1
|
Zheng J, Wang X, Li J, Wu Y, Chang J, Xin J, Wang M, Wang T, Wei Q, Wang M, Zhang R. Rare variants confer shared susceptibility to gastrointestinal tract cancer risk. Front Oncol 2023; 13:1161639. [PMID: 37483484 PMCID: PMC10358854 DOI: 10.3389/fonc.2023.1161639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Background Cancers arising within the gastrointestinal tract are complex disorders involving genetic events that cause the conversion of normal tissue to premalignant lesions and malignancy. Shared genetic features are reported in epithelial-based gastrointestinal cancers which indicate common susceptibility among this group of malignancies. In addition, the contribution of rare variants may constitute parts of genetic susceptibility. Methods A cross-cancer analysis of 38,171 shared rare genetic variants from genome-wide association assays was conducted, which included data from 3,194 cases and 1,455 controls across three cancer sites (esophageal, gastric and colorectal). The SNP-level association was performed by multivariate logistic regression analyses for single cancer, followed by association analysis for SubSETs (ASSET) to adjust the bias of overlapping controls. Gene-level analyses were conducted by SKAT-O, with multiple comparison adjustments by false discovery rate (FDR). Based on the significant genes indicated by SKATO analysis, pathways analysis was conducted using Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Results Meta-analysis in three gastrointestinal (GI) cancers identified 13 novel susceptibility loci that reached genome-wide significance (P ASSET< 5×10-8). SKAT-O analysis revealed EXOC6, LRP5L and MIR1263/LINC01324 to be significant genes shared by GI cancers (P adj<0.05, P FDR<0.05). Furthermore, GO pathway analysis identified significant enrichment of synaptic transmission and neuron development pathways shared by all three cancer types. Conclusion Rare variants and the corresponding genes potentially contribute to shared susceptibility in different GI cancer types. The discovery of these novel variants and genes offers new insights for the carcinogenic mechanisms and missing heritability of GI cancers.
Collapse
Affiliation(s)
- Ji Zheng
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingrao Li
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Yuanna Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, United States
| | - Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Mengyun Wang
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Ruoxin Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| |
Collapse
|
2
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
3
|
Machackova T, Trachtova K, Prochazka V, Grolich T, Farkasova M, Fiala L, Sefr R, Kiss I, Skrovina M, Dosoudil M, Berindan-Neagoe I, Svoboda M, Slaby O, Kala Z. Tumor microRNAs Identified by Small RNA Sequencing as Potential Response Predictors in Locally Advanced Rectal Cancer Patients Treated With Neoadjuvant Chemoradiotherapy. Cancer Genomics Proteomics 2020; 17:249-257. [PMID: 32345666 DOI: 10.21873/cgp.20185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIM Rectal cancer accounts for approximately one-third of all colorectal cancers. Currently, the standard treatment for locally advanced rectal cancer (LARC) is neoadjuvant chemoradiotherapy (CRT) with capecitabine or 5-fluorouracil followed by curative surgery. Unfortunately, only 20% of patients with LARC present complete pathological response after CRT, whereas in 20-40% cases the response is poor or absent. The aim of our study was to evaluate whether microRNAs (miRNAs) in tumor biopsy specimen have the potential to predict therapeutic response in LARC patients. PATIENTS AND METHODS In total 87 LARC patients treated by CRT were enrolled in our prospective study. To identify predictive miRNAs, we used small RNA sequencing in 40 tumor biopsy samples of LARC patients (20 responders, 20 non-responders) and qPCR validation of selected miRNA candidates. RESULTS In the discovery phase of the study, we identified 69 miRNAs to have significantly different expression between the group of responders (TRG 1,2) and a group of non-responders (TRG 4,5) to neoadjuvant CRT. Among these miRNAs, 48 showed a lower expression and 21 showed higher expression in tumor tissues from poorly responding LARC patients. Five miRNAs were selected for validation, but only miR-487a-3p was confirmed to have a significantly higher expression in the tumor biopsy specimens of non-responders to neoadjuvant CRT (p<0.0006, AUC=0.766). Gene Ontology (GO) clustering and pathway enrichment analysis of the miR-487a-3p mRNA targets, revealed potential mechanisms behind miR-487a-3p roles in chemoradioresistance (e.g. TGF-beta signaling pathway, protein kinase activity, double-stranded DNA binding, or microRNAs in cancer). CONCLUSION By combination of miRNA expression profiling and integrative computational biology we identified miR-487a-3p as a potential predictive biomarker of CRT response in LARC patients.
Collapse
Affiliation(s)
- Tana Machackova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karolina Trachtova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vladimir Prochazka
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Grolich
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Farkasova
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Fiala
- Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Roman Sefr
- Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Matej Skrovina
- Department of Surgery, Hospital & Oncological Centre Novy Jicin, Novy Jicin, Czech Republic.,Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Michal Dosoudil
- Department of Surgery, Hospital & Oncological Centre Novy Jicin, Novy Jicin, Czech Republic
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic .,Department of Pathology, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Kala
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Gerasymchuk D, Hubiernatorova A, Domanskyi A. MicroRNAs Regulating Cytoskeleton Dynamics, Endocytosis, and Cell Motility-A Link Between Neurodegeneration and Cancer? Front Neurol 2020; 11:549006. [PMID: 33240194 PMCID: PMC7680873 DOI: 10.3389/fneur.2020.549006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The cytoskeleton is one of the most mobile and complex cell structures. It is involved in cellular transport, cell division, cell shape formation and adaptation in response to extra- and intracellular stimuli, endo- and exocytosis, migration, and invasion. These processes are crucial for normal cellular physiology and are affected in several pathological processes, including neurodegenerative diseases, and cancer. Some proteins, participating in clathrin-mediated endocytosis (CME), play an important role in actin cytoskeleton reorganization, and formation of invadopodia in cancer cells and are also deregulated in neurodegenerative disorders. However, there is still limited information about the factors contributing to the regulation of their expression. MicroRNAs are potent negative regulators of gene expression mediating crosstalk between different cellular pathways in cellular homeostasis and stress responses. These molecules regulate numerous genes involved in neuronal differentiation, plasticity, and degeneration. Growing evidence suggests the role of microRNAs in the regulation of endocytosis, cell motility, and invasiveness. By modulating the levels of such microRNAs, it may be possible to interfere with CME or other processes to normalize their function. In malignancy, the role of microRNAs is undoubtful, and therefore changing their levels can attenuate the carcinogenic process. Here we review the current advances in our understanding of microRNAs regulating actin cytoskeleton dynamics, CME and cell motility with a special focus on neurodegenerative diseases, and cancer. We investigate whether current literature provides an evidence that microRNA-mediated regulation of essential cellular processes, such as CME and cell motility, is conserved in neurons, and cancer cells. We argue that more research effort should be addressed to study the neuron-specific functions on microRNAs. Disease-associated microRNAs affecting essential cellular processes deserve special attention both from the view of fundamental science and as future neurorestorative or anti-cancer therapies.
Collapse
Affiliation(s)
- Dmytro Gerasymchuk
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Andrii Domanskyi
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Elazazy O, Amr K, Abd El Fattah A, Abouzaid M. Evaluation of serum and gingival crevicular fluid microRNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2. Arch Oral Biol 2020; 121:104949. [PMID: 33157494 DOI: 10.1016/j.archoralbio.2020.104949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
microRNA dysregulation is a reported feature of multiple pathologies, including periodontal disease, as demonstrated on cell lines, in animal models, and tissues biopsies, but serum and gingival crevicular fluid microRNA expression data in humans is scarce, especially with the diabetes (type 2) systemic complication. OBJECTIVE To assess serum and gingival crevicular fluid relative quantification levels of miR-223, miR-203, and miR-200b in chronic periodontitis and type 2 diabetic chronic periodontitis patients to address their possible implication in chronic periodontitis pathogenesis and its systemic complications and also to correlate their differential expression with some inflammatory (serum tumor necrosis factor-α and interleukin-10) parameters. METHODS Sixty subjects were recruited and divided into three groups; chronic periodontitis (n = 20), type 2 diabetic chronic periodontitis (n = 20), and healthy control (n = 20). Both serum and gingival crevicular fluid were collected from each participant for miRNA expression analysis and serum inflammatory parameters assessment. RESULTS A significant increase in the relative quantification levels of miR-223 and miR-200b were detected in patient groups along with a positive correlation with tumor necrosis factor-α. However, miR-203 was significantly decreased in patient groups associated with a negative correlation with tumor necrosis factor-α. CONCLUSIONS miR-223 and miR-200b have a potential role in chronic periodontitis pathogenesis associated with type 2 diabetes, with the ability to induce tumor necrosis factor-α secretion, while miR-203 might have a protective and healing role due to the negative correlation with the serum tumor necrosis factor-α levels found. Therefore, they may be considered as a promising therapeutic target and effective serum disease biomarkers.
Collapse
Affiliation(s)
- Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Khalda Amr
- Department of Medical Molecular Genetics, National Research Center, Cairo, Egypt
| | - Abeer Abd El Fattah
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Maha Abouzaid
- Department of Orodental Genetics, National Research Center, Cairo, Egypt
| |
Collapse
|
6
|
Felix TF, Lopez Lapa RM, de Carvalho M, Bertoni N, Tokar T, Oliveira RA, M. Rodrigues MA, Hasimoto CN, Oliveira WK, Pelafsky L, Spadella CT, Llanos JC, F. Silva G, Lam WL, Rogatto SR, Amorim LS, Drigo SA, Carvalho RF, Reis PP. MicroRNA modulated networks of adaptive and innate immune response in pancreatic ductal adenocarcinoma. PLoS One 2019; 14:e0217421. [PMID: 31150430 PMCID: PMC6544344 DOI: 10.1371/journal.pone.0217421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Despite progress in treatment strategies, only ~24% of pancreatic ductal adenocarcinoma (PDAC) patients survive >1 year. Our goal was to elucidate deregulated pathways modulated by microRNAs (miRNAs) in PDAC and Vater ampulla (AMP) cancers. Global miRNA expression was identified in 19 PDAC, 6 AMP and 25 paired, histologically normal pancreatic tissues using the GeneChip 4.0 miRNA arrays. Computational approaches were used for miRNA target prediction/identification of miRNA-regulated pathways. Target gene expression was validated in 178 pancreatic cancer and 4 pancreatic normal tissues from The Cancer Genome Atlas (TCGA). 20 miRNAs were significantly deregulated (FC≥2 and p<0.05) (15 down- and 5 up-regulated) in PDAC. miR-216 family (miR-216a-3p, miR-216a-5p, miR-216b-3p and miR-216b-5p) was consistently down-regulated in PDAC. miRNA-modulated pathways are associated with innate and adaptive immune system responses in PDAC. AMP cancers showed 8 down- and 1 up-regulated miRNAs (FDR p<0.05). Most enriched pathways (p<0.01) were RAS and Nerve Growth Factor signaling. PDAC and AMP display different global miRNA expression profiles and miRNA regulated networks/tumorigenesis pathways. The immune response was enriched in PDAC, suggesting the existence of immune checkpoint pathways more relevant to PDAC than AMP.
Collapse
Affiliation(s)
- Tainara F. Felix
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rainer M. Lopez Lapa
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Márcio de Carvalho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Natália Bertoni
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Rogério A. Oliveira
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria A. M. Rodrigues
- Department of Pathology, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cláudia N. Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Walmar K. Oliveira
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Leonardo Pelafsky
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - César T. Spadella
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Juan C. Llanos
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Giovanni F. Silva
- Department of Clinics and Gastroenterology, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Wan L. Lam
- Genetics Unity, Integrative Oncology, British Columbia Cancer Center, Vancouver, BC, Canada
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark, DK
| | | | - Sandra A. Drigo
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Robson F. Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Patricia P. Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- * E-mail:
| |
Collapse
|
7
|
Analysis of extracellular vesicles generated from monocytes under conditions of lytic cell death. Sci Rep 2019; 9:7538. [PMID: 31101910 PMCID: PMC6525174 DOI: 10.1038/s41598-019-44021-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are an important class of membrane-bound structures that have been widely investigated for their roles in intercellular communication in the contexts of tumor progression, vascular function, immunity and regenerative medicine. Much of the current knowledge on the functions of EVs pertains to those derived from viable cells (e.g. exosomes and microvesicles) or apoptotic cells (e.g. apoptotic bodies) whilst the generation of EVs from dying cells under non-apoptotic conditions remains poorly characterized. Herein, the release of EVs from THP-1 monocytes under conditions of primary necrosis, secondary necrosis and pyroptosis, was investigated. A comprehensive analysis of THP-1-derived EVs revealed that cells undergoing lytic forms of cell death generated a high number of EVs compared with viable or apoptotic cells in vitro. Differential centrifugation via 16,000 g and 100,000 g revealed that dying THP-1 cells release both medium and small EVs, respectively, consistent with the known characteristics of microvesicles and/or exosomes. In addition, large EVs isolated via 2000 g centrifugation were also present in all samples. These findings suggest that lytic cell death under both sterile and non-sterile inflammatory conditions induces monocytes to generate EVs, which could potentially act as mediators of cell-to-cell communication.
Collapse
|
8
|
Bhat SA, Majid S, Rehman MU. Scenario and future prospects of microRNAs in gastric cancer: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:345-352. [PMID: 31168337 PMCID: PMC6535194 DOI: 10.22038/ijbms.2019.32399.7765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Carcinoma of the stomach is one of the major prevalent and principal causes of cancer-related deaths worldwide. Current advancement in technology has improved the understanding of the pathogenesis and pathology of gastric cancers (GC). But, high mortality rates, unfavorable prognosis and lack of clinical predictive biomarkers provide an impetus to investigate novel early diagnostic/prognostic markers and therapeutic targets for GC, which are sufficiently sensitive to GC. Current biomedical investigations have explored several budding GC biomarker by utilizing serum proteins, natural oncogenic genes during improvement in molecular technologies as microarray, and RNA/DNA-Seq. Recently, small non-coding microRNAs (miRNAs) are becoming vital regulators in oncogenesis pathways and can act as handy clinical biomarkers. The newly introduced class of biomarkers is rising as new molecules for cancer diagnosis and prognosis. For better understanding of the gastric carcinogenesis, miRNAs may help to elucidate the mechanisms of tumor growth and can help to discover novel untimely potent markers for early detection of GC. Here in this review, we summarize the recent research studies supporting the utility of miRNAs as novel early diagnostic/prognostic tools and therapeutic targets. Thus, here we introduce potential future treatment strategies for gastrointestinal (GI) cancers, which indicate the practicality and clinical applications of miRNAs in GC.
Collapse
Affiliation(s)
- Showkat Ahmad Bhat
- Department of Biochemistry, Govt. Medical College, Srinagar Jammu & Kashmir, India
| | - Sabhiya Majid
- Department of Biochemistry, Govt. Medical College, Srinagar Jammu & Kashmir, India
| | - Muneeb U Rehman
- Department of Biochemistry, Govt. Medical College, Srinagar Jammu & Kashmir, India
| |
Collapse
|