1
|
Kim CS, Cairns J, Quarantotti V, Kaczkowski B, Wang Y, Konings P, Zhang X. A statistical simulation model to guide the choices of analytical methods in arrayed CRISPR screen experiments. PLoS One 2024; 19:e0307445. [PMID: 39163294 PMCID: PMC11335118 DOI: 10.1371/journal.pone.0307445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
An arrayed CRISPR screen is a high-throughput functional genomic screening method, which typically uses 384 well plates and has different gene knockouts in different wells. Despite various computational workflows, there is currently no systematic way to find what is a good workflow for arrayed CRISPR screening data analysis. To guide this choice, we developed a statistical simulation model that mimics the data generating process of arrayed CRISPR screening experiments. Our model is flexible and can simulate effects on phenotypic readouts of various experimental factors, such as the effect size of gene editing, as well as biological and technical variations. With two examples, we showed that the simulation model can assist making principled choice of normalization and hit calling method for the arrayed CRISPR data analysis. This simulation model is implemented in an R package and can be downloaded from Github.
Collapse
Affiliation(s)
- Chang Sik Kim
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Jonathan Cairns
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Valentina Quarantotti
- Functional Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Bogumil Kaczkowski
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Yinhai Wang
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Peter Konings
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Xiang Zhang
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| |
Collapse
|
2
|
Ozulumba T, Montalbine AN, Ortiz-Cárdenas JE, Pompano RR. New tools for immunologists: models of lymph node function from cells to tissues. Front Immunol 2023; 14:1183286. [PMID: 37234163 PMCID: PMC10206051 DOI: 10.3389/fimmu.2023.1183286] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The lymph node is a highly structured organ that mediates the body's adaptive immune response to antigens and other foreign particles. Central to its function is the distinct spatial assortment of lymphocytes and stromal cells, as well as chemokines that drive the signaling cascades which underpin immune responses. Investigations of lymph node biology were historically explored in vivo in animal models, using technologies that were breakthroughs in their time such as immunofluorescence with monoclonal antibodies, genetic reporters, in vivo two-photon imaging, and, more recently spatial biology techniques. However, new approaches are needed to enable tests of cell behavior and spatiotemporal dynamics under well controlled experimental perturbation, particularly for human immunity. This review presents a suite of technologies, comprising in vitro, ex vivo and in silico models, developed to study the lymph node or its components. We discuss the use of these tools to model cell behaviors in increasing order of complexity, from cell motility, to cell-cell interactions, to organ-level functions such as vaccination. Next, we identify current challenges regarding cell sourcing and culture, real time measurements of lymph node behavior in vivo and tool development for analysis and control of engineered cultures. Finally, we propose new research directions and offer our perspective on the future of this rapidly growing field. We anticipate that this review will be especially beneficial to immunologists looking to expand their toolkit for probing lymph node structure and function.
Collapse
Affiliation(s)
- Tochukwu Ozulumba
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Alyssa N. Montalbine
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer E. Ortiz-Cárdenas
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia (UVA) Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
3
|
Miwa H, Dimatteo R, de Rutte J, Ghosh R, Di Carlo D. Single-cell sorting based on secreted products for functionally defined cell therapies. MICROSYSTEMS & NANOENGINEERING 2022; 8:84. [PMID: 35874174 PMCID: PMC9303846 DOI: 10.1038/s41378-022-00422-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 05/13/2023]
Abstract
Cell therapies have emerged as a promising new class of "living" therapeutics over the last decade and have been particularly successful for treating hematological malignancies. Increasingly, cellular therapeutics are being developed with the aim of treating almost any disease, from solid tumors and autoimmune disorders to fibrosis, neurodegenerative disorders and even aging itself. However, their therapeutic potential has remained limited due to the fundamental differences in how molecular and cellular therapies function. While the structure of a molecular therapeutic is directly linked to biological function, cells with the same genetic blueprint can have vastly different functional properties (e.g., secretion, proliferation, cell killing, migration). Although there exists a vast array of analytical and preparative separation approaches for molecules, the functional differences among cells are exacerbated by a lack of functional potency-based sorting approaches. In this context, we describe the need for next-generation single-cell profiling microtechnologies that allow the direct evaluation and sorting of single cells based on functional properties, with a focus on secreted molecules, which are critical for the in vivo efficacy of current cell therapies. We first define three critical processes for single-cell secretion-based profiling technology: (1) partitioning individual cells into uniform compartments; (2) accumulating secretions and labeling via reporter molecules; and (3) measuring the signal associated with the reporter and, if sorting, triggering a sorting event based on these reporter signals. We summarize recent academic and commercial technologies for functional single-cell analysis in addition to sorting and industrial applications of these technologies. These approaches fall into three categories: microchamber, microfluidic droplet, and lab-on-a-particle technologies. Finally, we outline a number of unmet needs in terms of the discovery, design and manufacturing of cellular therapeutics and how the next generation of single-cell functional screening technologies could allow the realization of robust cellular therapeutics for all patients.
Collapse
Affiliation(s)
- Hiromi Miwa
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Partillion Bioscience, Los Angeles, CA 90095 USA
| | - Rajesh Ghosh
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
4
|
Zhu F, Ji Y, Li L, Bai X, Liu X, Luo Y, Liu T, Lin B, Lu Y. High-Throughput Single-Cell Extracellular Vesicle Secretion Analysis on a Desktop Scanner without Cell Counting. Anal Chem 2021; 93:13152-13160. [PMID: 34551257 DOI: 10.1021/acs.analchem.1c01446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Single-cell EV (extracellular vesicle) secretion analysis is emerging for a better understanding of non-genetic cellular heterogeneity regulating human health and diseases through intercellular mediators. However, the requirements of expensive and bulky instrumentations hinder its widespread use. Herein, by combining gold nanoparticle-enhanced silver staining and the Poisson distribution, we reported the use of a home-use scanner to realize high-throughput single-cell EV secretion analysis without cell counting. We applied the platform to analyze the secretions of different EV phenotypes with the human oral squamous cell carcinoma cell line and primary cells from patients, which generated single-cell results comparable with those of the immunofluorescence approach. Notably, we also realized the quantification of the number of EVs secreted from every single cell using their respective titration curves obtained from population samples, making it possible to directly compare different EV phonotypes in regard to their secretion number, secretion rate, and so forth. The technology introduced here is simple, easy to operate, and of low cost, which make it a potential, easily accessible, and affordable tool for widespread use in both basic and clinical research.
Collapse
Affiliation(s)
- Fengjiao Zhu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Ji
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Linmei Li
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue Bai
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianming Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Bingcheng Lin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Vázquez S, Vallejo R, Espinosa J, Arteche N, Vega JA, Pérez V. Immunohistochemical Characterization of Tumor-Associated Macrophages in Canine Lymphomas. Animals (Basel) 2021; 11:2301. [PMID: 34438760 PMCID: PMC8388421 DOI: 10.3390/ani11082301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022] Open
Abstract
Macrophages have been confirmed to play a significant role in the behavior of human lymphomas, albeit no consistent data are so far available in canine lymphomas. The present study characterizes the macrophages present in cases of canine nodal lymphoma and their relationship with the histological grade and the immunophenotype. Samples from the lymph nodes of 25 dogs diagnosed with lymphoma were selected. Immunohistochemistry was used to determine the tumor immunophenotype (CD3 and CD20 antibodies) and macrophage characterization (Iba1, MAC387, CD204, CD163 and iNOS antibodies). Macrophage counting was performed in 10 randomly selected, high-power fields per sample. Generalized linear models with Poisson distribution were used for statistical analysis. A significantly greater number of macrophages (Iba1+) were detected in high-grade and B-cell lymphomas. The highest amount of both M1 (iNOS+) and M2 (CD204+ and CD163+) subtypes were observed in B-cell lymphomas. High-grade lymphomas showed a greater number of CD204+ and CD163+ cells and recently recruited MAC387+ macrophages. The latter were most abundant in T than in B-cell lymphomas. In conclusion, a significant population of macrophages is present in canine lymphomas, which constitute a heterogeneous population that shows variations in the amount and immunohistochemical profile according to the histological grade and immunophenotype.
Collapse
Affiliation(s)
- Sergio Vázquez
- Departamento de Sanidad Animal, Universidad de León, 24007 León, Spain; (R.V.); (J.E.); (N.A.); (V.P.)
| | - Raquel Vallejo
- Departamento de Sanidad Animal, Universidad de León, 24007 León, Spain; (R.V.); (J.E.); (N.A.); (V.P.)
| | - José Espinosa
- Departamento de Sanidad Animal, Universidad de León, 24007 León, Spain; (R.V.); (J.E.); (N.A.); (V.P.)
| | - Noive Arteche
- Departamento de Sanidad Animal, Universidad de León, 24007 León, Spain; (R.V.); (J.E.); (N.A.); (V.P.)
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain;
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia 7500912, Santiago de Chile, Chile
| | - Valentín Pérez
- Departamento de Sanidad Animal, Universidad de León, 24007 León, Spain; (R.V.); (J.E.); (N.A.); (V.P.)
| |
Collapse
|
6
|
Ahrberg CD, Choi JW, Lee JM, Lee KG, Lee SJ, Manz A, Chung BG. Plasmonic heating-based portable digital PCR system. LAB ON A CHIP 2020; 20:3560-3568. [PMID: 32844858 DOI: 10.1039/d0lc00788a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A miniaturized polymerase chain reaction (PCR) system is not only important for medical applications in remote areas of developing countries, but also important for testing at ports of entry during global epidemics, such as the current outbreak of the coronavirus. Although there is a large number of PCR sensor systems available for this purpose, there is still a lack of portable digital PCR (dPCR) heating systems. Here, we first demonstrated a portable plasmonic heating-based dPCR system. The device has total dimensions of 9.7 × 5.6 × 4.1 cm and a total power consumption of 4.5 W, allowing for up to 25 dPCR experiments to be conducted on a single charge of a 20 000 mAh external battery. The dPCR system has a maximum heating rate of 10.7 °C s-1 and maximum cooling rate of 8 °C s-1. Target DNA concentrations in the range from 101 ± 1.4 copies per μL to 260 000 ± 20 000 copies per μL could be detected using a poly(dimethylsiloxane) (PDMS) microwell membrane with 22 080 well arrays (20 μm diameter). Furthermore, the heating system was demonstrated using a mass producible poly(methyl methacrylate) PMMA microwell array with 8100 microwell arrays (80 μm diameter). The PMMA microwell array could detect a concentration from 12 ± 0.7 copies per μL to 25 889 ± 737 copies per μL.
Collapse
|
7
|
Tokar JJ, Stahlfeld CN, Sperger JM, Niles DJ, Beebe DJ, Lang JM, Warrick JW. Pairing Microwell Arrays with an Affordable, Semiautomated Single-Cell Aspirator for the Interrogation of Circulating Tumor Cell Heterogeneity. SLAS Technol 2020; 25:162-176. [PMID: 31983266 PMCID: PMC8879417 DOI: 10.1177/2472630319898146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Comprehensive analysis of tumor heterogeneity requires robust methods for the isolation and analysis of single cells from patient samples. An ideal approach would be fully compatible with downstream analytic methods, such as advanced genomic testing. These endpoints necessitate the use of live cells at high purity. A multitude of microfluidic circulating tumor cell (CTC) enrichment technologies exist, but many of those perform bulk sample enrichment and are not, on their own, capable of single-cell interrogation. To address this, we developed an affordable semiautomated single-cell aspirator (SASCA) to further enrich rare-cell populations from a specialized microwell array, per their phenotypic markers. Immobilization of cells within microwells, integrated with a real-time image processing software, facilitates the detection and precise isolation of targeted cells that have been optimally seeded into the microwells. Here, we demonstrate the platform capabilities through the aspiration of target cells from an impure background population, where we obtain purity levels of 90%-100% and demonstrate the enrichment of the target population with high-quality RNA extraction. A range of low cell numbers were aspirated using SASCA before undergoing whole transcriptome and genome analysis, exhibiting the ability to obtain endpoints from low-template inputs. Lastly, CTCs from patients with castration-resistant prostate cancer were isolated with this platform and the utility of this method was confirmed for rare-cell isolation. SASCA satisfies a need for an affordable option to isolate single cells or highly purified subpopulations of cells to probe complex mechanisms driving disease progression and resistance in patients with cancer.
Collapse
Affiliation(s)
- Jacob J Tokar
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | | | - Jamie M Sperger
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Niles
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Beebe
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
| | - Joshua M Lang
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - Jay W Warrick
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| |
Collapse
|
8
|
Anand A, Manavalan G, Mandal RP, Chang HT, Chiou YR, Huang CC. Carbon Dots for Bacterial Detection and Antibacterial Applications-A Minireview. Curr Pharm Des 2020; 25:4848-4860. [DOI: 10.2174/1381612825666191216150948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
:
The prevention and treatment of various infections caused by microbes through antibiotics are becoming
less effective due to antimicrobial resistance. Researches are focused on antimicrobial nanomaterials to inhibit
bacterial growth and destroy the cells, to replace conventional antibiotics. Recently, carbon dots (C-Dots) become
attractive candidates for a wide range of applications, including the detection and treatment of pathogens. In addition
to low toxicity, ease of synthesis and functionalization, and high biocompatibility, C-Dots show excellent
optical properties such as multi-emission, high brightness, and photostability. C-Dots have shown great potential
in various fields, such as biosensing, nanomedicine, photo-catalysis, and bioimaging. This review focuses on the
origin and synthesis of various C-Dots with special emphasis on bacterial detection, the antibacterial effect of CDots,
and their mechanism.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Gopinathan Manavalan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Chiou
- Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
9
|
|
10
|
Cho K, Seo JH, Heo G, Choe SW. An Alternative Approach to Detecting Cancer Cells by Multi-Directional Fluorescence Detection System Using Cost-Effective LED and Photodiode. SENSORS 2019; 19:s19102301. [PMID: 31109061 PMCID: PMC6566952 DOI: 10.3390/s19102301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/22/2022]
Abstract
The enumeration of cellular proliferation by covering from hemocytometer to flow cytometer is an important procedure in the study of cancer development. For example, hemocytometer has been popularly employed to perform manual cell counting. It is easily achieved at a low-cost, however, manual cell counting is labor-intensive and prone to error for a large number of cells. On the other hand, flow cytometer is a highly sophisticated instrument in biomedical and clinical research fields. It provides detailed physical parameters of fluorescently labeled single cells or micro-sized particles depending on the fluorescence characteristics of the target sample. Generally, optical setup to detect fluorescence uses a laser, dichroic filter, and photomultiplier tube as a light source, optical filter, and photodetector, respectively. These components are assembled to set up an instrument to measure the amount of scattering light from the target particle; however, these components are costly, bulky, and have limitations in selecting diverse fluorescence dyes. Moreover, they require multiple refined and expensive modules such as cooling or pumping systems. Thus, alternative cost-effective components have been intensively developed. In this study, a low-cost and miniaturized fluorescence detection system is proposed, i.e., costing less than 100 US dollars, which is customizable by a 3D printer and light source/filter/sensor operating at a specific wavelength using a light-emitting diode with a photodiode, which can be freely replaceable. The fluorescence detection system can quantify multi-directional scattering lights simultaneously from the fluorescently labeled cervical cancer cells. Linear regression was applied to the acquired fluorescence intensities, and excellent linear correlations (R2 > 0.9) were observed. In addition, the enumeration of the cells using hemocytometer to determine its performance accuracy was analyzed by Student’s t-test, and no statistically significant difference was found. Therefore, different cell concentrations are reversely calculated, and the system can provide a rapid and cost-effective alternative to commercial hemocytometer for live cell or microparticle counting.
Collapse
Affiliation(s)
- Kyoungrae Cho
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea.
| | - Jeong-Hyeok Seo
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea.
| | - Gyeongyong Heo
- Department of Electronic Engineering, Dong-eui University, Busan 47340, Korea.
| | - Se-Woon Choe
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea.
| |
Collapse
|
11
|
Houghtaling J, List J, Mayer M. Nanopore-Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802412. [PMID: 30225962 DOI: 10.1002/smll.201802412] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Aggregates of misfolded proteins are associated with several devastating neurodegenerative diseases. These so-called amyloids are therefore explored as biomarkers for the diagnosis of dementia and other disorders, as well as for monitoring disease progression and assessment of the efficacy of therapeutic interventions. Quantification and characterization of amyloids as biomarkers is particularly demanding because the same amyloid-forming protein can exist in different states of assembly, ranging from nanometer-sized monomers to micrometer-long fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo. Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects, and their molecular organization, size, and shape appear to determine their toxicity. This concept article proposes that the emerging field of nanopore-based analytics on a single molecule and single aggregate level holds the potential to account for the heterogeneity of amyloid samples and to characterize these particles-rapidly, label-free, and in aqueous solution-with regard to their size, shape, and abundance. The article describes the concept of nanopore-based resistive pulse sensing, reviews previous work in amyloid analysis, and discusses limitations and challenges that will need to be overcome to realize the full potential of amyloid characterization on a single-particle level.
Collapse
Affiliation(s)
- Jared Houghtaling
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Jonathan List
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
12
|
Choi JW, Lee JM, Kim TH, Ha JH, Ahrberg CD, Chung BG. Dual-nozzle microfluidic droplet generator. NANO CONVERGENCE 2018; 5:12. [PMID: 29755924 PMCID: PMC5938299 DOI: 10.1186/s40580-018-0145-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/21/2018] [Indexed: 05/10/2023]
Abstract
The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.
Collapse
Affiliation(s)
- Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | - Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | - Tae Hyun Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | | | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| |
Collapse
|