1
|
Graham K, Houston R. Evaluation of chloroplast DNA barcoding markers to individualize Papaver somniferum for forensic intelligence purposes. Int J Legal Med 2024; 138:267-275. [PMID: 35788906 DOI: 10.1007/s00414-022-02862-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
The opium poppy, Papaver somniferum L., is a forensically important plant due to the medicinal and illegal uses for the milky latex stored in the pods. This latex contains the alkaloids morphine, codeine, and thebaine that are used for their analgesic properties and/or for synthesizing other opioids. However, these compounds are highly addictive and have caused a national opioid epidemic. Two other Papaver species, P. setigerum DC. and P. bracteatum Lindl., are also of forensic interest because they pose both forensic and legal issues. They are largely uncontrolled under the Controlled Substances Act, making these species a common defense strategy. Current morphological and chemical identification methods have been moderately successful but have drawbacks. There is also a lack of sequencing data available. Therefore, exploiting the genome using chloroplast DNA barcoding markers could help to accurately identify these species of interest when plant material is taken. This study screened and assessed the genetic variation both between species and within populations of P. somniferum in nine cpDNA barcode regions (ndhF-rpl32, petA-psbJ, rpl32-trnL, rps16-trnQ, trnE-trnT, trnH-psbA, trnL-trnF, rpl16 intron, and psbE-petL). Published reference genomes from the NCBI GenBank database were aligned and compared for an initial in silico screening. Additionally, ten P. somniferum seed samples from various vendors were sequenced and compared across samples and to published reference data at the various barcode regions of interest. This study showed that the regions trnH-psbA and petA-psbJ have promise for utility in individualization for both inter- and intra-species individualization of P. somniferum.
Collapse
Affiliation(s)
- Kari Graham
- Department of Forensic Science, Sam Houston State University, 1003 Bowers Blvd, Huntsville, TX, 77340, USA
| | - Rachel Houston
- Department of Forensic Science, Sam Houston State University, 1003 Bowers Blvd, Huntsville, TX, 77340, USA.
| |
Collapse
|
2
|
Almeida Hummel Pimenta Santos ME, Rodrigues MS, Siqueira WJ, Mayo Marques MO, Costa Mondego JM. Comparative analysis indicates a simple protocol for DNA extraction of the aromatic plant Lippia alba. Anal Biochem 2023:115225. [PMID: 37364681 DOI: 10.1016/j.ab.2023.115225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
An efficient method of genomic DNA extraction that provides high quality and yield is a crucial pre-requisite and limiting factor in plant genetic analysis. However, pure genomic DNA can be challenging to obtain from some plant species due to their sugar and secondary metabolite contents. Lippia alba is an important aromatic and medicinal plant, chemically characterized by the presence of tannins, flavonoids, anthocyanins, and essential oils, which interfere with the extraction of pure genomic DNA. In this scenario, optimizing the extraction methods and minimizing the effects of these compounds are necessary. This study compares six plant DNA extraction protocols based on the CTAB method. The quality and quantity of DNA samples obtained were determined by physical appearance by electrophoresis in agarose gels and spectrophotometry. The results highlight the difficulty in obtaining pure and clear bands for all tested methods, except for the polyvinylpyrrolidone (PVP)-based protocol created by our team, which was the better option for obtaining high-quality genomic DNA of L. alba. We conclude that adding PVP-40 into DNA extraction buffers can optimize the DNA extraction of L. alba and indicate this protocol for DNA extraction from other aromatic plants.
Collapse
Affiliation(s)
| | - Mariana Sanitá Rodrigues
- Center for Research and Development in Plant Genetic Resources, Agronomic Institute of Campinas, Campinas, SP, Brazil
| | - Walter José Siqueira
- Center for Research and Development in Plant Genetic Resources, Agronomic Institute of Campinas, Campinas, SP, Brazil
| | - Marcia Ortiz Mayo Marques
- Center for Research and Development in Plant Genetic Resources, Agronomic Institute of Campinas, Campinas, SP, Brazil
| | - Jorge Mauricio Costa Mondego
- Center for Research and Development in Plant Genetic Resources, Agronomic Institute of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Kundrátová K, Bartas M, Pečinka P, Hejna O, Rychlá A, Čurn V, Červeň J. Transcriptomic and Proteomic Analysis of Drought Stress Response in Opium Poppy Plants during the First Week of Germination. PLANTS 2021; 10:plants10091878. [PMID: 34579414 PMCID: PMC8465278 DOI: 10.3390/plants10091878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Water deficiency is one of the most significant abiotic stresses that negatively affects growth and reduces crop yields worldwide. Most research is focused on model plants and/or crops which are most agriculturally important. In this research, drought stress was applied to two drought stress contrasting varieties of Papaver somniferum (the opium poppy), a non-model plant species, during the first week of its germination, which differ in responses to drought stress. After sowing, the poppy seedlings were immediately subjected to drought stress for 7 days. We conducted a large-scale transcriptomic and proteomic analysis for drought stress response. At first, we found that the transcriptomic and proteomic profiles significantly differ. However, the most significant findings are the identification of key genes and proteins with significantly different expressions relating to drought stress, e.g., the heat-shock protein family, dehydration responsive element-binding transcription factors, ubiquitin E3 ligase, and others. In addition, metabolic pathway analysis showed that these genes and proteins were part of several biosynthetic pathways most significantly related to photosynthetic processes, and oxidative stress responses. A future study will focus on a detailed analysis of key genes and the development of selection markers for the determination of drought-resistant varieties and the breeding of new resistant lineages.
Collapse
Affiliation(s)
- Kristýna Kundrátová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic; (K.K.); (M.B.); (P.P.)
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic; (K.K.); (M.B.); (P.P.)
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic; (K.K.); (M.B.); (P.P.)
| | - Ondřej Hejna
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture, University of South Bohemia, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Andrea Rychlá
- Research Institute of Oilseed Crops, OSEVA PRO. Ltd., Purkyňova 10, 764 01 Opava, Czech Republic;
| | - Vladislav Čurn
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture, University of South Bohemia, Studentská 1668, 370 05 České Budějovice, Czech Republic;
- Correspondence: (V.Č.); (J.Č.)
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic; (K.K.); (M.B.); (P.P.)
- Correspondence: (V.Č.); (J.Č.)
| |
Collapse
|
4
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
5
|
Vašek J, Čílová D, Melounová M, Svoboda P, Zdeňková K, Čermáková E, Ovesná J. OpiumPlex is a novel microsatellite system for profiling opium poppy (Papaver somniferum L.). Sci Rep 2021; 11:12799. [PMID: 34140548 PMCID: PMC8211840 DOI: 10.1038/s41598-021-91962-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Opium poppy (Papaver somniferum L.) is a versatile plant exploited by the pharmaceutical and food industries. Unfortunately, it is also infamously known as a source of highly addictive narcotics, primarily heroin. Drug abuse has devastating consequences for users and also has many direct or indirect negative impacts on human society as a whole. Therefore, developing a molecular genetic tool for the individualization of opium poppy, raw opium or heroin samples could help in the fight against the drug trade by retrieving more information about the source of narcotics and linking isolated criminal cases. Bioinformatic analysis provided insight into the distribution, density and other characteristics of roughly 150 thousand microsatellite loci within the poppy genome and indicated underrepresentation of microsatellites with the desired attributes. Despite this fact, 27 polymorphic STR markers, divided into three multiplexed assays, were developed in this work. Internal validation confirmed species-specific amplification, showed that the optimal amount of DNA is within the range of 0.625-1.25 ng per reaction, and indicate relatively well balanced assays according to the metrics used. Moreover, the stutter ratio (mean + 3 SD 2.28-15.59%) and allele-specific stutters were described. The analysis of 187 individual samples led to the identification of 158 alleles in total, with a mean of 5.85 alleles and a range of 3-14 alleles per locus. Most of the alleles (151) were sequenced by the Sanger method, which enabled us to propose standardized nomenclature and create three allelic ladders. The OpiumPlex system discriminates most of the varieties from each other and pharmaceutical varieties from the others (culinary, dual and ornamental).
Collapse
Affiliation(s)
- Jakub Vašek
- grid.15866.3c0000 0001 2238 631XDepartment of Genetics and Breeding, FAFNR, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Daniela Čílová
- grid.15866.3c0000 0001 2238 631XDepartment of Genetics and Breeding, FAFNR, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Martina Melounová
- grid.15866.3c0000 0001 2238 631XDepartment of Genetics and Breeding, FAFNR, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Svoboda
- grid.417626.00000 0001 2187 627XDivision of Crop Genetics and Breeding, Crop Research Institute, Prague, Czech Republic
| | - Kamila Zdeňková
- grid.448072.d0000 0004 0635 6059Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Eliška Čermáková
- grid.448072.d0000 0004 0635 6059Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslava Ovesná
- grid.417626.00000 0001 2187 627XDivision of Crop Genetics and Breeding, Crop Research Institute, Prague, Czech Republic
| |
Collapse
|
6
|
Kaňuková Š, Mrkvová M, Mihálik D, Kraic J. Procedures for DNA Extraction from Opium Poppy ( Papaver somniferum L.) and Poppy Seed-Containing Products. Foods 2020; 9:foods9101429. [PMID: 33050241 PMCID: PMC7601356 DOI: 10.3390/foods9101429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Several commonly used extraction procedures and commercial kits were compared for extraction of DNA from opium poppy (Papaver somniferum L.) seeds, ground seeds, pollen grains, poppy seed filling from a bakery product, and poppy oil. The newly developed extraction protocol was much simpler, reduced the cost and time required for DNA extraction from the native and ground seeds, and pollen grains. The quality of extracted DNA by newly developed protocol was better or comparable to the most efficient ones. After being extended by a simple purification step on a silica membrane column, the newly developed protocol was also very effective in extracting of poppy DNA from poppy seed filling. DNA extracted from this poppy matrix was amplifiable by PCR analysis. DNA extracted from cold-pressed poppy oil and suitable for amplifications was obtained only by methods developed previously for olive oil. Extracted poppy DNA from all tested matrices was analysed by PCR using primers flanking a microsatellite locus (156 bp) and two different fragments of the reference tubulin gene (553 bp and 96 bp). The long fragment of the reference gene was amplified in DNA extracted from native seeds, ground seeds, and pollen grains. Poppy DNA extracted from the filling of bakery product was confirmed only by amplification of short fragments (96 bp and 156 bp). DNA extracted from cold-pressed poppy oil was determined also only by amplification of these two short fragments.
Collapse
Affiliation(s)
- Šarlota Kaňuková
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Námestie J. Herdu 2, SK-917 01 Trnava, Slovakia; (Š.K.); (M.M.); (D.M.)
| | - Michaela Mrkvová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Námestie J. Herdu 2, SK-917 01 Trnava, Slovakia; (Š.K.); (M.M.); (D.M.)
| | - Daniel Mihálik
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Námestie J. Herdu 2, SK-917 01 Trnava, Slovakia; (Š.K.); (M.M.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, SK-921 68 Piešťany, Slovakia
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Námestie J. Herdu 2, SK-917 01 Trnava, Slovakia; (Š.K.); (M.M.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, SK-921 68 Piešťany, Slovakia
- Correspondence: ; Tel.: +421-337-947-168; Fax: +421-337-726-306
| |
Collapse
|
7
|
Ryan AL, O’Hern CP, Elkins KM. Evaluation of Two New Methods for DNA Extraction of “Legal High” Plant Species. J Forensic Sci 2020; 65:1704-1708. [DOI: 10.1111/1556-4029.14478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Angelique L. Ryan
- Chemistry Department Forensic Science Program Towson University 8000 York Rd Towson MD21252
| | - Cassandra P. O’Hern
- Chemistry Department Forensic Science Program Towson University 8000 York Rd Towson MD21252
| | - Kelly M. Elkins
- Chemistry Department Forensic Science Program Towson University 8000 York Rd Towson MD21252
| |
Collapse
|
8
|
Young B, Roman MG, LaRue B, Gangitano D, Houston R. Evaluation of 19 short tandem repeat markers for individualization of Papaver somniferum. Sci Justice 2020; 60:253-262. [PMID: 32381242 DOI: 10.1016/j.scijus.2019.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 11/28/2022]
Abstract
Papaver somniferum, commonly known as opium poppy, is the source of natural opiates, which are used as analgesics or as precursors in the creation of semi-synthetic opioids such as heroin. An increase in opioid addiction in the United States has resulted in high rates of illicit opioid use and overdoses. It has recently been shown that P. somniferum DNA suitable for genetic analysis can be recovered from heroin samples. The development of a comprehensive genetic individualization tool for opium poppy could serve to link cases and strengthen programs such as the Drug Enforcement Administration's (DEA) Heroin Signature Program, which seeks to combat rising opioid use. The purpose of this study was to develop a quantitative real-time PCR (qPCR) method for the quantification of opium poppy DNA, compare three commercial DNA extraction kits for their ability to isolate DNA from poppy seeds, and evaluate nineteen opium poppy short tandem repeat (STR) markers for their use in a forensic identification panel. Such a panel could be used for individualizing samples and determining the geographic origin in heroin or poppy seed tea cases. The qPCR method was proven to be reproducible and reliable, specific for P. somniferum, and sensitive enough for forensic case-type samples. Of the three kits tested, the nexttec™ one-step DNA Isolation Kit for Plants was the optimal method and facilitated rapid extraction of DNA from poppy seeds. The majority of evaluated STR primer sets were unreliable or had low discriminatory power, limiting their use for individualization of poppy samples. A six-locus STR multiplex was developed and evaluated according to Scientific Working Group on DNA Analysis Methods (SWGDAM) and International Society of Forensic Genetics (ISFG) guidelines, including the use of a sequenced allelic ladder. The multiplex was found to have low discriminatory power, with greater than two-thirds of samples analyzed having just two different genotypes. The multiplex was determined to be unsuitable for individualization; however, a genotype map was developed as a proof of concept that these markers may be useful for determining the biogeographical origin of samples. Searching the poppy genome for new STR markers and developing new primer sets may be necessary for the creation of a powerful genetic tool for the individualization of P. somniferum.
Collapse
Affiliation(s)
- Blake Young
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States
| | - Madeline G Roman
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States.
| | - Bobby LaRue
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States.
| | - David Gangitano
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States
| | - Rachel Houston
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX 77340-2525, United States.
| |
Collapse
|
9
|
Vujanovic V, Korber DR, Vujanovic S, Vujanovic J, Jabaji S. Scientific Prospects for Cannabis-Microbiome Research to Ensure Quality and Safety of Products. Microorganisms 2020; 8:E290. [PMID: 32093340 PMCID: PMC7074860 DOI: 10.3390/microorganisms8020290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023] Open
Abstract
Cannabis legalization has occurred in several countries worldwide. Along with steadily growing research in Cannabis healthcare science, there is an increasing interest for scientific-based knowledge in plant microbiology and food science, with work connecting the plant microbiome and plant health to product quality across the value chain of cannabis. This review paper provides an overview of the state of knowledge and challenges in Cannabis science, and thereby identifies critical risk management and safety issues in order to capitalize on innovations while ensuring product quality control. It highlights scientific gap areas to steer future research, with an emphasis on plant-microbiome sciences committed to using cutting-edge technologies for more efficient Cannabis production and high-quality products intended for recreational, pharmaceutical, and medicinal use.
Collapse
Affiliation(s)
- Vladimir Vujanovic
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Darren R. Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Silva Vujanovic
- Hospital Pharmacy, CISSS des Laurentides and Université de Montréal-Montreal, QC J8H 4C7, Canada;
| | - Josko Vujanovic
- Medical Imaging, CISSS-Laurentides, Lachute, QC J8H 4C7, Canada;
| | - Suha Jabaji
- Plant Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
10
|
Selection of the Reference Gene for Expression Normalization in Papaver s omniferum L. under Abiotic Stress and Hormone Treatment. Genes (Basel) 2020; 11:genes11020124. [PMID: 31979407 PMCID: PMC7074096 DOI: 10.3390/genes11020124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/21/2023] Open
Abstract
Papaver somniferum L. is an important medical plant that produces analgesic drugs used for the pain caused by cancers and surgeries. Recent studies have focused on the expression genes involved in analgesic drugs biosynthesis, and the real-time quantitative polymerase chain reaction (RT-qPCR) technique is the main strategy. However, no reference genes have been reported for gene expression normalization in P. somniferum. Herein, nine reference genes (actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclophilin 2 (CYP2), elongation factor 1-alpha (EF-1α), glyceraldehyde-3-phosphate dehydrogenase 2, cytosolic (GAPC2), nuclear cap-binding protein subunit 2 (NCBP2), protein phosphatase 2A (PP2A), TIP41-like protein (TIP41), and tubulin beta chain (TUB)) of P. somniferum were selected and analyzed under five different treatments (cold, drought, salt, heavy metal, and hormone stress). Then, BestKeeper, NormFinder, geNorm, and RefFinder were employed to analyze their gene expression stability. The results reveal that NCBP2 is the most stable reference gene under various experimental conditions. The work described here is the first report regarding on reference gene selection in P. somniferum, which could be used for the accurate normalization of the gene expression involved in analgesic drug biosynthesis.
Collapse
|
11
|
Vašek J, Čílová D, Melounová M, Svoboda P, Vejl P, Štikarová R, Vostrý L, Kuchtová P, Ovesná J. New EST-SSR Markers for Individual Genotyping of Opium Poppy Cultivars ( Papaver somniferum L.). PLANTS 2019; 9:plants9010010. [PMID: 31861643 PMCID: PMC7020189 DOI: 10.3390/plants9010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
High-quality simple sequence repeat (SSR) markers are invaluable tools for revealing genetic variability which could be utilized for many purposes, such as breeding new varieties or the identifying current ones, among other applications. Based on the analysis of 3.7 million EST sequences and 15 genomic sequences from bacterial artificial chromosome (BAC) libraries, 200 trinucleotide genic (EST)-SSR and three genomic (gSSR) markers were tested, where 17 of them fulfilled all criteria for quality markers. Moreover, the reproducibility of these new markers was verified by two genetics laboratories, with a mean error rate per allele and per locus equal to 0.17%. These markers were tested on 38 accessions of Papaver somniferum and nine accessions of another five species of the Papaver and Argemone genera. In total, 118 alleles were detected for all accessions (median = 7; three to ten alleles per locus) and 88 alleles (median = 5; three to nine alleles per locus) within P. somniferum alone. Multivariate methods and identity analysis revealed high resolution capabilities of the new markers, where all but three pair accessions (41 out of 47) had a unique profile and opium poppy was distinguished from other species.
Collapse
Affiliation(s)
- Jakub Vašek
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
- Correspondence: ; Tel.: +420-22438-2562
| | - Daniela Čílová
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Martina Melounová
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Pavel Svoboda
- Crop Research Institute, Division of Crop Genetics and Breeding, Drnovská 507/73, 6 Ruzyně, 16106 Prague, Czech Republic; (P.S.); (J.O.)
| | - Pavel Vejl
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Radka Štikarová
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Luboš Vostrý
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Perla Kuchtová
- Czech University of Life Sciences, FAFNR, Department of Agroecology and Crop Production, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic;
| | - Jaroslava Ovesná
- Crop Research Institute, Division of Crop Genetics and Breeding, Drnovská 507/73, 6 Ruzyně, 16106 Prague, Czech Republic; (P.S.); (J.O.)
| |
Collapse
|
12
|
McCord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC, Young B, Taglia F, Zapico SC, Mariot RF, Lee SB, Duncan G. Forensic DNA Analysis. Anal Chem 2019; 91:673-688. [PMID: 30485738 DOI: 10.1021/acs.analchem.8b05318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bruce R McCord
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Quentin Gauthier
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Sohee Cho
- Department of Forensic Medicine , Seoul National University , Seoul , 08826 , South Korea
| | - Meghan N Roig
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Georgiana C Gibson-Daw
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Brian Young
- Niche Vision, Inc. , Akron , Ohio 44311 , United States
| | - Fabiana Taglia
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Sara C Zapico
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Roberta Fogliatto Mariot
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Steven B Lee
- Forensic Science Program, Justice Studies Department , San Jose State University , San Jose , California 95192 , United States
| | - George Duncan
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
13
|
Devereaux AL, Mercer SL, Cunningham CW. DARK Classics in Chemical Neuroscience: Morphine. ACS Chem Neurosci 2018; 9:2395-2407. [PMID: 29757600 DOI: 10.1021/acschemneuro.8b00150] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As the major psychoactive agent in opium and direct precursor for heroin, morphine is a historically critical molecule in chemical neuroscience. A structurally complex phenanthrene alkaloid produced by Papaver somniferum, morphine has fascinated chemists seeking to disentangle pharmacologically beneficial analgesic effects from addiction, tolerance, and dependence liabilities. In this review, we will detail the history of morphine, from the first extraction and isolation by Sertürner in 1804 to the illicit use of morphine and proliferation of opioid use and abuse disorders currently ravaging the United States. Morphine is a molecule of great cultural relevance, as the agent that single-handedly transformed our understanding of pharmacognosy, receptor dynamics, and substance abuse and dependence disorders.
Collapse
Affiliation(s)
- Andrea L. Devereaux
- Department of Pharmaceutical Sciences, School of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| | - Susan L. Mercer
- Department of Pharmaceutical Sciences, College of Pharmacy, Lipscomb University, Nashville, Tennessee 37204, United States
| | - Christopher W. Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| |
Collapse
|