1
|
Haufe Y, Loser D, Danker T, Nicke A. Symmetrical Bispyridinium Compounds Act as Open Channel Blockers of Cation-Selective Ion Channels. ACS Pharmacol Transl Sci 2024; 7:771-786. [PMID: 38495220 PMCID: PMC10941285 DOI: 10.1021/acsptsci.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 03/19/2024]
Abstract
Current treatments against organophosphate poisoning (OPP) do not directly address effects mediated by the overstimulation of nicotinic acetylcholine receptors (nAChR). Non-oxime bispyridinium compounds (BPC) promote acetylcholine esterase-independent recovery of organophosphate-induced paralysis. Here, we test the hypothesis that they act by positive modulatory action on nAChRs. Using two-electrode voltage clamp analysis in combination with mutagenesis and molecular docking analysis, the potency and molecular mode of action of a series of nine BPCs was investigated on human α7 and muscle-type nAChRs expressed in Xenopus laevis oocytes. The investigated BPCs inhibited α7 and/or muscle-type nAChRs with IC50 values in the high nanomolar to high micromolar range. Further analysis of the most potent analogues revealed a noncompetitive, voltage-dependent inhibition. Co-application with the α7-selective positive allosteric modulator PNU120596 and generation of α7/5HT3 receptor chimeras excluded direct interaction with the PNU120596 binding site and binding to the extracellular domain of the α7 nAChR, suggesting that they act as open channel blockers (OCBs). Molecular docking supported by mutagenesis localized the BPC binding area in the outer channel vestibule between the extracellular and transmembrane domains. Analysis of BPC action on other cation-selective channels suggests a rather nonspecific inhibition of pentameric cation channels. BPCs have been shown to ameliorate organophosphate-induced paralysis in vitro and in vivo. Our data support molecular action as OCBs at α7 and muscle-type nAChRs and suggest that their positive physiological effects are more complex than anticipated and require further investigation.
Collapse
Affiliation(s)
- Yves Haufe
- Walther
Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Dominik Loser
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Timm Danker
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Annette Nicke
- Walther
Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
2
|
Gotti C, Clementi F, Zoli M. Auxiliary protein and chaperone regulation of neuronal nicotinic receptor subtype expression and function. Pharmacol Res 2024; 200:107067. [PMID: 38218358 DOI: 10.1016/j.phrs.2024.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are a family of pentameric, ligand-gated ion channels that are located on the surface of neurons and non-neuronal cells and have multiple physiological and pathophysiological functions. In order to reach the cell surface, many nAChR subtypes require the help of chaperone and/or auxiliary/accessory proteins for their assembly, trafficking, pharmacological modulation, and normal functioning in vivo. The use of powerful genome-wide cDNA screening has led to the identification and characterisation of the molecules and mechanisms that participate in the assembly and trafficking of receptor subtypes, including chaperone and auxiliary or accessory proteins. The aim of this review is to describe the latest findings concerning nAChR chaperones and auxiliary proteins and pharmacological chaperones, and how some of them control receptor biogenesis or regulate channel activation and pharmacology. Some auxiliary proteins are subtype selective, some regulate various subtypes, and some not only modulate nAChRs but also target other receptors and signalling pathways. We also discuss how changes in auxiliary proteins may be involved in nAChR dysfunctions.
Collapse
Affiliation(s)
- Cecilia Gotti
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy.
| | - Francesco Clementi
- CNR, Institute of Neuroscience, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Barrantes FJ. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol Res 2023; 190:106729. [PMID: 36931540 DOI: 10.1016/j.phrs.2023.106729] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a transmembrane protein that mediates fast intercellular communication in response to the endogenous neurotransmitter acetylcholine. It is the best characterized and archetypal molecule in the superfamily of pentameric ligand-gated ion channels (pLGICs). As a typical transmembrane macromolecule, it interacts extensively with its vicinal lipid microenvironment. Experimental evidence provides a wealth of information on receptor-lipid crosstalk: the nAChR exerts influence on its immediate membrane environment and conversely, the lipid moiety modulates ligand binding, affinity state transitions and gating of ion translocation functions of the receptor protein. Recent cryogenic electron microscopy (cryo-EM) studies have unveiled the occurrence of sites for phospholipids and cholesterol on the lipid-exposed regions of neuronal and electroplax nAChRs, confirming early spectroscopic and affinity labeling studies demonstrating the close contact of lipid molecules with the receptor transmembrane segments. This new data provides structural support to the postulated "lipid sensor" ability displayed by the outer ring of M4 transmembrane domains and their modulatory role on nAChR function, as we postulated a decade ago. Borrowing from the best characterized nAChR, the electroplax (muscle-type) receptor, and exploiting new structural information on the neuronal nAChR, it is now possible to achieve an improved depiction of these sites. In combination with site-directed mutagenesis, single-channel electrophysiology, and molecular dynamics studies, the new structural information delivers a more comprehensive portrayal of these lipid-sensitive loci, providing mechanistic explanations for their ability to modulate nAChR properties and raising the possibility of targetting them in disease.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA) - Argentine Scientific & Technol. Research Council (CONICET), Av. Alicia Moreau de Justo 1600, C1107AAZ Buenos Aires, Argentina.
| |
Collapse
|
4
|
Recent Insight into Lipid Binding and Lipid Modulation of Pentameric Ligand-Gated Ion Channels. Biomolecules 2022; 12:biom12060814. [PMID: 35740939 PMCID: PMC9221113 DOI: 10.3390/biom12060814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) play a leading role in synaptic communication, are implicated in a variety of neurological processes, and are important targets for the treatment of neurological and neuromuscular disorders. Endogenous lipids and lipophilic compounds are potent modulators of pLGIC function and may help shape synaptic communication. Increasing structural and biophysical data reveal sites for lipid binding to pLGICs. Here, we update our evolving understanding of pLGIC–lipid interactions highlighting newly identified modes of lipid binding along with the mechanistic understanding derived from the new structural data.
Collapse
|
5
|
Thompson MJ, Domville JA, Edrington CH, Venes A, Giguère PM, Baenziger JE. Distinct functional roles for the M4 α-helix from each homologous subunit in the hetero-pentameric ligand-gated ion channel nAChR. J Biol Chem 2022; 298:102104. [PMID: 35679899 PMCID: PMC9260303 DOI: 10.1016/j.jbc.2022.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022] Open
Abstract
The outermost lipid-exposed α-helix (M4) in each of the homologous α, β, δ, and γ/ε subunits of the muscle nicotinic acetylcholine receptor (nAChR) has previously been proposed to act as a lipid sensor. However, the mechanism by which this sensor would function is not clear. To explore how the M4 α-helix from each subunit in human adult muscle nAChR influences function, and thus explore its putative role in lipid sensing, we functionally characterized alanine mutations at every residue in αM4, βM4, δM4, and εM4, along with both alanine and deletion mutations in the post-M4 region of each subunit. Although no critical interactions involving residues on M4 or in post-M4 were identified, we found that numerous mutations at the M4–M1/M3 interface altered the agonist-induced response. In addition, homologous mutations in M4 in different subunits were found to have different effects on channel function. The functional effects of multiple mutations either along M4 in one subunit or at homologous positions of M4 in different subunits were also found to be additive. Finally, when characterized in both Xenopus oocytes and human embryonic kidney 293T cells, select αM4 mutations displayed cell-specific phenotypes, possibly because of the different membrane lipid environments. Collectively, our data suggest different functional roles for the M4 α-helix in each heteromeric nAChR subunit and predict that lipid sensing involving M4 occurs primarily through the cumulative interactions at the M4–M1/M3 interface, as opposed to the alteration of specific interactions that are critical to channel function.
Collapse
|
6
|
Crnjar A, Mesoy SM, Lummis SCR, Molteni C. A Single Mutation in the Outer Lipid-Facing Helix of a Pentameric Ligand-Gated Ion Channel Affects Channel Function Through a Radially-Propagating Mechanism. Front Mol Biosci 2021; 8:644720. [PMID: 33996899 PMCID: PMC8119899 DOI: 10.3389/fmolb.2021.644720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic transmission and are crucial drug targets. Their gating mechanism is triggered by ligand binding in the extracellular domain that culminates in the opening of a hydrophobic gate in the transmembrane domain. This domain is made of four α-helices (M1 to M4). Recently the outer lipid-facing helix (M4) has been shown to be key to receptor function, however its role in channel opening is still poorly understood. It could act through its neighboring helices (M1/M3), or via the M4 tip interacting with the pivotal Cys-loop in the extracellular domain. Mutation of a single M4 tyrosine (Y441) to alanine renders one pLGIC-the 5-HT3A receptor-unable to function despite robust ligand binding. Using Y441A as a proxy for M4 function, we here predict likely paths of Y441 action using molecular dynamics, and test these predictions with functional assays of mutant receptors in HEK cells and Xenopus oocytes using fluorescent membrane potential sensitive dye and two-electrode voltage clamp respectively. We show that Y441 does not act via the M4 tip or Cys-loop, but instead connects radially through M1 to a residue near the ion channel hydrophobic gate on the pore-lining helix M2. This demonstrates the active role of the M4 helix in channel opening.
Collapse
Affiliation(s)
| | - Susanne M. Mesoy
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Carla Molteni
- Physics Department, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Mesoy SM, Lummis SCR. M4, the Outermost Helix, is Extensively Involved in Opening of the α4β2 nACh Receptor. ACS Chem Neurosci 2021; 12:133-139. [PMID: 33295751 DOI: 10.1021/acschemneuro.0c00618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are the archetypal members of the pentameric ligand-gated ion channel (pLGIC) family, an important class of cell signaling proteins. In all members of this family, each of the five subunits has four transmembrane α-helices (M1-M4), with M2 lining the pore, then M1 and M3, and with M4 outermost and adjacent to the membrane lipids. Despite its remote location, M4 contributes both to receptor assembly and gating in pLGICs where it has been examined. This study probes the role of M4 residues in the α4β2 nAChR using site-directed mutagenesis to individually mutate each residue to alanine, followed by expression in HEK293 cells and then characterization using membrane potential sensitive dye and radioligand binding. Two of the resulting mutant receptors showed altered EC50s, while 13 were nonfunctional, although coexpression with the chaperones RIC3 and nAChO resulted in 4 of these responding to agonist. Of the remaining 9, radioligand binding with epibatidine showed that 8 were expressed, suggesting these residues may play a role in channel opening. These data differ from similar studies in other pLGIC, where few or no Ala mutants in M4 ablate function, and they suggest that the α4β2 nAChR M4 may play a more significant role than in related receptors.
Collapse
Affiliation(s)
- Susanne M. Mesoy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| |
Collapse
|
8
|
Thompson MJ, Baenziger JE. Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183304. [DOI: 10.1016/j.bbamem.2020.183304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
|
9
|
Thompson MJ, Domville JA, Baenziger JE. The functional role of the αM4 transmembrane helix in the muscle nicotinic acetylcholine receptor probed through mutagenesis and coevolutionary analyses. J Biol Chem 2020; 295:11056-11067. [PMID: 32527728 DOI: 10.1074/jbc.ra120.013751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 01/22/2023] Open
Abstract
The activity of the muscle-type Torpedo nicotinic acetylcholine receptor (nAChR) is highly sensitive to lipids, but the underlying mechanisms remain poorly understood. The nAChR transmembrane α-helix, M4, is positioned at the perimeter of each subunit in direct contact with lipids and likely plays a central role in lipid sensing. To gain insight into the mechanisms underlying nAChR lipid sensing, we used homology modeling, coevolutionary analyses, site-directed mutagenesis, and electrophysiology to examine the role of the α-subunit M4 (αM4) in the function of the adult muscle nAChR. Ala substitutions for most αM4 residues, including those in clusters of polar residues at both the N and C termini, and deletion of up to 11 C-terminal residues had little impact on the agonist-induced response. Even Ala substitutions for coevolved pairs of residues at the interface between αM4 and the adjacent helices, αM1 and αM3, had little effect, although some impaired nAChR expression. On the other hand, Ala substitutions for Thr422 and Arg429 caused relatively large losses of function, suggesting functional roles for these specific residues. Ala substitutions for aromatic residues at the αM4-αM1/αM3 interface generally led to gains of function, as previously reported for the prokaryotic homolog, the Erwinia chrysanthemi ligand-gated ion channel (ELIC). The functional effects of individual Ala substitutions in αM4 were found to be additive, although not in a completely independent manner. Our results provide insight into the structural features of αM4 that are important. They also suggest how lipid-dependent changes in αM4 structure ultimately modify nAChR function.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jaimee A Domville
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
da Costa Couto ARGM, Price KL, Mesoy S, Capes E, Lummis SCR. The M4 Helix Is Involved in α7 nACh Receptor Function. ACS Chem Neurosci 2020; 11:1406-1412. [PMID: 32364364 DOI: 10.1021/acschemneuro.0c00027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are the archetypal members of the pentameric ligand-gated ion channel (pLGIC) family, an important class of cell signaling proteins. In all members of this family, each of the five subunits has four transmembrane α-helices (M1-M4) with M2 lining the pore and then M1 and M3, with M4 outermost and adjacent to the membrane lipids. M4 has a variety of roles: its interaction with neighboring M1 and M3 helices is important for receptor assembly, it can a transmit information on the lipid content of the membrane to the gating mechanism, and it may form a vital link to the extracellular domain via the Cys-loop. This study examines the role of M4 receptor residues in the α7 nAChR using site-directed mutagenesis and subsequent expression in Xenopus oocytes. The data indicate that many of the residues in M4 play a role in receptor function, as substitution with Ala can modify functional parameters; 11 of 24 mutants showed a small gain of function (<10-fold decrease in EC50), and 1 (D446A) did not respond to the agonist; it was also not expressed at the cell surface. Removal or addition of aromatic residues had small or no effects. These results demonstrate the α7 nAChR M4 has a role in receptor function, and a structural model suggests possible interactions of some of these residues with their neighbors.
Collapse
Affiliation(s)
- Ana R G M da Costa Couto
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Kerry L Price
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Susanne Mesoy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Emily Capes
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| |
Collapse
|
11
|
Rahman MM, Teng J, Worrell BT, Noviello CM, Lee M, Karlin A, Stowell MHB, Hibbs RE. Structure of the Native Muscle-type Nicotinic Receptor and Inhibition by Snake Venom Toxins. Neuron 2020; 106:952-962.e5. [PMID: 32275860 DOI: 10.1016/j.neuron.2020.03.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 03/15/2020] [Indexed: 12/28/2022]
Abstract
The nicotinic acetylcholine receptor, a pentameric ligand-gated ion channel, converts the free energy of binding of the neurotransmitter acetylcholine into opening of its central pore. Here we present the first high-resolution structure of the receptor type found in muscle-endplate membrane and in the muscle-derived electric tissues of fish. The native receptor was purified from Torpedo electric tissue and functionally reconstituted in lipids optimal for cryo-electron microscopy. The receptor was stabilized in a closed state by the binding of α-bungarotoxin. The structure reveals the binding of a toxin molecule at each of two subunit interfaces in a manner that would block the binding of acetylcholine. It also reveals a closed gate in the ion-conducting pore, formed by hydrophobic amino acid side chains, located ∼60 Å from the toxin binding sites. The structure provides a framework for understanding gating in ligand-gated channels and how mutations in the acetylcholine receptor cause congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brady T Worrell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Myeongseon Lee
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Arthur Karlin
- Center for Molecular Recognition & Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Tong A, Petroff JT, Hsu FF, Schmidpeter PA, Nimigean CM, Sharp L, Brannigan G, Cheng WW. Direct binding of phosphatidylglycerol at specific sites modulates desensitization of a ligand-gated ion channel. eLife 2019; 8:50766. [PMID: 31724949 PMCID: PMC6855808 DOI: 10.7554/elife.50766] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are essential determinants of synaptic transmission, and are modulated by specific lipids including anionic phospholipids. The exact modulatory effect of anionic phospholipids in pLGICs and the mechanism of this effect are not well understood. Using native mass spectrometry, coarse-grained molecular dynamics simulations and functional assays, we show that the anionic phospholipid, 1-palmitoyl-2-oleoyl phosphatidylglycerol (POPG), preferentially binds to and stabilizes the pLGIC, Erwinia ligand-gated ion channel (ELIC), and decreases ELIC desensitization. Mutations of five arginines located in the interfacial regions of the transmembrane domain (TMD) reduce POPG binding, and a subset of these mutations increase ELIC desensitization. In contrast, a mutation that decreases ELIC desensitization, increases POPG binding. The results support a mechanism by which POPG stabilizes the open state of ELIC relative to the desensitized state by direct binding at specific sites.
Collapse
Affiliation(s)
- Ailing Tong
- Department of Anesthesiology, Washington University, Saint Louis, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University, Saint Louis, United States
| | - Fong-Fu Hsu
- Department of Internal Medicine, Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University, Saint Louis, United States
| | | | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, United States
| | - Liam Sharp
- Center for Computational and Integrative Biology, Rutgers University, Camden, United States
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, United States.,Department of Physics, Rutgers University, Camden, United States
| | - Wayland Wl Cheng
- Department of Anesthesiology, Washington University, Saint Louis, United States
| |
Collapse
|
13
|
Hénault CM, Govaerts C, Spurny R, Brams M, Estrada-Mondragon A, Lynch J, Bertrand D, Pardon E, Evans GL, Woods K, Elberson BW, Cuello LG, Brannigan G, Nury H, Steyaert J, Baenziger JE, Ulens C. A lipid site shapes the agonist response of a pentameric ligand-gated ion channel. Nat Chem Biol 2019; 15:1156-1164. [PMID: 31591563 DOI: 10.1038/s41589-019-0369-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
Phospholipids are key components of cellular membranes and are emerging as important functional regulators of different membrane proteins, including pentameric ligand-gated ion channels (pLGICs). Here, we take advantage of the prokaryote channel ELIC (Erwinia ligand-gated ion channel) as a model to understand the determinants of phospholipid interactions in this family of receptors. A high-resolution structure of ELIC in a lipid-bound state reveals a phospholipid site at the lower half of pore-forming transmembrane helices M1 and M4 and at a nearby site for neurosteroids, cholesterol or general anesthetics. This site is shaped by an M4-helix kink and a Trp-Arg-Pro triad that is highly conserved in eukaryote GABAA/C and glycine receptors. A combined approach reveals that M4 is intrinsically flexible and that M4 deletions or disruptions of the lipid-binding site accelerate desensitization in ELIC, suggesting that lipid interactions shape the agonist response. Our data offer a structural context for understanding lipid modulation in pLGICs.
Collapse
Affiliation(s)
- Camille M Hénault
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cedric Govaerts
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université libre de Bruxelles, Brussels, Belgium
| | - Radovan Spurny
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marijke Brams
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Joseph Lynch
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | | | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Genevieve L Evans
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Kristen Woods
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, USA.,Department of Physics, Rutgers University-Camden, Camden, NJ, USA
| | - Benjamin W Elberson
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, TTUHSC, Lubbock, TX, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, TTUHSC, Lubbock, TX, USA
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, USA.,Department of Physics, Rutgers University-Camden, Camden, NJ, USA
| | - Hugues Nury
- University Grenoble Alpes, CNRS, IBS, Grenoble, France
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - John E Baenziger
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Mesoy S, Jeffreys J, Lummis SCR. Characterization of Residues in the 5-HT 3 Receptor M4 Region That Contribute to Function. ACS Chem Neurosci 2019; 10:3167-3172. [PMID: 30835437 DOI: 10.1021/acschemneuro.8b00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5-HT3 receptors are members of the family of pentameric ligand gated ion channels (pLGICs). Each subunit has four transmembrane α-helices (M1-M4), with M4 being most distant from the central pore. Residues in this α-helix interact with adjacent lipids and the neighboring M1 and M3 helices, contributing to both receptor assembly and channel function. This study probes the role of each M4 receptor residue in the 5-HT3A receptor using mutagenesis and subsequent expression in HEK293 cells, probing functional parameters using fluorescence membrane potential sensitive dye. The data show that only one residue in M4 (Y441) and two flanking residues (D434 and W459) result in nonfunctional receptors when substituted with Ala: D434A and W459A-containing receptors ablate expression, while Y441A-containing receptor do not, suggesting the latter is involved in channel gating. Most other altered residues have wild-type-like properties, which is inconsistent with data from other pLGICs. Substitution of Y441 and W459 with other aromatics restores function, suggesting the π ring is important. Further substitutions indicate interactions of Y441 with D238 in M1, W459 with F144 in the Cys loop, and D434 with R251 in M2, data consistent with recently published structures. These regions are critical for transducing binding into gating, and thus interactions of these residues can explain their importance in the function of the 5-HT3 receptor. We also conclude that the small number of critical M4 residues compared to related receptors supports the hypothesis that M4 does not behave identically in all pLGICs.
Collapse
Affiliation(s)
- Susanne Mesoy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Jennifer Jeffreys
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| |
Collapse
|
15
|
Norleans J, Wang J, Kuryatov A, Leffler A, Doebelin C, Kamenecka TM, Lindstrom J. Discovery of an intrasubunit nicotinic acetylcholine receptor-binding site for the positive allosteric modulator Br-PBTC. J Biol Chem 2019; 294:12132-12145. [PMID: 31221718 DOI: 10.1074/jbc.ra118.006253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 06/19/2019] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptor (nAChR) ligands that lack agonist activity but enhance activation in the presence of an agonist are called positive allosteric modulators (PAMs). nAChR PAMs have therapeutic potential for the treatment of nicotine addiction and several neuropsychiatric disorders. PAMs need to be selectively targeted toward certain nAChR subtypes to tap this potential. We previously discovered a novel PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which selectively potentiates the opening of α4β2*, α2β2*, α2β4*, and (α4β4)2α4 nAChRs and reactivates some of these subtypes when desensitized (* indicates the presence of other subunits). We located the Br-PBTC-binding site through mutagenesis and docking in α4. The amino acids Glu-282 and Phe-286 near the extracellular domain on the third transmembrane helix were found to be crucial for Br-PBTC's PAM effect. E282Q abolishes Br-PBTC potentiation. Using (α4E282Qβ2)2α5 nAChRs, we discovered that the trifluoromethylated derivatives of Br-PBTC can potentiate channel opening of α5-containing nAChRs. Mutating Tyr-430 in the α5 M4 domain changed α5-selectivity among Br-PBTC derivatives. There are two kinds of α4 subunits in α4β2 nAChRs. Primary α4 forms an agonist-binding site with another β2 subunit. Accessory α4 forms an agonist-binding site with another α4 subunit. The pharmacological effect of Br-PBTC depends both on its own and agonists' occupancy of primary and accessory α4 subunits. Br-PBTC reactivates desensitized (α4β2)2α4 nAChRs. Its full efficacy requires intact Br-PBTC sites in at least one accessory and one primary α4 subunit. PAM potency increases with higher occupancy of the agonist sites. Br-PBTC and its derivatives should prove useful as α subunit-selective nAChR PAMs.
Collapse
Affiliation(s)
- Jack Norleans
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jingyi Wang
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Alexander Kuryatov
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Abba Leffler
- Neuroscience Graduate Program, Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York 10010
| | - Christelle Doebelin
- Department of Molecular Medicine, The Scripps Research Institute, Scripps, Florida, Jupiter, Florida 33458
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Scripps, Florida, Jupiter, Florida 33458
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
16
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
17
|
Tang B, Lummis SCR. The roles of aromatic residues in the glycine receptor transmembrane domain. BMC Neurosci 2018; 19:53. [PMID: 30189850 PMCID: PMC6127993 DOI: 10.1186/s12868-018-0454-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022] Open
Abstract
Background Cys-loop receptors play important roles in fast neuronal signal transmission. Functional receptors are pentamers, with each subunit having an extracellular, transmembrane (TM) and intracellular domain. Each TM domain contains 4 α-helices (M1–M4) joined by loops of varying lengths. Many of the amino acid residues that constitute these α-helices are hydrophobic, and there has been particular interest in aromatic residues, especially those in M4, which have the potential to contribute to the assembly and function of the receptor via a range of interactions with nearby residues. Results Here we show that many aromatic residues in the M1, M3 and M4 α-helices of the glycine receptor are involved in the function of the receptor. The residues were explored by creating a range of mutant receptors, characterising them using two electrode voltage clamp in Xenopus oocytes, and interpreting changes in receptor parameters using currently available structural information on the open and closed states of the receptor. For 7 residues function was ablated with an Ala substitution: 3 Tyr residues at the extracellular end of M1, 2 Trp residues located towards the centers of M1 and M3, and a Phe and a Tyr residue in M4. For many of these an alternative aromatic residue restored wild-type-like function indicating the importance of the π ring. EC50s were increased with Ala substitution of 8 other aromatic residues, with those in M1 and M4 also having reduced currents, indicating a role in receptor assembly. The structure shows many potential interactions with nearby residues, especially between those that form the M1/M3/M4 interface, and we identify those that are supported by the functional data. Conclusion The data reveal the importance and interactions of aromatic residues in the GlyR M1, M3 and M4 α-helices, many of which are essential for receptor function. Electronic supplementary material The online version of this article (10.1186/s12868-018-0454-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bijun Tang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|