Heiko Schoder
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Binsheng Zhao
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
27
|
Wu J, Mayer AT, Li R. Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. Semin Cancer Biol 2022; 84:310-328. [PMID: 33290844 PMCID: PMC8319834 DOI: 10.1016/j.semcancer.2020.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Radiological imaging is an integral component of cancer care, including diagnosis, staging, and treatment response monitoring. It contains rich information about tumor phenotypes that are governed not only by cancer cellintrinsic biological processes but also by the tumor microenvironment, such as the composition and function of tumor-infiltrating immune cells. By analyzing the radiological scans using a quantitative radiomics approach, robust relations between specific imaging and molecular phenotypes can be established. Indeed, a number of studies have demonstrated the feasibility of radiogenomics for predicting intrinsic molecular subtypes and gene expression signatures in breast cancer based on MRI. In parallel, promising results have been shown for inferring the amount of tumor-infiltrating lymphocytes, a key factor for the efficacy of cancer immunotherapy, from standard-of-care radiological images. Compared with the biopsy-based approach, radiogenomics offers a unique avenue to profile the molecular makeup of the tumor and immune microenvironment as well as its evolution in a noninvasive and holistic manner through longitudinal imaging scans. Here, we provide a systematic review of the state of the art radiogenomics studies in the era of immunotherapy and discuss emerging paradigms and opportunities in AI and deep learning approaches. These technical advances are expected to transform the radiogenomics field, leading to the discovery of reliable imaging biomarkers. This will pave the way for their clinical translation to guide precision cancer therapy.
Collapse
Affiliation(s)
- Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, Texas, 77030, USA; Department of Thoracic/Head & Neck Medical Oncology, MD Anderson Cancer Center, Texas, 77030, USA.
| | - Aaron T Mayer
- Department of Bioengineering, Stanford University, Stanford, California, 94305, USA; Department of Radiology, Stanford University, Stanford, California, 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, California, 94305, USA; BioX Program at Stanford, Stanford University, Stanford, California, 94305, USA
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University, Stanford, California, 94305, USA
| |
Collapse
|
28
|
Cui R, Yang Z, Liu L. What does radiomics do in PD-L1 blockade therapy of NSCLC patients? Thorac Cancer 2022; 13:2669-2680. [PMID: 36039482 PMCID: PMC9527165 DOI: 10.1111/1759-7714.14620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/19/2022] Open
Abstract
With the in‐depth understanding of programmed cell death 1 ligand 1 (PD‐L1) in non‐small cell lung cancer (NSCLC), PD‐L1 has become a vital immunotherapy target and a significant biomarker. The clinical utility of detecting PD‐L1 by immunohistochemistry or next‐generation sequencing has been written into guidelines. However, the application of these methods is limited in some circumstances where the biopsy size is small or not accessible, or a dynamic monitor is needed. Radiomics can noninvasively, in real‐time, and quantitatively analyze medical images to reflect deeper information about diseases. Since radiomics was proposed in 2012, it has been widely used in disease diagnosis and differential diagnosis, tumor staging and grading, gene and protein phenotype prediction, treatment plan decision‐making, efficacy evaluation, and prognosis prediction. To explore the feasibility of the clinical application of radiomics in predicting PD‐L1 expression, immunotherapy response, and long‐term prognosis, we comprehensively reviewed and summarized recently published works in NSCLC. In conclusion, radiomics is expected to be a companion to the whole immunotherapy process.
Collapse
Affiliation(s)
- Ruichen Cui
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Yang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Liu YF, Shu X, Qiao XF, Ai GY, Liu L, Liao J, Qian S, He XJ. Radiomics-Based Machine Learning Models for Predicting P504s/P63 Immunohistochemical Expression: A Noninvasive Diagnostic Tool for Prostate Cancer. Front Oncol 2022; 12:911426. [PMID: 35795067 PMCID: PMC9252170 DOI: 10.3389/fonc.2022.911426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/19/2022] [Indexed: 01/31/2023] Open
Abstract
Objective To develop and validate a noninvasive radiomic-based machine learning (ML) model to identify P504s/P63 status and further achieve the diagnosis of prostate cancer (PCa). Methods A retrospective dataset of patients with preoperative prostate MRI examination and P504s/P63 pathological immunohistochemical results between June 2016 and February 2021 was conducted. As indicated by P504s/P63 expression, the patients were divided into label 0 (atypical prostatic hyperplasia), label 1 (benign prostatic hyperplasia, BPH) and label 2 (PCa) groups. This study employed T2WI, DWI and ADC sequences to assess prostate diseases and manually segmented regions of interest (ROIs) with Artificial Intelligence Kit software for radiomics feature acquisition. Feature dimensionality reduction and selection were performed by using a mutual information algorithm. Based on screened features, P504s/P63 prediction models were established by random forest (RF), gradient boosting decision tree (GBDT), logistic regression (LR), adaptive boosting (AdaBoost) and k-nearest neighbor (KNN) algorithms. The performance was evaluated by the area under the ROC curve (AUC) and accuracy. Results A total of 315 patients were enrolled. Among the 851 radiomic features, the 32 top features were derived from T2WI, in which the gray-level run length matrix (GLRLM) and gray-level cooccurrence matrix (GLCM) features accounted for the largest proportion. Among the five models, the RF algorithm performed best in general evaluations (microaverage AUC=0.920, macroaverage AUC=0.870) and provided the most accurate result in further sublabel prediction (the accuracies of label 0, 1, and 2 were 0.831, 0.831, and 0.932, respectively). In comparative sequence analyses, T2WI was the best single-sequence candidate (microaverage AUC=0.94 and macroaverage AUC=0.78). The merged datasets of T2WI, DWI, and ADC yielded optimal AUCs (microaverage AUC=0.930 and macroaverage AUC=0.900). Conclusions The radiomic-based RF classifier has the potential to be used to evaluate the presurgical P504s/P63 status and further diagnose PCa noninvasively and accurately.
Collapse
Affiliation(s)
- Yun-Fan Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Shu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Feng Qiao
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guang-Yong Ai
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Liu
- Big Data and Software Engineering College, Chongqing University, Chongqing, China
| | - Jun Liao
- Big Data and Software Engineering College, Chongqing University, Chongqing, China
| | - Shuang Qian
- Big Data and Software Engineering College, Chongqing University, Chongqing, China
| | - Xiao-Jing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiao-Jing He,
| |
Collapse
|
30
|
Ridge NA, Rajkumar-Calkins A, Dudzinski SO, Kirschner AN, Newman NB. Radiopharmaceuticals as Novel Immune System Tracers. Adv Radiat Oncol 2022; 7:100936. [PMID: 36148374 PMCID: PMC9486425 DOI: 10.1016/j.adro.2022.100936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigms for multiple cancers. However, ICI therapy often fails to generate measurable and sustained antitumor responses, and clinically meaningful benefits remain limited to a small proportion of overall patients. A major obstacle to development and effective application of novel therapeutic regimens is optimized patient selection and response assessment. Noninvasive imaging using novel immunoconjugate radiopharmaceuticals (immuno–positron emission tomography and immuno-single-photon emission computed tomography) can assess for expression of cell surface immune markers, such as programmed cell death protein ligand-1 (PD-L1), akin to a virtual biopsy. This emerging technology has the potential to provide clinicians with a quantitative, specific, real-time evaluation of immunologic responses relative to cancer burden in the body. We discuss the rationale for using noninvasive molecular imaging of the programmed cell death protein-1 and PD-L1 axis as a biomarker for immunotherapy and summarize the current status of preclinical and clinical studies examining PD-L1 immuno–positron emission tomography. The strategies described in this review provide insight for future clinical trials exploring the use of immune checkpoint imaging as a biomarker for both ICI and radiation therapy, and for the rational design of combinatorial therapeutic regimens.
Collapse
|
31
|
Chen Y, Sun W, Tang H, Li Y, Li C, Wang L, Chen J, Lin W, Li S, Fan Z, Cheng Y, Chen C. Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Front Bioeng Biotechnol 2022; 10:820940. [PMID: 35646833 PMCID: PMC9140325 DOI: 10.3389/fbioe.2022.820940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The foreign body response (FBR) caused by biomaterials can essentially be understood as the interaction between the immune microenvironment and biomaterials, which has severely impeded the application of biomaterials in tissue repair. This concrete interaction occurs via cells and bioactive substances, such as proteins and nucleic acids. These cellular and molecular interactions provide important cues for determining which element to incorporate into immunomodulatory biomaterials (IMBs), and IMBs can thus be endowed with the ability to modulate the FBR and repair damaged tissue. In terms of cellular, IMBs are modified to modulate functions of immune cells, such as macrophages and mast cells. In terms of bioactive substances, proteins and nucleic acids are delivered to influence the immune microenvironment. Meanwhile, IMBs are designed with high affinity for spatial targets and the ability to self-adapt over time, which allows for more efficient and intelligent tissue repair. Hence, IMB may achieve the perfect functional integration in the host, representing a breakthrough in tissue repair and regeneration medicine.
Collapse
Affiliation(s)
- Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yingze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shenghui Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yu Cheng
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
32
|
Machine Learning for Computed Tomography Radiomics: Prediction of Tumor-Infiltrating Lymphocytes in Patients With Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:549-558. [PMID: 35877153 DOI: 10.1097/mpa.0000000000002069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aims of the study were to develop and validate a machine learning classifier for preoperative prediction of tumor-infiltrating lymphocytes (TILs) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS In this retrospective study of 183 PDAC patients who underwent multidetector computed tomography and surgical resection, CD4 + , CD8 + , and CD20 + expression was evaluated using immunohistochemistry, and TIL scores were calculated using the Cox regression model. The patients were divided into TIL-low and TIL-high groups. An extreme gradient boosting (XGBoost) classifier was developed using a training set consisting of 136 consecutive patients, and the model was validated in 47 consecutive patients. The discriminative ability, calibration, and clinical utility of the XGBoost classifier were evaluated. RESULTS The prediction model showed good discrimination in the training (area under the curve, 0.93; 95% confidence interval, 0.89-0.97) and validation (area under the curve, 0.79; 95% confidence interval, 0.65-0.92) sets with good calibration. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 0.93, 0.85, 0.90, 0.89, and 0.91, respectively, while those for the validation set were 0.63, 0.91, 0.77, 0.88, and 0.70, respectively. CONCLUSIONS The XGBoost-based model could predict PDAC TILs and may facilitate clinical decision making for immune therapy.
Collapse
|
33
|
Che F, Xu Q, Li Q, Huang ZX, Yang CW, Wang LY, Wei Y, Shi YJ, Song B. Radiomics signature: A potential biomarker for β-arrestin1 phosphorylation prediction in hepatocellular carcinoma. World J Gastroenterol 2022; 28:1479-1493. [PMID: 35582676 PMCID: PMC9048469 DOI: 10.3748/wjg.v28.i14.1479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The phosphorylation status of β-arrestin1 influences its function as a signal strongly related to sorafenib resistance. This retrospective study aimed to develop and validate radiomics-based models for predicting β-arrestin1 phosphorylation in hepatocellular carcinoma (HCC) using whole-lesion radiomics and visual imaging features on preoperative contrast-enhanced computed tomography (CT) images.
AIM To develop and validate radiomics-based models for predicting β-arrestin1 phosphorylation in HCC using radiomics with contrast-enhanced CT.
METHODS Ninety-nine HCC patients (training cohort: n = 69; validation cohort: n = 30) receiving systemic sorafenib treatment after surgery were enrolled in this retrospective study. Three-dimensional whole-lesion regions of interest were manually delineated along the tumor margins on portal venous CT images. Radiomics features were generated and selected to build a radiomics score using logistic regression analysis. Imaging features were evaluated by two radiologists independently. All these features were combined to establish clinico-radiological (CR) and clinico-radiological-radiomics (CRR) models by using multivariable logistic regression analysis. The diagnostic performance and clinical usefulness of the models were measured by receiver operating characteristic and decision curves, and the area under the curve (AUC) was determined. Their association with prognosis was evaluated using the Kaplan-Meier method.
RESULTS Four radiomics features were selected to construct the radiomics score. In the multivariate analysis, alanine aminotransferase level, tumor size and tumor margin on portal venous phase images were found to be significant independent factors for predicting β-arrestin1 phosphorylation-positive HCC and were included in the CR model. The CRR model integrating the radiomics score with clinico-radiological risk factors showed better discriminative performance (AUC = 0.898, 95%CI, 0.820 to 0.977) than the CR model (AUC = 0.794, 95%CI, 0.686 to 0.901; P = 0.011), with increased clinical usefulness confirmed in both the training and validation cohorts using decision curve analysis. The risk of β-arrestin1 phosphorylation predicted by the CRR model was significantly associated with overall survival in the training and validation cohorts (log-rank test, P < 0.05).
CONCLUSION The radiomics signature is a reliable tool for evaluating β-arrestin1 phosphorylation which has prognostic significance for HCC patients, providing the potential to better identify patients who would benefit from sorafenib treatment.
Collapse
Affiliation(s)
- Feng Che
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qing Xu
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qian Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zi-Xing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Cai-Wei Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Ye Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200232, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu-Jun Shi
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
34
|
Anagnostopoulos AK, Gaitanis A, Gkiozos I, Athanasiadis EI, Chatziioannou SN, Syrigos KN, Thanos D, Chatziioannou AN, Papanikolaou N. Radiomics/Radiogenomics in Lung Cancer: Basic Principles and Initial Clinical Results. Cancers (Basel) 2022; 14:cancers14071657. [PMID: 35406429 PMCID: PMC8997041 DOI: 10.3390/cancers14071657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Radiogenomics is a promising new approach in cancer assessment, providing an evaluation of the molecular basis of imaging phenotypes after establishing associations between radiological features and molecular features at the genomic–transcriptomic–proteomic level. This review focuses on describing key aspects of radiogenomics while discussing limitations of translatability to the clinic and possible solutions to these challenges, providing the clinician with an up-to-date handbook on how to use this new tool. Abstract Lung cancer is the leading cause of cancer-related deaths worldwide, and elucidation of its complicated pathobiology has been traditionally targeted by studies incorporating genomic as well other high-throughput approaches. Recently, a collection of methods used for cancer imaging, supplemented by quantitative aspects leading towards imaging biomarker assessment termed “radiomics”, has introduced a novel dimension in cancer research. Integration of genomics and radiomics approaches, where identifying the biological basis of imaging phenotypes is feasible due to the establishment of associations between molecular features at the genomic–transcriptomic–proteomic level and radiological features, has recently emerged termed radiogenomics. This review article aims to briefly describe the main aspects of radiogenomics, while discussing its basic limitations related to lung cancer clinical applications for clinicians, researchers and patients.
Collapse
Affiliation(s)
- Athanasios K. Anagnostopoulos
- Division of Biotechnology, Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11525 Athens, Greece
- Correspondence:
| | - Anastasios Gaitanis
- Clinical and Translational Research, Center of Experimental Surgery, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Ioannis Gkiozos
- Third Department of Internal Medicine, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.G.); (K.N.S.)
| | - Emmanouil I. Athanasiadis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.I.A.); (D.T.)
| | - Sofia N. Chatziioannou
- Nuclear Medicine Division, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Konstantinos N. Syrigos
- Third Department of Internal Medicine, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.G.); (K.N.S.)
| | - Dimitris Thanos
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.I.A.); (D.T.)
| | - Achilles N. Chatziioannou
- First Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papanikolaou
- Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Machine Learning Group, The Royal Marsden, London SM2 5MG, UK
- The Institute of Cancer Research, London SM2 5MG, UK
- Karolinska Institutet, 14186 Stockholm, Sweden
- Institute of Computer Science, FORTH, 70013 Heraklion, Greece
| |
Collapse
|
35
|
The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. J Clin Med 2022; 11:jcm11061740. [PMID: 35330068 PMCID: PMC8948743 DOI: 10.3390/jcm11061740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The introduction of immune checkpoint inhibitors has represented a milestone in cancer treatment. Despite PD-L1 expression being the standard biomarker used before the start of therapy, there is still a strict need to identify complementary non-invasive biomarkers in order to better select patients. In this context, radiomics is an emerging approach for examining medical images and clinical data by capturing multiple features hidden from human eye and is potentially able to predict response assessment and survival in the course of immunotherapy. We reviewed the available studies investigating the role of radiomics in cancer patients, focusing on non-small cell lung cancer treated with immune checkpoint inhibitors. Although preliminary research shows encouraging results, different issues need to be solved before radiomics can enter into clinical practice. Abstract Immune checkpoint inhibitors (ICI) have demonstrated encouraging results in terms of durable clinical benefit and survival in several malignancies. Nevertheless, the search to identify an “ideal” biomarker for predicting response to ICI is still far from over. Radiomics is a new translational field of study aiming to extract, by dedicated software, several features from a given medical image, ranging from intensity distribution and spatial heterogeneity to higher-order statistical parameters. Based on these premises, our review aims to summarize the current status of radiomics as a potential predictor of clinical response following immunotherapy treatment. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2021 were selected, comprising those that explored computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for radiomic analyses in the setting of ICI. Several studies have demonstrated the potential applicability of radiomic features in the monitoring of the therapeutic response beyond the traditional morphologic and metabolic criteria, as well as in the prediction of survival or non-invasive assessment of the tumor microenvironment. Nevertheless, important limitations emerge from our review in terms of standardization in feature selection, data sharing, and methods, as well as in external validation. Additionally, there is still need for prospective clinical trials to confirm the potential significant role of radiomics during immunotherapy.
Collapse
|
36
|
Noninvasive Method for Predicting the Expression of Ki67 and Prognosis in Non-Small-Cell Lung Cancer Patients: Radiomics. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7761589. [PMID: 35340222 PMCID: PMC8942651 DOI: 10.1155/2022/7761589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022]
Abstract
Purpose In this study, we aimed to develop and validate a noninvasive method based on radiomics to evaluate the expression of Ki67 and prognosis of patients with non-small-cell lung cancer (NSCLC). Patients and Methods. A total of 120 patients with NSCLC were enrolled in this retrospective study. All patients were randomly assigned to a training dataset (n = 85) and test dataset (n = 35). According to the preprocessed F-FDG PET/CT image of each patient, a total of 384 radiomics features were extracted from the segmentation of regions of interest (ROIs). The Spearman correlation test and least absolute shrinkage and selection operator (LASSO), after normalization on the features matrix, were applied to reduce the dimensionality of the features. Furthermore, multivariable logistic regression analysis was used to propose a model for predicting Ki67. The survival curve was used to explore the prognostic significance of radiomics features. Results A total of 62 Ki67 positive patients and 58 Ki67 negative patients formed the training set and test training dataset and test dataset. Radiomics signatures showed good performance in predicting the expression of Ki67 with AUCs of 0.86 (training dataset) and 0.85 (test dataset). Validation and calibration showed that the radiomics had a strong predictive power in patients with NSCLC survival, which was significantly close to the effect of Ki67 expression on the survival of patients with NSCLC. Conclusion Radiomics signatures based on preoperative F-FDG PET/CT could distinguish the expression of Ki67, which also had a strong predictive performance for the survival outcome.
Collapse
|
37
|
Evaluation of Microscopic Tumour Extension in Localized Stage Non-Small-Cell Lung Cancer for Stereotactic Radiotherapy Planning. Cancers (Basel) 2022; 14:cancers14051282. [PMID: 35267589 PMCID: PMC8909894 DOI: 10.3390/cancers14051282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Stereotactic radiotherapy for localised stage non-small-cell lung carcinoma (NSCLC) is an alternative indication for patients who are inoperable or refuse surgery. A study showed that the microscopic tumour extension (ME) of NSCLC varied according to the histological type, which allowed us to deduce adapted margins for the clinical target volume (CTV). However, to date, no study has been able to define the most relevant margins for patients with stage 1 tumours. Methods: We performed a retrospective analysis including patients with adenocarcinoma (ADC) or squamous cell carcinoma (SCC) of localised stage T1N0 or T2aN0 who underwent surgery. The ME was measured from this boundary. The profile of the type of tumour spread was also evaluated. Results: The margin required to cover the ME of a localised NSCLC with a 95% probability is 4.4 mm and 2.9 mm for SCC and ADC, respectively. A significant difference in the maximum distance of the ME between the tumour-infiltrating lymphocytes (TILs), 0−10% and 50−90% (p < 0.05), was noted for SCC. There was a significant difference in the maximum ME distance based on whether the patient had chronic obstructive pulmonary disease (COPD) (p = 0.011) for ADC. Multivariate analysis showed a statistically significant relationship between the maximum microextension distance and size with the shrinkage coefficient. Conclusion: This study definitively demonstrated that the ME depends on the pathology subtype of NSCLC. According to International Commission on Radiation Units and Measurements (ICRU) reports, 50, 62 and 83 CTV margins, proposed by these results, should be added to the GTV (Gross tumour volume). When stereotactic body radiation therapy is used, this approach should be considered in conjunction with the dataset and other margins to be applied.
Collapse
|
38
|
Han X, Cao W, Wu L, Liang C. Radiomics Assessment of the Tumor Immune Microenvironment to Predict Outcomes in Breast Cancer. Front Immunol 2022; 12:773581. [PMID: 35046937 PMCID: PMC8761791 DOI: 10.3389/fimmu.2021.773581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background The immune microenvironment of tumors provides information on prognosis and prediction. A prior validation of the immunoscore for breast cancer (ISBC) was made on the basis of a systematic assessment of immune landscapes extrapolated from a large number of neoplastic transcripts. Our goal was to develop a non-invasive radiomics-based ISBC predictive factor. Methods Immunocell fractions of 22 different categories were evaluated using CIBERSORT on the basis of a large, open breast cancer cohort derived from comprehensive information on gene expression. The ISBC was constructed using the LASSO Cox regression model derived from the Immunocell type scores, with 479 quantified features in the intratumoral and peritumoral regions as observed from DCE-MRI. A radiomics signature [radiomics ImmunoScore (RIS)] was developed for the prediction of ISBC using a random forest machine-learning algorithm, and we further evaluated its relationship with prognosis. Results An ISBC consisting of seven different immune cells was established through the use of a LASSO model. Multivariate analyses showed that the ISBC was an independent risk factor in prognosis (HR=2.42, with a 95% CI of 1.49–3.93; P<0.01). A radiomic signature of 21 features of the ISBC was then exploited and validated (the areas under the curve [AUC] were 0.899 and 0.815). We uncovered statistical associations between the RIS signature with recurrence-free and overall survival rates (both P<0.05). Conclusions The RIS is a valuable instrument with which to assess the immunoscore, and offers important implications for the prognosis of breast cancer.
Collapse
Affiliation(s)
- Xiaorui Han
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wuteng Cao
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Wu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Changhong Liang
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| |
Collapse
|
39
|
Bian Y, Liu YF, Jiang H, Meng Y, Liu F, Cao K, Zhang H, Fang X, Li J, Yu J, Feng X, Li Q, Wang L, Lu J, Shao C. Machine learning for MRI radiomics: a study predicting tumor-infiltrating lymphocytes in patients with pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 2021; 46:4800-4816. [PMID: 34189612 DOI: 10.1007/s00261-021-03159-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To develop and validate a machine learning classifier based on magnetic resonance imaging (MRI), for the preoperative prediction of tumor-infiltrating lymphocytes (TILs) in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS In this retrospective study, 156 patients with PDAC underwent MR scan and surgical resection. The expression of CD4, CD8 and CD20 was detected and quantified using immunohistochemistry, and TILs score was achieved by Cox regression model. All patients were divided into TILs score-low and TILs score-high groups. The least absolute shrinkage and selection operator method and the extreme gradient boosting (XGBoost) were used to select the features and to construct a prediction model. The performance of the models was assessed using the training cohort (116 patients) and the validation cohort (40 patients), and decision curve analysis (DCA) was applied for clinical use. RESULTS The XGBoost prediction model showed good discrimination in the training (AUC 0.86; 95% CI 0.79-0.93) and validation sets (AUC 0.79; 95% CI 0.64-0.93). The sensitivity, specificity, and accuracy for the training set were 86.67%, 75.00%, and 0.81, respectively, whereas those for the validation set were 84.21%, 66.67%, and 0.75, respectively. Decision curve analysis indicated the clinical usefulness of the XGBoost classifier. CONCLUSION The model constructed by XGBoost could predict PDAC TILs and may aid clinical decision making for immune therapy.
Collapse
Affiliation(s)
- Yun Bian
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Yan Fang Liu
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yinghao Meng
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Fang Liu
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Kai Cao
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Hao Zhang
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Xu Fang
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Jing Li
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Jieyu Yu
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Xiaochen Feng
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Qi Li
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Li Wang
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, 200434, China.
- Department of Radiology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
40
|
Cannarile MA, Gomes B, Canamero M, Reis B, Byrd A, Charo J, Yadav M, Karanikas V. Biomarker Technologies to Support Early Clinical Immuno-oncology Development: Advances and Interpretation. Clin Cancer Res 2021; 27:4147-4159. [PMID: 33766813 DOI: 10.1158/1078-0432.ccr-20-2345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/02/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Today, there is a huge effort to develop cancer immunotherapeutics capable of combating cancer cells as well as the biological environment in which they can grow, adapt, and survive. For such treatments to benefit more patients, there is a great need to dissect the complex interplays between tumor cells and the host's immune system. Monitoring mechanisms of resistance to immunotherapeutics can delineate the evolution of key players capable of driving an efficacious antitumor immune response. In doing so, simultaneous and systematic interrogation of multiple biomarkers beyond single biomarker approaches needs to be undertaken. Zooming into cell-to-cell interactions using technological advancements with unprecedented cellular resolution such as single-cell spatial transcriptomics, advanced tissue histology approaches, and new molecular immune profiling tools promises to provide a unique level of molecular granularity of the tumor environment and may support better decision-making during drug development. This review will focus on how such technological tools are applied in clinical settings, to inform the underlying tumor-immune biology of patients and offer a deeper understanding of cancer immune responsiveness to immuno-oncology treatments.
Collapse
Affiliation(s)
- Michael A Cannarile
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Munich, Munich, Germany
| | - Bruno Gomes
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Marta Canamero
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Munich, Munich, Germany
| | - Bernhard Reis
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Jehad Charo
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, Zurich, Switzerland
| | | | - Vaios Karanikas
- F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Haider SP, Qureshi AI, Jain A, Tharmaseelan H, Berson ER, Zeevi T, Majidi S, Filippi CG, Iseke S, Gross M, Acosta JN, Malhotra A, Kim JA, Sansing LH, Falcone GJ, Sheth KN, Payabvash S. Admission computed tomography radiomic signatures outperform hematoma volume in predicting baseline clinical severity and functional outcome in the ATACH-2 trial intracerebral hemorrhage population. Eur J Neurol 2021; 28:2989-3000. [PMID: 34189814 DOI: 10.1111/ene.15000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Radiomics provides a framework for automated extraction of high-dimensional feature sets from medical images. We aimed to determine radiomics signature correlates of admission clinical severity and medium-term outcome from intracerebral hemorrhage (ICH) lesions on baseline head computed tomography (CT). METHODS We used the ATACH-2 (Antihypertensive Treatment of Acute Cerebral Hemorrhage II) trial dataset. Patients included in this analysis (n = 895) were randomly allocated to discovery (n = 448) and independent validation (n = 447) cohorts. We extracted 1130 radiomics features from hematoma lesions on baseline noncontrast head CT scans and generated radiomics signatures associated with admission Glasgow Coma Scale (GCS), admission National Institutes of Health Stroke Scale (NIHSS), and 3-month modified Rankin Scale (mRS) scores. Spearman's correlation between radiomics signatures and corresponding target variables was compared with hematoma volume. RESULTS In the discovery cohort, radiomics signatures, compared to ICH volume, had a significantly stronger association with admission GCS (0.47 vs. 0.44, p = 0.008), admission NIHSS (0.69 vs. 0.57, p < 0.001), and 3-month mRS scores (0.44 vs. 0.32, p < 0.001). Similarly, in independent validation, radiomics signatures, compared to ICH volume, had a significantly stronger association with admission GCS (0.43 vs. 0.41, p = 0.02), NIHSS (0.64 vs. 0.56, p < 0.001), and 3-month mRS scores (0.43 vs. 0.33, p < 0.001). In multiple regression analysis adjusted for known predictors of ICH outcome, the radiomics signature was an independent predictor of 3-month mRS in both cohorts. CONCLUSIONS Limited by the enrollment criteria of the ATACH-2 trial, we showed that radiomics features quantifying hematoma texture, density, and shape on baseline CT can provide imaging correlates for clinical presentation and 3-month outcome. These findings couldtrigger a paradigm shift where imaging biomarkers may improve current modelsfor prognostication, risk-stratification, and treatment triage of ICH patients.
Collapse
Affiliation(s)
- Stefan P Haider
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.,Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Munich, Germany
| | - Adnan I Qureshi
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Abhi Jain
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Hishan Tharmaseelan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Elisa R Berson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Tal Zeevi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Shahram Majidi
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Simon Iseke
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Moritz Gross
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Julian N Acosta
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer A Kim
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Lauren H Sansing
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Guido J Falcone
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Kevin N Sheth
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Ko CC, Yeh LR, Kuo YT, Chen JH. Imaging biomarkers for evaluating tumor response: RECIST and beyond. Biomark Res 2021; 9:52. [PMID: 34215324 PMCID: PMC8252278 DOI: 10.1186/s40364-021-00306-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Response Evaluation Criteria in Solid Tumors (RECIST) is the gold standard for assessment of treatment response in solid tumors. Morphologic change of tumor size evaluated by RECIST is often correlated with survival length and has been considered as a surrogate endpoint of therapeutic efficacy. However, the detection of morphologic change alone may not be sufficient for assessing response to new anti-cancer medication in all solid tumors. During the past fifteen years, several molecular-targeted therapies and immunotherapies have emerged in cancer treatment which work by disrupting signaling pathways and inhibited cell growth. Tumor necrosis or lack of tumor progression is associated with a good therapeutic response even in the absence of tumor shrinkage. Therefore, the use of unmodified RECIST criteria to estimate morphological changes of tumor alone may not be sufficient to estimate tumor response for these new anti-cancer drugs. Several studies have reported the low reliability of RECIST in evaluating treatment response in different tumors such as hepatocellular carcinoma, lung cancer, prostate cancer, brain glioma, bone metastasis, and lymphoma. There is an increased need for new medical imaging biomarkers, considering the changes in tumor viability, metabolic activity, and attenuation, which are related to early tumor response. Promising imaging techniques, beyond RECIST, include dynamic contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI), diffusion-weight imaging (DWI), magnetic resonance spectroscopy (MRS), and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET). This review outlines the current RECIST with their limitations and the new emerging concepts of imaging biomarkers in oncology.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lee-Ren Yeh
- Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jeon-Hor Chen
- Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan. .,Tu & Yuan Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, 164 Irvine Hall, Irvine, CA, 92697 - 5020, USA.
| |
Collapse
|
43
|
Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians. J Pers Med 2021; 11:jpm11070602. [PMID: 34202096 PMCID: PMC8306026 DOI: 10.3390/jpm11070602] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Artificial intelligence (AI) has increasingly been serving the field of radiology over the last 50 years. As modern medicine is evolving towards precision medicine, offering personalized patient care and treatment, the requirement for robust imaging biomarkers has gradually increased. Radiomics, a specific method generating high-throughput extraction of a tremendous amount of quantitative imaging data using data-characterization algorithms, has shown great potential in individuating imaging biomarkers. Radiomic analysis can be implemented through the following two methods: hand-crafted radiomic features extraction or deep learning algorithm. Its application in lung diseases can be used in clinical decision support systems, regarding its ability to develop descriptive and predictive models in many respiratory pathologies. The aim of this article is to review the recent literature on the topic, and briefly summarize the interest of radiomics in chest Computed Tomography (CT) and its pertinence in the field of pulmonary diseases, from a clinician's perspective.
Collapse
|
44
|
A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study. Diagnostics (Basel) 2021; 11:diagnostics11060979. [PMID: 34071518 PMCID: PMC8229740 DOI: 10.3390/diagnostics11060979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/06/2023] Open
Abstract
Baseline clinical prognostic factors for recurrent and/or metastatic (RM) head and neck squamous cell carcinoma (HNSCC) treated with immunotherapy are lacking. CT-based radiomics may provide additional prognostic information. A total of 85 patients with RM-HNSCC were enrolled for this study. For each tumor, radiomic features were extracted from the segmentation of the largest tumor mass. A pipeline including different feature selection steps was used to train a radiomic signature prognostic for 10-month overall survival (OS). Features were selected based on their stability to geometrical transformation of the segmentation (intraclass correlation coefficient, ICC > 0.75) and their predictive power (area under the curve, AUC > 0.7). The predictive model was developed using the least absolute shrinkage and selection operator (LASSO) in combination with the support vector machine. The model was developed based on the first 68 enrolled patients and tested on the last 17 patients. Classification performance of the radiomic risk was evaluated accuracy and the AUC. The same metrics were computed for some baseline predictors used in clinical practice (volume of largest lesion, total tumor volume, number of tumor lesions, number of affected organs, performance status). The AUC in the test set was 0.67, while accuracy was 0.82. The performance of the radiomic score was higher than the one obtainable with the clinical variables (largest lesion volume: accuracy 0.59, AUC = 0.55; number of tumoral lesions: accuracy 0.71, AUC 0.36; number of affected organs: accuracy 0.47; AUC 0.42; total tumor volume: accuracy 0.59, AUC 0.53; performance status: accuracy 0.41, AUC = 0.47). Radiomics may provide additional baseline prognostic value compared to the variables used in clinical practice.
Collapse
|
45
|
Imaging features of gadoxetic acid-enhanced MR imaging for evaluation of tumor-infiltrating CD8 cells and PD-L1 expression in hepatocellular carcinoma. Cancer Immunol Immunother 2021; 71:25-38. [PMID: 33993366 DOI: 10.1007/s00262-021-02957-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tumor-infiltrating CD8 cells and expression of programmed cell death ligand 1 (PD-L1) are immune checkpoint markers in patients with hepatocellular carcinoma (HCC). We aimed to determine the ability of preoperative gadoxetic acid-enhanced magnetic resonance imaging (MRI) findings to predict CD8 cell density and PD-L1 expression in HCC. METHODS A total of 120 patients with HCC who underwent 3.0-T gadoxetic acid-enhanced MRI before curative resection from January 2016 to June 2020 were enrolled and divided into a training set (n = 84) and a testing set (n = 36). Thirty-four patients with advanced stage HCC who received anti-PD-1 inhibitor between January 2017 and April 2020 and underwent pretreated gadoxetic acid-enhanced MRI scans were enrolled in an independent validation set. PD-L1 expression and CD8 cell infiltration were assessed with immunohistochemical staining, respectively. Two radiologists blinded to pathology results evaluated the pretreated MR features in consensus. Logistic regression and the receiver operating characteristic curve (ROC) analyses were used to determine the value of image features to predict high CD8 cell density, PD-L1 positivity and the combination of high CD8 cell density and PD-L1 positivity in HCC in the training set and validated the findings in the testing set. The associations of MRI predictors with the objective response to immunotherapy were assessed in the independent validation. RESULTS In the training set, the independent MRI predictors were irregular tumor margin (ITM, P = 0.008) and peritumoral low signal intensity (PLSI) on hepatobiliary phase (HBP) images (P < 0.001) for PD-L1 positivity, absence of an enhancing capsule (AEC, P = 0.001) and PLSI on HBP images (P = 0.025) for high CD8 cell density, and PLSI on HBP images (P = 0.001) and ITM (P = 0.023) for the both. The area under the curves (AUCs) of the predictive models for evaluating PD-L1 positivity, high CD8 cell density and the combination of high CD8 cell density and PD-L1 positivity were 0.810 and 0.809, 0.740 and 0.728, and 0.809 and 0.874 in the training and testing set, respectively. The objective response was demonstrated to be associated with the combination of PLSI on HBP images and ITM (PHI, P = 0.004), and the combination of PLSI on HBP images and AEC (PHA, P = 0.012) in the independent validation set. CONCLUSIONS Pretreated MRI features have the potential to identify patients with HCC in an immune-activated state and predict outcomes of immunotherapy. Trial registration The study was retrospectively registered on March 5, 2020 with registration no. [2020] 02-012-01.
Collapse
|
46
|
Wang JH, Wahid KA, van Dijk LV, Farahani K, Thompson RF, Fuller CD. Radiomic biomarkers of tumor immune biology and immunotherapy response. Clin Transl Radiat Oncol 2021; 28:97-115. [PMID: 33937530 PMCID: PMC8076712 DOI: 10.1016/j.ctro.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies are leading to improved outcomes for many cancers, including those with devastating prognoses. As therapies like immune checkpoint inhibitors (ICI) become a mainstay in treatment regimens, many concurrent challenges have arisen - for instance, delineating clinical responders from non-responders. Predicting response has proven to be difficult given a lack of consistent and accurate biomarkers, heterogeneity of the tumor microenvironment (TME), and a poor understanding of resistance mechanisms. For the most part, imaging data have remained an untapped, yet abundant, resource to address these challenges. In recent years, quantitative image analyses have highlighted the utility of medical imaging in predicting tumor phenotypes, prognosis, and therapeutic response. These studies have been fueled by an explosion of resources in high-throughput mining of image features (i.e. radiomics) and artificial intelligence. In this review, we highlight current progress in radiomics to understand tumor immune biology and predict clinical responses to immunotherapies. We also discuss limitations in these studies and future directions for the field, particularly if high-dimensional imaging data are to play a larger role in precision medicine.
Collapse
Affiliation(s)
- Jarey H. Wang
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Kareem A. Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisanne V. van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keyvan Farahani
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, United States
| | - Reid F. Thompson
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
47
|
Cucchiara F, Petrini I, Romei C, Crucitta S, Lucchesi M, Valleggi S, Scavone C, Capuano A, De Liperi A, Chella A, Danesi R, Del Re M. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021; 169:105643. [PMID: 33940185 DOI: 10.1016/j.phrs.2021.105643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become a paradigm for precision medicine in oncology, and liquid biopsy (LB) together with radiomics may have a great potential in this scenario. They are both minimally invasive, easy to perform, and can be repeated during patient's follow-up. Also, increasing evidence suggest that LB and radiomics may provide an efficient way to screen and diagnose tumors at an early stage, including the monitoring of any change in the tumor molecular profile. This could allow treatment optimization, improvement of patients' quality of life, and healthcare-related costs reduction. Latest reports on lung cancer patients suggest a combination of these two strategies, along with cutting-edge data analysis, to decode valuable information regarding tumor type, aggressiveness, progression, and response to treatment. The approach seems more compatible with clinical practice than the current standard, and provides new diagnostic companions being able to suggest the best treatment strategy compared to conventional methods. To implement radiomics and liquid biopsy directly into clinical practice, an artificial intelligence (AI)-based system could help to link patients' clinical data together with tumor molecular profiles and imaging characteristics. AI could also solve problems and limitations related to LB and radiomics methodologies. Further work is needed, including new health policies and the access to large amounts of high-quality and well-organized data, allowing a complementary and synergistic combination of LB and imaging, to provide an attractive choice e in the personalized treatment of lung cancer.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Chiara Romei
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Simona Valleggi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa De Liperi
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
48
|
Bousabarah K, Blanck O, Temming S, Wilhelm ML, Hoevels M, Baus WW, Ruess D, Visser-Vandewalle V, Ruge MI, Treuer H, Kocher M. Radiomics for prediction of radiation-induced lung injury and oncologic outcome after robotic stereotactic body radiotherapy of lung cancer: results from two independent institutions. Radiat Oncol 2021; 16:74. [PMID: 33863358 PMCID: PMC8052812 DOI: 10.1186/s13014-021-01805-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/11/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To generate and validate state-of-the-art radiomics models for prediction of radiation-induced lung injury and oncologic outcome in non-small cell lung cancer (NSCLC) patients treated with robotic stereotactic body radiation therapy (SBRT). METHODS Radiomics models were generated from the planning CT images of 110 patients with primary, inoperable stage I/IIa NSCLC who were treated with robotic SBRT using a risk-adapted fractionation scheme at the University Hospital Cologne (training cohort). In total, 199 uncorrelated radiomic features fulfilling the standards of the Image Biomarker Standardization Initiative (IBSI) were extracted from the outlined gross tumor volume (GTV). Regularized models (Coxnet and Gradient Boost) for the development of local lung fibrosis (LF), local tumor control (LC), disease-free survival (DFS) and overall survival (OS) were built from either clinical/ dosimetric variables, radiomics features or a combination thereof and validated in a comparable cohort of 71 patients treated by robotic SBRT at the Radiosurgery Center in Northern Germany (test cohort). RESULTS Oncologic outcome did not differ significantly between the two cohorts (OS at 36 months 56% vs. 43%, p = 0.065; median DFS 25 months vs. 23 months, p = 0.43; LC at 36 months 90% vs. 93%, p = 0.197). Local lung fibrosis developed in 33% vs. 35% of the patients (p = 0.75), all events were observed within 36 months. In the training cohort, radiomics models were able to predict OS, DFS and LC (concordance index 0.77-0.99, p < 0.005), but failed to generalize to the test cohort. In opposite, models for the development of lung fibrosis could be generated from both clinical/dosimetric factors and radiomic features or combinations thereof, which were both predictive in the training set (concordance index 0.71- 0.79, p < 0.005) and in the test set (concordance index 0.59-0.66, p < 0.05). The best performing model included 4 clinical/dosimetric variables (GTV-Dmean, PTV-D95%, Lung-D1ml, age) and 7 radiomic features (concordance index 0.66, p < 0.03). CONCLUSION Despite the obvious difficulties in generalizing predictive models for oncologic outcome and toxicity, this analysis shows that carefully designed radiomics models for prediction of local lung fibrosis after SBRT of early stage lung cancer perform well across different institutions.
Collapse
Affiliation(s)
- Khaled Bousabarah
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Cologne, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany.,Saphir Radiosurgery Center Northern Germany, Guestrow, Germany
| | - Susanne Temming
- Department of Radiation Oncology, University Hospital of Cologne, Cologne, Germany
| | - Maria-Lisa Wilhelm
- Saphir Radiosurgery Center Northern Germany, Guestrow, Germany.,Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany
| | - Mauritius Hoevels
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology, University Hospital of Cologne, Cologne, Germany
| | - Daniel Ruess
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Maximilian I Ruge
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Martin Kocher
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
49
|
Tu SJ, Chen WY, Wu CT. Uncertainty measurement of radiomics features against inherent quantum noise in computed tomography imaging. Eur Radiol 2021; 31:7865-7875. [PMID: 33852047 DOI: 10.1007/s00330-021-07943-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Quantum noise is a random process in X-ray-based imaging systems. We addressed and measured the uncertainty of radiomics features against this quantum noise in computed tomography (CT) images. METHODS A clinical multi-detector CT scanner, two homogeneous phantom sets, and four heterogeneous samples were used. A solid tumor tissue removed from a male BALB/c mouse was included. We the placed phantom sets on the CT scanning table and repeated 20 acquisitions with identical imaging settings. Regions of interest were delineated for feature extraction. Statistical quantities-average, standard deviation, and percentage uncertainty-were calculated from these 20 repeated scans. Percentage uncertainty was used to measure and quantify feature stability against quantum noise. Twelve radiomics features were measured. Random noise was added to study the robustness of machine learning classifiers against feature uncertainty. RESULTS We found the ranges of percentage uncertainties from homogeneous soft tissue phantoms, homogeneous bone phantoms, and solid tumor tissue to be 0.01-2138%, 0.02-15%, and 0.18-16%, respectively. Overall, it was found that the CT features ShortRunHighGrayLevelEmpha (SRHGE) (0.01-0.18%), ShortRunLowGrayLevelEmpha (SRLGE) (0.01-0.41%), LowGrayLevelRunEmpha (LGRE) (0.01-0.39%), and LongRunLowGrayLevelEmpha (LRLGE) (0.02-0.66%) were the most stable features against the inherent quantum noise. The most unstable features were cluster shade (1-2138%) and max probability (1-16%). The impact of random noise to the prediction accuracy by different machine learning classifiers was found to be between 0 and 12%. CONCLUSIONS Twelve features were used for uncertainty measurements. The upper and lower bounds of percentage uncertainties were determined. The quantum noise effect on machine learning classifiers is model dependent. KEY POINTS • Quantum noise is a random process and is intrinsic to X-ray-based imaging systems. This inherent quantum noise creates unpredictable fluctuations in the gray-level intensities of image pixels. Extra cautions and further validations are strongly recommended when unstable radiomics features are selected by a predictive model for disease classification or treatment outcome prognosis. • We addressed and used the statistical quantity of percentage uncertainty to measure the uncertainty of radiomics features against the inherent quantum noise in computed tomography (CT) images. • A clinical multi-detector CT scanner, two homogeneous phantom sets, and four heterogeneous samples were used in the stability measurement. A solid tumor tissue removed from a male BALB/c mouse was included in the heterogeneous sample.
Collapse
Affiliation(s)
- Shu-Ju Tu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan. .,Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| | - Wei-Yuan Chen
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan.,Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan.,Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| |
Collapse
|
50
|
Lee SH, Cho HH, Kwon J, Lee HY, Park H. Are radiomics features universally applicable to different organs? Cancer Imaging 2021; 21:31. [PMID: 33827699 PMCID: PMC8028225 DOI: 10.1186/s40644-021-00400-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 03/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Many studies have successfully identified radiomics features reflecting macroscale tumor features and tumor microenvironment for various organs. There is an increased interest in applying these radiomics features found in a given organ to other organs. Here, we explored whether common radiomics features could be identified over target organs in vastly different environments. METHODS Four datasets of three organs were analyzed. One radiomics model was constructed from the training set (lungs, n = 401), and was further evaluated in three independent test sets spanning three organs (lungs, n = 59; kidneys, n = 48; and brains, n = 43). Intensity histograms derived from the whole organ were compared to establish organ-level differences. We constructed a radiomics score based on selected features using training lung data over the tumor region. A total of 143 features were computed for each tumor. We adopted a feature selection approach that favored stable features, which can also capture survival. The radiomics score was applied to three independent test data from lung, kidney, and brain tumors, and whether the score could be used to separate high- and low-risk groups, was evaluated. RESULTS Each organ showed a distinct pattern in the histogram and the derived parameters (mean and median) at the organ-level. The radiomics score trained from the lung data of the tumor region included seven features, and the score was only effective in stratifying survival for other lung data, not in other organs such as the kidney and brain. Eliminating the lung-specific feature (2.5 percentile) from the radiomics score led to similar results. There were no common features between training and test sets, but a common category of features (texture category) was identified. CONCLUSION Although the possibility of a generally applicable model cannot be excluded, we suggest that radiomics score models for survival were mostly specific for a given organ; applying them to other organs would require careful consideration of organ-specific properties.
Collapse
Affiliation(s)
- Seung-Hak Lee
- Departement of Electronic Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, South Korea
- Core Research & Development Center, Korea University Ansan Hospital, Ansan, 15355, South Korea
| | - Hwan-Ho Cho
- Departement of Electronic Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, South Korea
| | - Junmo Kwon
- Departement of Electronic Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, South Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea.
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, South Korea.
- School of Electronic and Electrical Engineering, Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|